JP2628200B2 - TiCN-based cermet and method for producing the same - Google Patents
TiCN-based cermet and method for producing the sameInfo
- Publication number
- JP2628200B2 JP2628200B2 JP63243623A JP24362388A JP2628200B2 JP 2628200 B2 JP2628200 B2 JP 2628200B2 JP 63243623 A JP63243623 A JP 63243623A JP 24362388 A JP24362388 A JP 24362388A JP 2628200 B2 JP2628200 B2 JP 2628200B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- carbide
- ticn
- temperature
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐摩耗性、靭性に優れ、且つ焼肌面が良好で
特に鋳鉄用切削工具として有用なTiCN基サーメットの改
良に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement of a TiCN-based cermet which is excellent in wear resistance and toughness, has a good burnt surface, and is particularly useful as a cutting tool for cast iron.
従来から、切削用焼結体としてはWC−Coを主成分とす
る超硬合金が主として用いられていたが、最近ではTiの
炭化物、窒化物、炭窒化物を主成分とするサーメット焼
結体が用いられている。Conventionally, cemented carbide mainly composed of WC-Co has been mainly used as a sintered body for cutting, but recently, a cermet sintered body mainly composed of carbides, nitrides and carbonitrides of Ti. Is used.
このようなサーメット系焼結体としては、TiCを主成
分とし、鉄族金属を結合相とし、さらに周期律表第IV
a,V a,VI a族金属の炭化物、窒化物、炭窒化物を硬質相
成分として加えたTiC基サーメットが主流であった。し
かし乍らこのようなTiC基サーメット焼結体では耐熱
性、強靭性に劣ることから、蒸気組成にさらにTiN等の
窒化物、炭窒化物を含有させることが提案された。これ
は、TiN自体が靭性に富むことにより、焼結体に靭性を
付与するとともに、熱伝導率が高いことにより、耐熱衝
撃性、耐熱塑性変形性を向上させようとするものであ
る。Such a cermet-based sintered body includes TiC as a main component, an iron group metal as a binder phase, and
The mainstream was a TiC-based cermet to which carbides, nitrides, and carbonitrides of a, Va, and VIa group metals were added as hard phase components. However, since such a TiC-based cermet sintered body is inferior in heat resistance and toughness, it has been proposed to further include a nitride such as TiN or a carbonitride in the vapor composition. This is intended to impart toughness to the sintered body due to richness of TiN itself and to improve thermal shock resistance and thermal plastic deformation due to high thermal conductivity.
一方、元来、サーメットは製法上表面に金属が浸み出
すとともにその直下に硬質な層が存在し、切削性能上欠
損を起こし易いという欠点を有している。On the other hand, cermets originally have a drawback in that metal is leached on the surface in the production process and a hard layer exists immediately below the surface, which easily causes a defect in cutting performance.
そこで、従来よりTiNを含有するTiC基サーメットに対
し、さらに各種の改良がなされている。例えば特公昭59
−14534号では液相出現温度以下で窒素を炉内に導入
し、焼結体表面に靭性に富む軟化層を形成させること
が、また、特公昭59−17176号ではCO還元雰囲気で焼成
することにより、特定の硬度を有する硬質層を形成させ
ることが、さらに、特公昭60−34618号によれば焼成後
の降温時にCO雰囲気と成すことにより表面内部とも均一
な機械特性を有するサーメットを得ることが提案されて
いる。Therefore, various improvements have been made to the TiC-based cermet containing TiN. For example, Japanese Patent Publication No. 59
In -14534, nitrogen is introduced into the furnace at a temperature below the liquid phase appearance temperature to form a softened layer with high toughness on the surface of the sintered body.In Japanese Patent Publication No. 59-17176, firing in a CO reducing atmosphere is required. According to JP-B-60-34618, it is possible to obtain a cermet having uniform mechanical properties both inside and outside the surface by forming a CO atmosphere at the time of cooling after firing according to Japanese Patent Publication No. 34618/1985. Has been proposed.
しかし乍ら、鋳鉄用切削工具として高速切削加工時の
耐摩耗性の知見からは特公昭59−14534号および特公昭6
0−34618号の記載の切削工具では表面硬度が低いため
に、性能上不十分である。一方、特公昭59−17176号に
は表面に硬質層を形成させる方法が開示されているもの
のその表面硬度はせいぜいビッカース硬度(Hv)で1800
Kg/mm2までしか達成されておらず、それ以上の硬度を有
する硬質層を形成させる際には、硬質形成成分中にMo2C
およびWCを多量に含有させなければ達成されないが、こ
のようにMo,C,WCを多量に含む塑性では実質上、切削工
具としての他の特性を劣化させる結果となってしまう。However, from the knowledge of wear resistance during high-speed cutting as a cutting tool for cast iron, Japanese Patent Publication Nos.
The cutting tool described in 0-34618 is insufficient in performance due to low surface hardness. On the other hand, Japanese Patent Publication No. 59-17176 discloses a method for forming a hard layer on the surface, but the surface hardness is at most 1800 Vickers hardness (Hv).
Kg / mm 2 not been only achieved until, in forming the hard layer having a higher hardness, Mo 2 C in the hard-forming component
However, plasticity containing a large amount of Mo, C, and WC results in substantially deteriorating other characteristics as a cutting tool.
よって、従来では、他の特性を劣化させることなく、
耐摩耗性に優れた鋳鉄用切削工具は開発されていないの
が現状であった。Therefore, conventionally, without deteriorating other characteristics,
At present, cutting tools for cast iron having excellent wear resistance have not been developed.
本発明は上記問題点を解決することを主たる目的とす
るもので具体的には、耐フランク摩耗性、耐クレータ摩
耗性に優れた特に鋳鉄の切削工具用のTiCN基サーメット
とその製法を提供するにある。The present invention has as its main object to solve the above problems, and specifically, provides a TiCN-based cermet excellent in flank wear resistance and crater wear resistance, particularly for a cutting tool of cast iron, and a method for producing the same. It is in.
本発明者らは、上記の問題点に対して検討を重ねた結
果、Tiを炭化物、窒化物、あるいは炭窒化物として50乃
至80重量%、周期律表第VI a族金属を炭化物として10乃
至40重量%の割合で含有するとともに、窒素/(炭素+
窒素)で表される原子比が0.4乃至0.6の範囲にある硬質
相成分70乃至90重量%と、鉄族金属を主成分とする結合
相成分10乃至30重量%とから成るTiCN基サーメットにお
いて、表面から深さ50μmまでの表層部に、結合相の量
が内部よりも少ないビッカース硬度2000以上の硬質部が
存在するTiCN基サーメットは、これを鋳鉄の切削工具と
して用いた場合、優れた耐フランク摩耗性と耐クレーマ
摩耗性が達成されることを知見した。The present inventors have repeatedly studied the above problems, and found that Ti is 50 to 80% by weight as a carbide, nitride or carbonitride and 10 to 10% by weight as a group VIa metal of the periodic table as a carbide. 40% by weight and nitrogen / (carbon +
Nitrogen) in a TiCN-based cermet comprising 70 to 90% by weight of a hard phase component having an atomic ratio in the range of 0.4 to 0.6 and 10 to 30% by weight of a binder phase component mainly composed of an iron group metal; TiCN-based cermets, which have a hard part with a Vickers hardness of 2,000 or more in the surface layer from the surface to a depth of 50 μm, where the amount of the binder phase is smaller than the inner part, have excellent flank resistance when used as a cutting tool for cast iron. It has been found that abrasion resistance and claimer wear resistance are achieved.
また、上記TiC基サーメットは、Tiを炭化物、窒化
物、あるいは炭窒化物として50乃至80重量%、周期律表
第VI a族金属を炭化物として10乃至40重量%の割合で含
有するとともに、窒素/(炭素+窒素)で表される原子
比が0.4乃至0.6の範囲にある硬質相成分70乃至90重量%
と、鉄族金属を主成分とする結合相成分10乃至30重量%
とから成る成形体を真空の炉内に設置後、昇温し、前記
鉄族金属による液相出現温度以上で焼結最高温度到達前
の炉内に70torr以上の圧力を窒素ガスを導入し、前記焼
結最高温度到達後に炉内を真空に戻して焼成することに
より容易に且つ安定に作製できることを見いだし、本発
明に至ったのである。The TiC-based cermet contains Ti at a ratio of 50 to 80% by weight as a carbide, nitride or carbonitride, and a metal of Group VIa of the periodic table at a ratio of 10 to 40% by weight as a carbide. 70 to 90% by weight of a hard phase component having an atomic ratio represented by / (carbon + nitrogen) in the range of 0.4 to 0.6
And 10 to 30% by weight of a binder phase component mainly composed of an iron group metal
After placing the molded body consisting of in a vacuum furnace, the temperature is increased, and nitrogen gas is introduced at a pressure of 70 torr or more into the furnace before the sintering maximum temperature is reached at or above the liquid phase appearance temperature due to the iron group metal, It has been found that the furnace can be easily and stably manufactured by returning the inside of the furnace to a vacuum and firing after reaching the maximum sintering temperature, and the present invention has been accomplished.
以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.
本発明のTiCN基サーメットは硬質相成分として、Tiを
炭化物、窒化物あるいは炭窒化物として50乃至80重量
%、特に55乃至65重量%とW,Mo等の周期律表VI a族元素
を炭化物として10乃至40重量%、特に15乃至30重量%と
を含有する。The TiCN-based cermet of the present invention contains 50 to 80% by weight, particularly 55 to 65% by weight, of Ti as a hard phase component as a carbide, nitride or carbonitride, and contains a Group VIa element of the periodic table such as W or Mo as a carbide. 10 to 40% by weight, especially 15 to 30% by weight.
このような硬質相成分において、上記Tiの量が50重量
%を下回ると耐摩耗性が低下し、80重量%を超えると焼
結性が低下し好ましくない。また、上記第VI a族元素は
粒成長抑制、結合相とのぬれ性を向上させる効果を有す
るが、10重量%を下回ると上記効果が得られず、硬質相
が粗大化し、硬度、強度が低下する。また、40重量%を
超えるとη相等の不健全相が生じると共に焼結が困難と
なる。In such a hard phase component, if the amount of Ti is less than 50% by weight, the abrasion resistance decreases, and if it exceeds 80% by weight, the sinterability decreases, which is not preferable. Further, the Group VIa element has an effect of suppressing grain growth and improving wettability with a binder phase. However, if it is less than 10% by weight, the above effect cannot be obtained, and the hard phase becomes coarse, and the hardness and strength are reduced. descend. On the other hand, if it exceeds 40% by weight, an unhealthy phase such as an η phase is generated and sintering becomes difficult.
また、硬質相成分としては上記の他、耐クレータ摩耗
性向上を目的としてTa,Nbを、さらに耐塑性変形性向上
を目的としてZr,V,Hf等を窒化物、炭化物、炭窒化物と
して5乃至40重量%の割合で含むことも可能であるが、
40重量%を超えると耐摩耗性劣化、ポア、ボイドの発生
が著しく増加する傾向にあり好ましくない。As the hard phase component, in addition to the above, Ta, Nb for the purpose of improving crater wear resistance, and Zr, V, Hf, etc., for the purpose of improving plastic deformation resistance, are used as nitrides, carbides, and carbonitrides. Although it is possible to include it in a proportion of about 40% by weight,
If it exceeds 40% by weight, deterioration of wear resistance, generation of pores and voids tends to increase remarkably, which is not preferable.
一方、結合相はFe,Co,Ni等の鉄族金属を主体として成
るもので、一部、硬質相形成成分が含まれる場合もあ
る。On the other hand, the binder phase is mainly composed of an iron group metal such as Fe, Co, and Ni, and may partially include a hard phase forming component.
焼結体全体として硬質相成分は70乃至90重量%、結合
相成分は10〜30重量%の割合から成る。The hard phase component comprises 70 to 90% by weight and the binder phase component comprises 10 to 30% by weight in the whole sintered body.
本発明における組成上の特徴は、硬質相成分中におい
て窒素/(炭素+窒素)で表わされる原子比が0.4乃至
0.6、特に0.4〜0.5の範囲に設定される点にある。即
ち、この原子比が0.4を下回ると靭性、耐摩耗性の向上
が望めず、本発明の目的が達成されず、0.6を超えると
焼結体中にポア、ボイドが発生し、工具としての信頼性
が低下する。The feature of the composition in the present invention is that the atomic ratio represented by nitrogen / (carbon + nitrogen) in the hard phase component is from 0.4 to 0.4.
0.6, especially in the range of 0.4 to 0.5. That is, if the atomic ratio is less than 0.4, improvement in toughness and wear resistance cannot be expected, and the object of the present invention cannot be achieved. If the atomic ratio exceeds 0.6, pores and voids are generated in the sintered body, and the reliability as a tool is increased. Is reduced.
さらに、本発明のサーメットは第1図に示すように表
面から深さ50μmまでの表層部にビッカース硬度が2000
以上の高硬度な硬質部が存在するものである。このよう
な硬質部が存在することによってサーメットの耐摩耗性
を大きく向上させることができる。Further, as shown in FIG. 1, the cermet of the present invention has a Vickers hardness of 2000 on the surface layer from the surface to a depth of 50 μm.
The hard part having the above-described high hardness exists. The presence of such a hard portion can greatly improve the wear resistance of the cermet.
通常、表面に高硬質層が存在する場合、靭性低下によ
り、カケ、割れ等が発生し易くなるが、本発明によれ
ば、前述した特定の組成、特に窒素を多量に含むことに
よって、靭性が付与され、カケ、割れ等の発生のない優
れた焼結体となる。Normally, when a high-hardness layer is present on the surface, chipping, cracking, and the like are likely to occur due to a decrease in toughness, but according to the present invention, the specific composition described above, in particular, by including a large amount of nitrogen, the toughness is reduced. This gives an excellent sintered body free from chipping and cracking.
本発明のサーメットはこのような構成により、窒素を
多量に含むことによる靭性、耐摩耗性、耐熱性の向上効
果を長期に亘り維持することができ、しかも表面に高硬
度な硬質部が存在することから、鋳鉄用切削工具として
の長寿命化、高信頼性を図ることが可能となる。しかも
焼結後の焼結体に対し研磨工程等を行うことなく、製品
化することも可能となる。With such a configuration, the cermet of the present invention can maintain the effect of improving toughness, abrasion resistance, and heat resistance by containing a large amount of nitrogen for a long period of time, and has a hard portion having high hardness on the surface. This makes it possible to extend the life of the cutting tool for cast iron and achieve high reliability. Moreover, it is possible to commercialize the sintered body without performing a polishing step or the like on the sintered body after sintering.
本発明のTiCN基サーメットの製造方法によれば、組成
としてTiを炭化物、窒化物あるいは炭窒化物として50乃
至80重量%、周期律表第VI a族元素を炭化物として10乃
至40重量%の割合で含有するとともに窒素/(炭素+窒
素)で表わされる原子比が0.4乃至0.6の範囲内にある硬
質相成分70乃至90重量%と、結合相成分10乃至30重量%
とから成る成形体を作成する。According to the method for producing a TiCN-based cermet of the present invention, the proportion of Ti as a carbide, nitride or carbonitride is 50 to 80% by weight, and the Group VIa element of the periodic table is 10 to 40% by weight as a carbide. And 70 to 90% by weight of a hard phase component having an atomic ratio of nitrogen / (carbon + nitrogen) in the range of 0.4 to 0.6, and 10 to 30% by weight of a binder phase component
To produce a molded body comprising:
具体的には原料粉末としてTiC,TiN,TiCN等を、また第
VI a族系としてはWC,Mo2C,MoC等を、あるいはこれらの
複合炭化物、複合炭窒化物を用い、上記の組成となるよ
うに調合した後、公知の成形手段、例えばプレス成形、
押出し成形、鋳込み成形、射出成形、冷間静水圧成形等
で成形する。Specifically, TiC, TiN, TiCN, etc. are used as raw material powders.
As a VIa-group system, WC, Mo 2 C, MoC, or the like, or a composite carbide thereof, using a composite carbonitride, after blending so as to have the above composition, known molding means, for example, press molding,
It is formed by extrusion molding, casting molding, injection molding, cold isostatic molding, or the like.
この時、前述したようにTa,Nb,Zr,V,Hf等の炭化物、
窒化物、炭窒化物等を組合わせて用いることも当然可能
である。なお、Ti系としてはTiCを用いると焼結性が低
下し、部分的粒成長を起こす場合があるため、Ti(CN)
あるいはTi(CN)とTiNとの組合せがより好ましい。At this time, as described above, carbides such as Ta, Nb, Zr, V, Hf,
Naturally, it is also possible to use a combination of nitrides, carbonitrides and the like. When TiC is used as the Ti-based material, the sinterability is reduced and partial grain growth may occur.
Alternatively, a combination of Ti (CN) and TiN is more preferable.
得られた成形体は真空の炉内に設置され、焼成に移さ
れる。The obtained compact is placed in a vacuum furnace and transferred to firing.
焼成は、1400〜1700℃の焼成温度で行われるが本発明
によれば、焼成は、まず0.5Torr以下の真空炉内で加熱
し、所定の時期に70Torr以上、特に100〜200Torrの圧力
の窒素ガスを導入する。The firing is performed at a firing temperature of 1400 to 1700 ° C. According to the present invention, the firing is first performed by heating in a vacuum furnace of 0.5 Torr or less, and nitrogen at a predetermined time of 70 Torr or more, particularly 100 to 200 Torr. Introduce gas.
この窒素ガスの導入は、昇温課程において、鉄族金属
の液相出現温度以上で、特に対理論密度比が初期の成形
体より5%程度以上緻密化した段階で導入する。即ち、
液相出現温度以上で成形体の表面には液相により被膜が
形成される。この被膜形成後に窒素ガスを導入すること
により、成形体中に存在する空隙に窒素ガスがトラップ
され、残留するのを防止するとともに、成形体中に含ま
れるTiN等の窒化物の熱分解による窒素ガスの発生を抑
制し、結果的に焼結体中にポア、ボイドが残留するのを
防止することができる。The nitrogen gas is introduced at a temperature higher than the temperature at which the liquid phase of the iron group metal appears in the temperature raising process, particularly when the theoretical density ratio is about 5% or more higher than the initial compact. That is,
Above the liquid phase appearance temperature, a film is formed on the surface of the molded body by the liquid phase. By introducing nitrogen gas after the formation of the film, the nitrogen gas is trapped in the voids existing in the molded body and is prevented from remaining, and nitrogen due to thermal decomposition of nitrides such as TiN contained in the molded body. Generation of gas can be suppressed, and as a result, pores and voids can be prevented from remaining in the sintered body.
しかし、窒素ガスの導入の時期が焼結最高温度到達
後、特に対理論密度比90%を超えた付近では、実質上、
窒化物の分解抑制効果は得られず、焼結体表面に荒れが
生じる。However, when the time of introduction of nitrogen gas reaches the maximum sintering temperature, especially around the point where the theoretical density ratio exceeds 90%, substantially,
The effect of suppressing the decomposition of nitride cannot be obtained, and the surface of the sintered body becomes rough.
窒素ガスは炉内の温度が最高焼結温度に達した後は、
所定時間保持後、ただちに真空に戻して焼成を続ける。After the temperature in the furnace reaches the maximum sintering temperature,
After holding for a predetermined time, the pressure is immediately returned to the vacuum, and the firing is continued.
これは、最高焼結温度到達後にさらに圧力を上げる
と、焼結体表面部に粗粒で金属をほとんど含有しない、
脆い窒化層が生成され、焼肌面の荒れを生じるととも
に、表面部の靭性を著しく低下させてしまう。This means that if the pressure is further increased after reaching the maximum sintering temperature, the surface of the sintered body contains coarse metal and almost no metal,
A brittle nitride layer is generated, causing roughening of the burnt surface and significantly reducing the toughness of the surface.
なお、導入される窒素ガス圧力は、窒化物の熱分解を
十分に抑制し得る圧力であることが必要であるが、この
窒素ガス圧力は焼結体表面部に形成される硬質部の硬度
に大きく影響する。これは、窒素ガス導入後、成形体内
部と炉内雰囲気との間に圧力が生じている。そこへ、急
激に真空に戻すと成形体表面付近の結合金属が内部に移
動し、表面層付近は内部に対し、結合相量が減少するこ
とにより、硬度が高くなる。それと同時に組織上、表面
付近の結晶が球状化すること、および第VI a族元素が多
量に含まれることにより靭性が向上するものと考えられ
る。The pressure of the introduced nitrogen gas needs to be a pressure that can sufficiently suppress the thermal decomposition of the nitride, but this nitrogen gas pressure is lower than the hardness of the hard portion formed on the surface of the sintered body. It has a significant effect. This is because a pressure is generated between the inside of the compact and the atmosphere in the furnace after the introduction of the nitrogen gas. When the pressure is suddenly returned to vacuum, the bonding metal near the surface of the molded body moves inside, and the hardness increases near the surface layer due to a decrease in the amount of the bonding phase relative to the inside. At the same time, it is considered that the toughness is improved due to the spheroidization of crystals near the surface in the structure and the inclusion of a large amount of Group VIa elements.
本発明によれば、ビッカース硬度2000以上の硬質部を
形成させるためには窒素ガス圧力を70Torr以上に設定す
ることが必要であることを確認した。According to the present invention, it has been confirmed that it is necessary to set the nitrogen gas pressure to 70 Torr or more in order to form a hard portion having a Vickers hardness of 2,000 or more.
以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.
原料粉末として平均粒径1〜1.5μmのTi(CN),TiN,
TiC,WC,Mo2C,NbC,NbN,VC,Ni,Coを用い、第1表の組成に
調合後、振動ミルで粉砕を行い、バインダーを添加した
ものをTNGA332チップ形状にプレス成形し、300℃で脱バ
インダー後、第1表の仕様で焼成を行った。なお、第1
表における焼成条件において窒素ガスは導入後、焼結最
高温度には5分間保持し、ただちに真空に戻した。As raw material powder, Ti (CN), TiN,
Using TiC, WC, Mo 2 C, NbC, NbN, VC, Ni and Co, after mixing to the composition shown in Table 1, pulverizing with a vibration mill, press-forming the binder-added one into TNGA332 chip shape, After debinding at 300 ° C., firing was performed according to the specifications shown in Table 1. The first
After the nitrogen gas was introduced under the firing conditions in the table, the maximum sintering temperature was maintained for 5 minutes, and the vacuum was immediately returned.
得られた焼結体に対し、硬質相の炭素、窒素を定量分
析し、N/(C+N)原子比を求めた。また、焼肌面に対
し、最大表面粗さ(Rmax)を調べた。The obtained sintered body was quantitatively analyzed for carbon and nitrogen in the hard phase, and the N / (C + N) atomic ratio was determined. Further, the maximum surface roughness (Rmax) of the burnt skin surface was examined.
なお、各試料について試料を約20゜の角度で研摩し、
該研摩面に対し垂直方向でビッカース硬度を表面からの
距離(深さ)を変えて測定し、その硬度分布を測定し、
その最高硬度を第2表に示した。For each sample, polish the sample at an angle of about 20 °,
Vickers hardness was measured in a direction perpendicular to the polished surface while changing the distance (depth) from the surface, and the hardness distribution was measured.
The maximum hardness is shown in Table 2.
また、各試料に対し、下記条件で耐摩耗試験を行い、
フランク摩耗量(mm)、クレータ摩耗量(mm)を測定し
た。In addition, a wear resistance test was performed on each sample under the following conditions.
The flank wear (mm) and crater wear (mm) were measured.
摩耗試験条件 被削剤 FC25 切削速度 150m/min 切り込み 2mm 送り 0.3mm/rev 切削時間 10分間 なお、第1表中、試料No.2,4,7についてはその表面か
ら1mmまでの硬度分布を示した。Wear test conditions Work material FC25 Cutting speed 150m / min Depth of cut 2mm Feed 0.3mm / rev Cutting time 10 minutes In Table 1, Sample Nos. 2, 4, and 7 showed a hardness distribution from the surface to 1 mm.
第1表の結果から明らかなようにN/(C+N)比が0.
4を下回るNo.8の試料は焼結体表面に粗れが生じてお
り、耐摩耗性も悪い。逆に比が0.5を超えるNo.9の試料
では良好な焼結体が得られず、耐摩耗性も悪い。逆に比
が0.6を超えるNo.9の試料では良好な焼結体が得られ
ず、耐摩耗テストができなかった。また、導入するN2圧
が70Torrを下回るNo.7,10の試料はいずれもビッカース
硬度2000が達成されず、耐摩耗試験の結果も悪かった。As is clear from the results in Table 1, the N / (C + N) ratio was 0.
The sample of No. 8 below 4 has roughness on the surface of the sintered body and has poor wear resistance. Conversely, a sample of No. 9 having a ratio of more than 0.5 cannot obtain a good sintered body and has poor wear resistance. Conversely, a sample of No. 9 having a ratio of more than 0.6 failed to obtain a good sintered body, and could not perform a wear resistance test. No. 7 and No. 10 samples in which the N 2 pressure to be introduced was less than 70 Torr did not achieve Vickers hardness of 2000, and the results of the wear resistance test were poor.
さらに、N2ガス導入時期が液相出現温度T1より低いN
o.12では良好な焼結体が得られず、また焼結最高温度T2
到達後では、表面の荒れが生じた。Further, N 2 gas introduction period is lower than the liquid phase emergence temperature T 1 N
With o.12, a good sintered body was not obtained, and the maximum sintering temperature T 2
After reaching, the surface became rough.
これに対し、本発明品No.1〜6はいずれも2000以上の
ビッカース硬度を有する硬質部が形成され、鋳鉄切削に
対し、優れた耐摩耗性を示した。また、本発明のサーメ
ットの表層部に形成された硬質部における結合相の含有
量は、サーメットの内部、即ち、中心部における結合相
の含有量よりも少なくなっていることが確認された。On the other hand, all of the products Nos. 1 to 6 of the present invention formed a hard portion having a Vickers hardness of 2000 or more, and exhibited excellent wear resistance to cutting of cast iron. Further, it was confirmed that the content of the binder phase in the hard portion formed in the surface layer portion of the cermet of the present invention was smaller than the content of the binder phase in the cermet, that is, in the central portion.
以上、詳述した通り、本発明のサーメットは窒素は所
定量含有するとともに、表面部にビッカース硬度2000以
上の高硬度の硬質部が形成されることから、表面の耐摩
耗性に極めて優れたものであり、特に鋳鉄用の切削工具
として優れた切削特性を示し、工具としての長寿命化を
達成することができる。As described above in detail, the cermet of the present invention contains a predetermined amount of nitrogen, and a hard portion having a high hardness of Vickers hardness of 2000 or more is formed on the surface portion, so that the surface has extremely excellent wear resistance. In particular, it shows excellent cutting characteristics as a cutting tool for cast iron, and can achieve a longer tool life.
第1図はサーメット焼結体の表面から0.2mmまでの硬度
分布を示す図であり、図中No.2,4は本発明品、No.7は比
較品を示す。FIG. 1 is a view showing a hardness distribution from the surface of the cermet sintered body to 0.2 mm from the surface, wherein Nos. 2 and 4 indicate the products of the present invention and No. 7 indicates comparative products.
Claims (2)
して50乃至80重量%、周期律表第VI a族金属を炭化物と
して10乃至40重量%の割合で含有するとともに、窒素/
(炭素+窒素)で表される原子比が0.4乃至0.6の範囲に
ある硬質相成分70乃至90重量%と、鉄族金属を主成分と
する結合相成分10乃至30重量%とから成るTiCN基サーメ
ットにおいて、表面から深さ50μmまでの表層部に、結
合相の量が内部よりも少ないビッカース硬度2000以上の
硬質部が存在することを特徴とするTiCN基サーメット。(1) Ti is contained in a proportion of 50 to 80% by weight as a carbide, nitride or carbonitride, and a Group VIa metal of the periodic table in a proportion of 10 to 40% by weight as a carbide.
TiCN group consisting of 70 to 90% by weight of a hard phase component having an atomic ratio of (carbon + nitrogen) in the range of 0.4 to 0.6 and 10 to 30% by weight of a binder phase component mainly composed of an iron group metal. A TiCN-based cermet characterized in that a cermet has a hard part having a Vickers hardness of 2,000 or more in a surface layer part having a depth of 50 μm from the surface, in which the amount of a binder phase is smaller than that in an inner part.
して50乃至80重量%、周期律表第VI a族金属を炭化物と
して10乃至40重量%の割合で含有するとともに、窒素/
(炭素+窒素)で表される原子比が0.4乃至0.6の範囲に
ある硬質相成分70乃至90重量%と、鉄族金属を主成分と
する結合相成分10乃至30重量%とから成る成形体を真空
の炉内に設置後、昇温し、前記鉄族金属による液相出現
温度以上で焼結最高温度到達の前に炉内に70torr以上の
圧力の窒素ガスを導入し、前記焼結最高温度到達後に炉
内を真空に戻して焼成することを特徴とするTiCN基サー
メットの製法。(2) Ti is contained in a proportion of 50 to 80% by weight as a carbide, nitride or carbonitride, and a Group VIa metal of the periodic table in a proportion of 10 to 40% by weight as a carbide.
A molded article comprising 70 to 90% by weight of a hard phase component having an atomic ratio of (carbon + nitrogen) in the range of 0.4 to 0.6 and 10 to 30% by weight of a binder phase component mainly composed of an iron group metal. After placing in a vacuum furnace, the temperature was raised, and nitrogen gas having a pressure of 70 torr or more was introduced into the furnace before reaching the maximum sintering temperature above the liquid phase appearance temperature due to the iron group metal, A method for producing a TiCN-based cermet, wherein the temperature in the furnace is returned to a vacuum after the temperature is reached and the furnace is fired.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63243623A JP2628200B2 (en) | 1988-09-27 | 1988-09-27 | TiCN-based cermet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63243623A JP2628200B2 (en) | 1988-09-27 | 1988-09-27 | TiCN-based cermet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0293036A JPH0293036A (en) | 1990-04-03 |
JP2628200B2 true JP2628200B2 (en) | 1997-07-09 |
Family
ID=17106579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63243623A Expired - Lifetime JP2628200B2 (en) | 1988-09-27 | 1988-09-27 | TiCN-based cermet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2628200B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010104094A1 (en) | 2009-03-10 | 2010-09-16 | 株式会社タンガロイ | Cermet and coated cermet |
JP2012101288A (en) * | 2010-11-08 | 2012-05-31 | Tungaloy Corp | Cermet and coated cermet |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0505991B1 (en) * | 1991-03-27 | 1995-11-08 | Hitachi Metals, Ltd. | Titanium carbide-based cermet alloy |
SE9101386D0 (en) * | 1991-05-07 | 1991-05-07 | Sandvik Ab | SINTRAD CARBONITRID ALLOY WITH FORERBAETTRAD WEAR STRENGTH |
JP2004292905A (en) | 2003-03-27 | 2004-10-21 | Tungaloy Corp | Compositionally graded sintered alloy and method of producing the same |
JP5004145B2 (en) * | 2004-06-09 | 2012-08-22 | 株式会社タンガロイ | Cermet and coated cermet and methods for producing them |
EP2446987B1 (en) | 2009-06-22 | 2018-09-26 | Tungaloy Corporation | Tool having coated cubic boron nitride sintered body |
JPWO2011129422A1 (en) | 2010-04-16 | 2013-07-18 | 株式会社タンガロイ | Coated cBN sintered body |
EP2591869B1 (en) | 2010-07-06 | 2015-09-09 | Tungaloy Corporation | Coated polycrystalline cbn tool |
JP2013010997A (en) * | 2011-06-29 | 2013-01-17 | Sumitomo Electric Hardmetal Corp | Cermet, method for producing the same, and cutting tool |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5914534A (en) * | 1982-07-14 | 1984-01-25 | Nissan Motor Co Ltd | Floor trim of vehicle |
JPS5917176A (en) * | 1982-07-20 | 1984-01-28 | Mitsubishi Electric Corp | Photomagnetic resonance magnetometer |
-
1988
- 1988-09-27 JP JP63243623A patent/JP2628200B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010104094A1 (en) | 2009-03-10 | 2010-09-16 | 株式会社タンガロイ | Cermet and coated cermet |
JP2012101288A (en) * | 2010-11-08 | 2012-05-31 | Tungaloy Corp | Cermet and coated cermet |
Also Published As
Publication number | Publication date |
---|---|
JPH0293036A (en) | 1990-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0223585B1 (en) | A hard sintered compact for a tool | |
JP2684721B2 (en) | Surface-coated tungsten carbide-based cemented carbide cutting tool and its manufacturing method | |
JP2769821B2 (en) | TiCN-based cermet and method for producing the same | |
US4409003A (en) | Carbonitride coated silicon nitride cutting tools | |
JP2762745B2 (en) | Coated cemented carbide and its manufacturing method | |
WO1985001465A1 (en) | Coated silicon nitride cutting tools | |
JP2578679B2 (en) | TiCN-based cermet | |
JP2628200B2 (en) | TiCN-based cermet and method for producing the same | |
JP2775298B2 (en) | Cermet tool | |
JP3132843B2 (en) | High toughness high pressure phase boron nitride sintered body | |
JP3199407B2 (en) | TiCN-based cermet | |
JPH06248385A (en) | Ticn based cermet | |
JP2828512B2 (en) | Coated TiCN-based cermet | |
JP2828511B2 (en) | Surface coated TiCN based cermet | |
JP3359221B2 (en) | TiCN-based cermet tool and its manufacturing method | |
JP2771336B2 (en) | Coated TiCN-based cermet | |
JPH06336634A (en) | Surface-coated cermet | |
JP2001181775A (en) | Cermet sintered body | |
JP2910293B2 (en) | Manufacturing method of tungsten carbide based cemented carbide cutting tool coated with hard layer | |
JP2511694B2 (en) | Surface-tempered sintered alloy, method for producing the same, and coated surface-tempered sintered alloy obtained by coating the alloy with a hard film | |
JP2814452B2 (en) | Surface-finished sintered alloy, method for producing the same, and coated surface-finished sintered alloy obtained by coating the alloy with a hard film | |
JP3092887B2 (en) | Surface-finished sintered alloy and method for producing the same | |
JP3285724B2 (en) | cermet | |
JPH07172924A (en) | Highly tough sintered compact for tool and its production | |
JP3850086B2 (en) | Hard layer coated cermet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080418 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090418 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090418 Year of fee payment: 12 |