[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2626277B2 - Construction method of tunnel - Google Patents

Construction method of tunnel

Info

Publication number
JP2626277B2
JP2626277B2 JP3516591A JP3516591A JP2626277B2 JP 2626277 B2 JP2626277 B2 JP 2626277B2 JP 3516591 A JP3516591 A JP 3516591A JP 3516591 A JP3516591 A JP 3516591A JP 2626277 B2 JP2626277 B2 JP 2626277B2
Authority
JP
Japan
Prior art keywords
tunnel
ground
excavation
face
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3516591A
Other languages
Japanese (ja)
Other versions
JPH04254694A (en
Inventor
康郎 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP3516591A priority Critical patent/JP2626277B2/en
Publication of JPH04254694A publication Critical patent/JPH04254694A/en
Application granted granted Critical
Publication of JP2626277B2 publication Critical patent/JP2626277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、切羽の掘削に先立ち
その前部側周囲の地山を高強度のガラス状固結体のアー
チに改質するトンネルの施工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing a tunnel for modifying a ground around a front side of a face into a high-strength vitreous consolidated arch prior to excavation of a face.

【0002】[0002]

【従来の技術】未固結あるいは軟弱な地盤に山岳トンネ
ル工法を用いてトンネルを掘削する場合、トンネル坑天
端の崩落や地表の沈下を防ぎ、切羽の自立を促進するこ
とを目的として地山を改良することが行われる。この改
良方法としては従来では例えば掘削断面の周囲に特殊薬
液、ジェットグラウトなどの薬液を注入する工法や、中
空ボルトによる薬液注入工法が一般的に行われている
が、この種の注入工法では以下に述べる問題点があっ
た。
2. Description of the Related Art When a tunnel is excavated on unconsolidated or soft ground by using a mountain tunnel method, it is intended to prevent collapse of the top of the tunnel pit or sinking of the ground surface and to promote the independence of the face. To be improved. Conventionally, as this improvement method, for example, a method of injecting a special solution such as jet grout around the excavated cross section or a method of injecting a solution using a hollow bolt is generally performed. There was a problem described in.

【0003】[0003]

【発明が解決しようとする課題】まずこの工法では薬液
により土壌や地下水を汚染する問題が生ずる。またこの
汚染問題が軽視できるものであるとしても、薬液の注入
量や注入範囲は、地山の透水性や割れ目の状態によって
左右され、正確な予測,管理が難しい。このため、例え
ば期待された改良効果の不足による安全面の問題や、そ
の逆に薬液注入量の不必要な増加による経済性や工期の
面での問題なども生じていた。
First, in this method, there is a problem that soil and groundwater are contaminated by a chemical solution. Even if this contamination problem can be neglected, the injection amount and injection range of the chemical solution are affected by the permeability and cracks of the ground, and it is difficult to accurately predict and manage the contamination. For this reason, for example, there have been problems in safety due to lack of expected improvement effects, and conversely, problems in economics and construction time due to an unnecessary increase in the amount of chemical solution injected.

【0004】この発明は以上の問題を解決するものであ
って、薬液を用いることなくトンネル周囲の地山自体を
強度の高い地盤に変質させることができるトンネルの施
工方法を提供することを目的としている。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a method for constructing a tunnel capable of transforming the ground itself around the tunnel into a high-strength ground without using a chemical solution. I have.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、この発明の施工方法は、切羽の掘削に先立ち、該切
羽面の少なくとも前面上部側の地山に向けて予定掘削断
面の円周形状に沿って所定間隔をおいて複数の電極棒を
貫入し、各電極棒間に電流を流すことにより電極棒間に
位置する地山の部位を発熱させてガラス状に溶融させた
後、これを冷却することによりガラス状固結体をアーチ
状に形成するものである。
In order to achieve the above object, a construction method according to the present invention comprises, prior to excavation of a face, forming a circumferential shape of a predetermined excavation cross section at least toward the ground at the upper front side of the face. A plurality of electrode rods are penetrated at predetermined intervals along, and a current is caused to flow between the electrode rods to generate heat by heating the ground portion located between the electrode rods and melt it into a glass. By cooling, a vitreous compact is formed in an arch shape.

【0006】[0006]

【作用】以上の施工方法において、予定掘削断面形状に
沿って地山内部に形成されるガラス状固結体のアーチ
は、極めて強度が高く、トンネル坑天端の崩落や地表の
沈下を防止するための永久的な構造体として機能する。
In the above construction method, the arch of the vitreous solid formed inside the ground along the planned excavation cross-sectional shape has extremely high strength and prevents collapse of the top of the tunnel pit and sinking of the ground surface. Act as a permanent structure for.

【0007】[0007]

【実施例】以下、この発明の一実施例を図面を用いて詳
細に説明する。図1(a),(b)はこの発明のトンネ
ル施工方法を示すものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIGS. 1A and 1B show a tunnel construction method according to the present invention.

【0008】図におけるトンネル坑1は山岳トンネル工
法によって施工される。この山岳トンネル工法は、周知
のようにトンネル坑1の切羽1aに削岩機により削孔
し、ここに発破を仕掛けて切羽1aを破砕しつつ掘進す
る工法である。この発明方法は以上の掘削作業に先立
ち、少なくともトンネル坑1の上部側の地山Eの改良を
行うもので、まず切羽1a面の上部側の地山Eに向けて
予定掘削断面Aの円周形状に応じて所定間隔をおいて複
数の導孔2を斜め上に向けて削孔する。
The tunnel tunnel 1 in the figure is constructed by a mountain tunnel method. As is well known, this mountain tunnel method is a method of drilling a face 1a of a tunnel 1 with a rock drill, blasting the face 1a and crushing the face 1a. Prior to the above-mentioned excavation work, the method of the present invention improves at least the ground E on the upper side of the tunnel pit 1. First, the circumference of the planned excavation section A is directed toward the ground E on the upper side of the face 1a. A plurality of conductive holes 2 are cut obliquely upward at predetermined intervals according to the shape.

【0009】この導孔2の長さおよび角度は一回の掘進
量および改良しようとする地山Eの厚みを考慮して少な
くとも数mから十数mに設定される。また、各導孔2の
削孔間隔は後述する電極間抵抗を考慮して1〜2mから
7〜8m程度に設定されることが望ましい。
The length and angle of the guide hole 2 are set to at least several meters to several tens of meters in consideration of the amount of one excavation and the thickness of the ground E to be improved. Further, it is desirable that the drilling interval of each conductive hole 2 is set to about 1 to 2 m to about 7 to 8 m in consideration of resistance between electrodes described later.

【0010】削孔作業完了後、各導孔2に電気抵抗の低
い電極棒3を挿通する。次いで各電極棒3と数1000
KWの電力の高電流発生装置4とを隣合う電極棒3間で
極性を交互にして接続し、次いで装置4のスイッチを入
れて大電流を流すと、隣り合う電極棒3間に存在する地
山Eの部位の抵抗によって1000℃以上にのぼるジュ
ール熱が発生し、この熱によって図の斜線で囲われるほ
ぼ楕円状の範囲に含まれる土中のけい素成分が溶融す
る。溶融状態で電流を遮断すると溶融部分は冷却し、斜
線の部分に沿って相互に一体化した状態の所定厚みおよ
び長さのガラス状固結体5のアーチが前記予定掘削断面
Aの外周に沿って一体に接合された状態で形成される。
各固結体5はガラス状であり、しかも各電極3間でそれ
らを結んで一体的に形成されるため、その一軸圧縮強度
は1000Kg/cm2 以上となり極めて高強度の永久
的な構造体となる。
After the drilling operation is completed, the electrode rod 3 having a low electric resistance is inserted into each of the conductive holes 2. Then each electrode rod 3 and several thousand
A high-current generator 4 of KW power is connected alternately between adjacent electrode rods 3, and then the device 4 is turned on and a large current is applied. Joule heat of 1000 ° C. or more is generated due to the resistance at the site of the mountain E, and the heat melts the silicon component in the soil contained in the substantially elliptical area surrounded by the oblique line in the figure. When the current is cut off in the molten state, the molten part cools down, and the arch of the glass-like solidified body 5 having a predetermined thickness and length integrated with each other along the hatched portion extends along the outer periphery of the predetermined excavation section A. And are integrally joined.
Since each consolidated body 5 is glassy and is integrally formed by connecting the electrodes 3 to each other, the uniaxial compressive strength thereof is 1000 kg / cm 2 or more, and it is a very high-strength permanent structure. Become.

【0011】以上の改良作業終了後に、前記固結体5の
形成された内周側を発破などを用いて前記予定掘削断面
Aに沿って掘削し、コンクリートなどにより覆工するこ
とで、一回の掘削作業のサイクルを完了する。以下、掘
削作業に先立つ導孔2のボーリングと電極棒3の挿通、
電流の印加作業を行うことにより順次固結体5のアーチ
を形成しながら掘削が繰返されることになる。
After completion of the above-mentioned improvement work, the inner peripheral side on which the solidified body 5 is formed is excavated along the planned excavation section A using blasting or the like, and lining with concrete or the like is performed once. Complete the excavation work cycle. Hereinafter, boring of the guide hole 2 and insertion of the electrode rod 3 prior to the excavation work,
The excavation is repeated while sequentially forming the arch of the consolidated body 5 by performing the current application operation.

【0012】なお、固結体5のアーチは極めて強度の高
い層となり、また溶融範囲も地質によって異なってくる
ので、予定掘削断面Aの外周に直接接して形成させるの
でなく、ある程度の固結しない層を介して形成すること
が望ましい。このためには、電極棒3の導孔2の入口側
に位置する部分の外周に図1(b)に一部拡大して示す
ように絶縁体3aなどを設けておけば、各電極3の絶縁
体3a間を結ぶ部位は溶融されず地山のまま残り、その
後の掘削がやり易く、また断面Aに沿って精度良く掘削
できる。
Since the arch of the consolidated body 5 becomes an extremely high-strength layer and the melting range varies depending on the geology, the arch is not formed directly in contact with the outer periphery of the planned excavation section A and does not solidify to a certain extent. It is desirable to form via a layer. To this end, an insulator 3a or the like is provided on the outer periphery of a portion of the electrode rod 3 located on the entrance side of the conducting hole 2 as shown in FIG. The portion connecting the insulators 3a remains undisturbed without being melted, and subsequent excavation is easy to perform, and excavation can be accurately performed along the cross section A.

【0013】また、電極棒3の導入は、導孔2を掘削し
て挿入する方法以外に、直接これを貫入させてもよい。
In addition to the method of excavating and inserting the conductive hole 2, the electrode rod 3 may be directly penetrated.

【0014】[0014]

【発明の効果】以上実施例によって詳細に説明したよう
に、この発明によるトンネルの施工方法にあっては、地
山自体を溶融し、固結するため薬液などの材料が不要で
あり、土壌汚染や地下水汚染を伴うことがないととも
に、薬液の注入時間や固結時間などのサイクルタイムを
取られることがなく比較的短時間で地山の改良を行うこ
とができるため、経済的である。またこの発明にあって
は、改良強化された範囲がある程度予測可能で管理が比
較的容易であるとともに、トンネル坑の外周側に極めて
強度の高いアーチが形成されるため、トンネル坑の天端
の崩落などがなく、掘削時における安全性が向上する。
As described in detail in the above embodiments, the tunnel construction method according to the present invention melts and solidifies the ground itself, so that no material such as a chemical solution is required, and soil contamination is prevented. This method is economical because it does not involve pollution or groundwater pollution, and can improve the ground in a relatively short time without taking a cycle time such as a chemical solution injection time and a consolidation time. According to the present invention, the improved and strengthened area can be predicted to some extent and the management thereof is relatively easy, and an extremely strong arch is formed on the outer peripheral side of the tunnel pit. There is no collapse and safety during excavation is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はこの発明によるトンネル施工方法を示
す正断面説明図である。 (b)は同じく側断面説明図である。
FIG. 1A is a front sectional view showing a tunnel construction method according to the present invention. (B) is an explanatory side sectional view of the same.

【符号の説明】[Explanation of symbols]

1 トンネル坑 2 導孔 3 電極棒 5 ガラス状固結体 DESCRIPTION OF SYMBOLS 1 Tunnel 2 Conducting hole 3 Electrode rod 5 Vitreous solid

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 切羽の掘削に先立ち、該切羽面の少なく
とも前面上部側の地山に向けて予定掘削断面の円周形状
に沿って所定間隔をおいて複数の電極棒を貫入し、各電
極棒間に電流を流すことにより電極棒間に位置する地山
の部位を発熱させてガラス状に溶融させた後、これを冷
却することによりガラス状固結体をアーチ状に形成する
ことを特徴とするトンネルの施工方法。
1. Prior to excavation of a face, a plurality of electrode rods penetrate at predetermined intervals along a circumferential shape of a planned excavation cross section toward a ground at least on an upper front side of the face, and each electrode is After passing the current between the rods, the ground part located between the electrode rods is heated and melted into a glass shape, and then cooled to form a glass-like consolidated body in an arch shape. Tunnel construction method.
JP3516591A 1991-02-05 1991-02-05 Construction method of tunnel Expired - Lifetime JP2626277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3516591A JP2626277B2 (en) 1991-02-05 1991-02-05 Construction method of tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3516591A JP2626277B2 (en) 1991-02-05 1991-02-05 Construction method of tunnel

Publications (2)

Publication Number Publication Date
JPH04254694A JPH04254694A (en) 1992-09-09
JP2626277B2 true JP2626277B2 (en) 1997-07-02

Family

ID=12434261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3516591A Expired - Lifetime JP2626277B2 (en) 1991-02-05 1991-02-05 Construction method of tunnel

Country Status (1)

Country Link
JP (1) JP2626277B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020056260A1 (en) * 2018-09-15 2020-03-19 University Of South Florida Arc melted glass piles for structural foundations

Also Published As

Publication number Publication date
JPH04254694A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
KR960004795B1 (en) Rock melting excavation process
KR100852724B1 (en) Reinforced tube assembly for tunnel grouting with fracture grooves and synthetic resin reinforcement tube with friction resistant reinforcement surface and tunnel reinforcement method using the same
JP2626277B2 (en) Construction method of tunnel
US5114277A (en) Vitrified underground structures
CN110905525A (en) A kind of high temperature sintering support method for soft soil tunnel
RU2038475C1 (en) Electrothermomechanical drilling method and apparatus
CN111945731A (en) Rotary coring machine of single steel bar and its treatment construction method for the pile foundation of shield tunnel intrusion limit
JPH0828191A (en) Steel lining structure of tunnel
JP4359700B2 (en) Precast concrete pile core and method for removing reinforced concrete structure using the same
US5910093A (en) Starter tube for use in vitrification process
CN111396073A (en) Over-fault advance support method
KR100756647B1 (en) Tunnel reinforcement grouting method using plasma vitrification
JPS5854127A (en) Pulling off method for pile and excavating casing for use of said method
JP2695319B2 (en) Tunnel construction method
CN113236263B (en) Construction method of open TBM front-mounted type advanced pipe shed
EP0437262A1 (en) Method for preventive consolidation of the soil for underground minings
JPH0319356B2 (en)
JP2004162256A (en) Removable buried pipe
JPH04118414A (en) Field solidification treatment of soil with waste refuse buried in
SU927900A1 (en) Method of thermal consolidation of soil
JP4116730B2 (en) Tunnel long end receiving method
JP3890427B2 (en) Improved column construction method for ground improvement
JP3085194B2 (en) Tunnel support method
KR940001799Y1 (en) Rock-bolt structure
JP2951049B2 (en) Consolidation method of medium excavation pile