JP2619947B2 - Fuel cell generator - Google Patents
Fuel cell generatorInfo
- Publication number
- JP2619947B2 JP2619947B2 JP1051610A JP5161089A JP2619947B2 JP 2619947 B2 JP2619947 B2 JP 2619947B2 JP 1051610 A JP1051610 A JP 1051610A JP 5161089 A JP5161089 A JP 5161089A JP 2619947 B2 JP2619947 B2 JP 2619947B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- cooling water
- temperature
- steam
- circulation system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は水冷式燃料電池発電装置の改質水蒸気発生
系および燃料電池冷却系の構造、ことにその始動および
停止時の温度制御特性の改善に関する。Description: TECHNICAL FIELD The present invention relates to a structure of a reformed steam generation system and a fuel cell cooling system of a water-cooled fuel cell power generator, and more particularly to an improvement in temperature control characteristics at start and stop thereof. About.
燃料電池発電装置は天然ガス,メタノール等を原料と
して水蒸気改質により水素リッチなガスを生成する改質
器,この改質器で生成した水素を燃料とし、空気の酸化
剤として発電を行う燃料電池、および燃料電池の直流出
力を交流に変換する直交変換装置から成る。この燃料電
池発電装置において発電を開始する場合、まず改質器に
原料ガスと水蒸気の混合ガスを導入し改質反応を行う
が、このための水蒸気(約160℃飽和蒸気)を発生させ
る機器を設備として所持する必要がある。また、発電す
るために電池本体の温度を約130℃までに昇温しなけれ
ばならず、このため電池冷却水系に電気ヒータ等を入れ
て昇温する必要がある。そこで、起動のために蒸気発生
用ボイラ等と電池昇温用ヒータ等の2つの設備を所持し
たものが知られている。A fuel cell power generator is a reformer that generates hydrogen-rich gas by steam reforming using natural gas, methanol, etc. as raw materials, and a fuel cell that uses hydrogen generated by this reformer as fuel and generates power as an oxidizing agent for air. , And a quadrature converter for converting a DC output of the fuel cell into an AC. When power generation is started in this fuel cell power generator, first, a mixed gas of a raw material gas and steam is introduced into a reformer to perform a reforming reaction, and equipment for generating steam (saturated steam at about 160 ° C.) for this purpose is provided. Must be possessed as equipment. Further, in order to generate power, the temperature of the battery main body must be raised to about 130 ° C. Therefore, it is necessary to put an electric heater or the like in the battery cooling water system to raise the temperature. Therefore, it is known that two devices such as a steam generating boiler and a battery heating heater are provided for startup.
また、燃料電池の運転を停止する場合、燃料電池の発
電生成熱によって例えば160℃以上の高温になっている
冷却水を冷却して燃料電池温度を例えば80℃以下の保管
に好適な温度に冷却することが求められるが、多くの場
合自然冷却に依存しているもが多いのが実情である。Further, when the operation of the fuel cell is stopped, cooling water having a high temperature of, for example, 160 ° C. or more is cooled by heat generated by power generation of the fuel cell to cool the fuel cell temperature to a temperature suitable for storage of, for example, 80 ° C. or less. However, in many cases, natural cooling is often required.
蒸気発生用の熱源と、電池予熱用の熱源とを備える従
来装置における構成の繁雑化を避けるために、両熱源を
兼用形として電池冷却水系に電気ヒータを設け、発電開
始時に冷却水を130℃程度に加熱して燃料電池の予熱を
行い、かつ加熱された冷却水を蒸気発生源として利用す
るとともに、発電運転時には燃料電池に通水冷却水を微
少流量に絞ってオン・オフ制御することにより燃料電池
をその作動温度に保持する方法も試みられたが、電子温
度をある程度作動温度に保持できるものの、積層燃料電
池の上下方向にかなりの温度差が生じ、各単セル間に出
力特性の差が生じ、これが原因で出力特性の低下や電極
触媒相の劣化が促進されるという問題があり、その改善
が求められている。In order to avoid complication of the configuration in the conventional apparatus having a heat source for generating steam and a heat source for preheating the battery, an electric heater is provided in the battery cooling water system by using both heat sources, and the cooling water is cooled to 130 ° C at the start of power generation. By preheating the fuel cell by heating it to an appropriate level, and using the heated cooling water as a steam generation source, during power generation operation, control the on / off control by narrowing the cooling water passing through the fuel cell to a very small flow rate. Attempts have been made to maintain the fuel cell at its operating temperature.However, although the electron temperature can be maintained at a certain operating temperature, a considerable temperature difference occurs in the vertical direction of the stacked fuel cell, resulting in a difference in output characteristics between the individual cells. There is a problem that the deterioration of the output characteristics and the deterioration of the electrode catalyst phase are promoted due to this, and improvement thereof is required.
一方、発電運転の停止時に燃料電池が高温の作動温度
にある状態で不活性ガスによるパージを行って発電運転
を停止すると、反応ガスパージの遅れが原因で一部の単
セルにシンタリング現象に基づく電極触媒の有効反応面
積の低下が起こり、これが原因で出力特性の低下が促進
されるという問題があり、その改善が求められている。On the other hand, when the fuel cell is at a high operating temperature when the power generation operation is stopped and the inert gas is purged to stop the power generation operation, a delay in the reaction gas purge causes some of the single cells to perform a sintering phenomenon. There is a problem that a reduction in the effective reaction area of the electrode catalyst occurs, which leads to a reduction in output characteristics.
この発明の目的は、燃料電池の出力特性に悪影響を及
ぼすことなく蒸気発生系用および燃料電池予熱用の熱源
を共用化でき、かつ運転停止時の降温が従来装置より短
時間で能率的になし得る水冷式燃料電池の蒸気発生系お
よび冷却系を得ることにある。SUMMARY OF THE INVENTION It is an object of the present invention to share a heat source for a steam generation system and for preheating a fuel cell without adversely affecting the output characteristics of the fuel cell, and to reduce the temperature during operation shutdown in a shorter time and more efficiently than a conventional device. It is another object of the present invention to obtain a steam generation system and a cooling system of the obtained water-cooled fuel cell.
上記課題を解決するために、この発明によれば、燃料
電池と、水蒸気を原燃料の水蒸気改質器系へ供給する水
蒸気分離器と、これらに冷却水を循環させる冷却水循環
系とを備える燃料電池発電装置において、 前記水蒸気分離器は、燃料電池の起動時に電気ヒータ
により包蔵水を燃料電池の起動に好適な温度に昇温する
加熱循環系と、包蔵水の水温を調節する温度調節器とを
有し、 前記冷却水循環系は、前記燃料電池の冷却水出口,三
方弁,水蒸気分離器,冷却水循環用のポンプ,前記燃料
電池の冷却水入口を順次接続してなり、かつ前記三方弁
より分離する分岐循環系を有し、 前記分岐循環系は、前記三方弁と、燃料電池の停止時
に前記冷却水を冷却する冷却器と、燃料電池入口冷却水
温度を調節するために設けた三方弁式温度調節弁とを順
に接続してなり、さらに前記三方弁式温度調節弁の一つ
の冷却水出口を前記冷却水循環系の前記三方弁と前記水
蒸気分離器との間に配管接続し、かつ他方の冷却水出口
を前記冷却水系の前記水蒸気分離器と前記ポンプとの間
に配管接続するものとする。According to the present invention, there is provided a fuel cell comprising a fuel cell, a steam separator for supplying steam to a raw fuel steam reformer system, and a cooling water circulation system for circulating cooling water therethrough. In the battery power generator, the steam separator is a heating circulating system that raises the temperature of the stored water to a temperature suitable for starting the fuel cell by an electric heater when the fuel cell is started, and a temperature controller that adjusts the temperature of the stored water. The cooling water circulation system is configured to sequentially connect a cooling water outlet of the fuel cell, a three-way valve, a steam separator, a pump for cooling water circulation, and a cooling water inlet of the fuel cell. A branch circulation system for separating, the branch circulation system includes the three-way valve, a cooler that cools the cooling water when the fuel cell is stopped, and a three-way valve that is provided for adjusting a fuel cell inlet cooling water temperature. Type temperature control valve The cooling water outlet of one of the three-way valve type temperature control valve is further connected to the three-way valve of the cooling water circulation system and the steam separator, and the other cooling water outlet is connected to the cooling water outlet. A pipe is connected between the steam separator of the cooling water system and the pump.
上記手段において、燃料電池始動時には電気ヒータを
有する加熱循環系によって水蒸気分離器内の包蔵水を所
定温度に加熱して水蒸気を発生させ、加熱水蒸気を水蒸
気改質器系に供給して原燃料の水蒸気改質等を開始する
とともに、前記包蔵水を加熱媒体として温度調節弁を有
する分離循環系を介して燃料電池に循環して燃料電池を
その始動温度に加熱し、発電時には燃料電池の発電生成
熱で昇温した冷却水を冷却水循環系を介して水蒸気分離
器に循環させて水蒸気発生の熱触媒とすると同時に気化
熱を奪われて降温した包蔵水により燃料電池を冷却し、
発電運転停止時には分岐循環系に配された冷却器により
冷却された冷却水を燃料電池に循環させて燃料電池を所
定の降温速度で冷却するよう構成したことにより、水蒸
気分離器を介して相互に結合された三つの循環系の通流
の仕方と、電気ヒータおよび冷却器との組み合わせによ
り、改質水蒸気の発生および燃料電池の始動,運転,停
止の三つの状態の温度制御を安定して行うことができ、
燃料電池の性能低下を回避できる。In the above means, at the time of starting the fuel cell, the stored water in the steam separator is heated to a predetermined temperature by a heating circulation system having an electric heater to generate steam, and the heated steam is supplied to the steam reformer system to supply raw steam to the steam reformer system. In addition to starting steam reforming and the like, the stored water is circulated to the fuel cell through a separation circulation system having a temperature control valve as a heating medium to heat the fuel cell to its starting temperature. The cooling water heated by heat is circulated through a cooling water circulation system to a steam separator to be used as a heat catalyst for generating steam, and at the same time, the fuel cell is cooled by the cooling water which is deprived of heat of vaporization and cooled,
When the power generation operation is stopped, the cooling water cooled by the cooler arranged in the branch circulation system is circulated to the fuel cell to cool the fuel cell at a predetermined temperature reduction rate, so that the fuel cell is mutually cooled through the steam separator. By combining the flow of the three coupled circulation systems with the electric heater and the cooler, the generation of reformed steam and the temperature control in the three states of starting, operating, and stopping the fuel cell are stably performed. It is possible,
Fuel cell performance degradation can be avoided.
以下この発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.
第1図はこの発明の実施例装置を示す要部の配管系統
図、第2図はその電気系統の要部の接続図であり、主と
して冷却水循環系および蒸気発生系からなる水系部分を
示したものである。第1図において、1は水冷式燃料電
池、2は水蒸気改質器2Aを含む水蒸気改質器系、3は包
蔵水8および高温水蒸気9を内包する水蒸気分離器であ
り、包蔵水8の目減りは弁6を介して図示しない復水器
等から補給され、その液面はレベル調節器6Aによって所
定レベルに保持される。FIG. 1 is a piping diagram of a main part showing an apparatus according to an embodiment of the present invention, and FIG. 2 is a connection diagram of a main part of an electric system thereof, mainly showing a water system part comprising a cooling water circulation system and a steam generation system. Things. In FIG. 1, reference numeral 1 denotes a water-cooled fuel cell, 2 denotes a steam reformer system including a steam reformer 2A, 3 denotes a steam separator containing stored water 8 and high-temperature steam 9, and the amount of stored water 8 is reduced. Is supplied from a condenser or the like (not shown) via a valve 6, and its liquid level is maintained at a predetermined level by a level adjuster 6A.
また、10は包蔵水8を冷却媒体として燃料電池1の冷
却器に循環させる冷却水循環系であり、水蒸気分離器3
の底に連結された配管11,循環ポンプ12,流量調節弁13,
燃料電池出口側配管14,三方弁15,および水蒸気分離器3
の上部に連通する配管16を含む循環通路として構成され
る。Reference numeral 10 denotes a cooling water circulation system for circulating the stored water 8 as a cooling medium to the cooler of the fuel cell 1.
Piping 11, circulation pump 12, flow control valve 13,
Fuel cell outlet piping 14, three-way valve 15, and steam separator 3
It is configured as a circulation passage including a pipe 16 communicating with the upper part of the air conditioner.
21は包蔵水8の加熱循環系であり、電気ヒータ22,循
環ポンプ23と、これらと水蒸気分離器との間に循環通路
を形成する配管21A,21B,21Cとで構成される。Reference numeral 21 denotes a heating circulation system for the stored water 8, which is constituted by an electric heater 22, a circulation pump 23, and pipes 21A, 21B, and 21C that form a circulation passage between these and a steam separator.
30は冷却器32および三方弁式の温度調節弁33を含む分
岐循環系であり、その一方の配管31Aが三方弁15の一方
の口Bを介して冷却水循環系10に切換可能に連結され、
他方の端が配管31Cを通して水蒸気分離器3の上部に連
結されるとともに、三方弁式の温度調節弁33の一方の口
Bが配管31Dを介して循環ポンプ12の吸込側に連結され
ることにより、冷却水循環系10に水蒸気分離器3をバイ
パスする循環通路が形成される。Reference numeral 30 denotes a branch circulation system including a cooler 32 and a three-way valve type temperature control valve 33, and one of the pipes 31A is switchably connected to the cooling water circulation system 10 through one port B of the three-way valve 15,
The other end is connected to the upper portion of the steam separator 3 through the pipe 31C, and one port B of the three-way valve type temperature control valve 33 is connected to the suction side of the circulation pump 12 through the pipe 31D. In addition, a circulation passage for bypassing the steam separator 3 is formed in the cooling water circulation system 10.
上述のように構成された実施例装置において、装置の
始動時にはポンプ23によって水蒸気分離器3の包蔵水8
を循環させて電気ヒータ22によって加熱するとともに、
三方弁15をA→B側に切換えて冷却水循環系10のポンプ
12を駆動し、包蔵水8を加熱媒体として燃料電池1およ
び分岐循環系30を介して循環する。このとき、冷却器32
の弁32Bは閉じてその冷却機能を停止状態とする。包蔵
水8の昇温に伴って燃料電池1の冷却板温度は第3図に
曲線101で示すように上昇するので、燃料電池の入口温
度調節器33Aにより温度調節弁33を制御して配管31Cと31
Dとに分岐する水の量の割合を制御することにより、電
池の平均温度を発電開始前に例えば130℃程度に予熱す
ることができる。なお、第1図において、電気ヒータ22
を水蒸気分離器3の包蔵水8中に設けることにより、ポ
ンプ23を省略して、ポンプ12による水循環経路で加熱循
環系を構成することもできる。一方、水蒸気分離器3の
包蔵水温度は第3図に曲線102で示すように、例えば130
℃までは温度調節器24によって、それ以上は圧力調節器
5Aおよび圧力調製弁5の開口制御で飽和水蒸気9の発生
量,いいかえれば気化熱を制御することにより例えば16
0℃程度に保持され、発生した飽和水蒸気が水蒸気改質
器系2に送られることによって原燃料の水蒸気改質が行
われる。そこで改質ガスの生成を見計らって発電を開始
すると、燃料電池1は自己発熱によって冷却板温度が曲
線101に示すように上昇し、水系の始動操作を完了す
る。In the embodiment apparatus configured as described above, the pump 23 stores the stored water 8 of the steam separator 3 when the apparatus is started.
And heated by the electric heater 22,
Switching the three-way valve 15 from A to B side to pump the cooling water circulation system 10
12 is driven to circulate through the fuel cell 1 and the branch circulation system 30 using the stored water 8 as a heating medium. At this time, the cooler 32
Valve 32B is closed to stop its cooling function. Since the temperature of the cooling plate of the fuel cell 1 rises as shown by the curve 101 in FIG. 3 with the rise of the temperature of the stored water 8, the temperature control valve 33 is controlled by the fuel cell inlet temperature controller 33A to control the piping 31C. And 31
By controlling the ratio of the amount of water branched to D, the average temperature of the battery can be preheated to, for example, about 130 ° C. before the start of power generation. Note that, in FIG.
Is provided in the stored water 8 of the steam separator 3, the pump 23 can be omitted, and the heating circulation system can be constituted by the water circulation path by the pump 12. On the other hand, the temperature of the stored water of the steam separator 3 is, for example, as shown by a curve 102 in FIG.
Temperature controller 24 up to ° C, pressure regulator above
By controlling the amount of saturated steam 9 generated by controlling the opening of the pressure control valve 5 and 5A, in other words, by controlling the heat of vaporization, for example, 16
Maintained at about 0 ° C., the generated saturated steam is sent to the steam reformer system 2 to perform steam reforming of the raw fuel. Then, when power generation is started in anticipation of generation of reformed gas, the temperature of the cooling plate of the fuel cell 1 rises as shown by a curve 101 due to self-heating, and the operation of starting the water system is completed.
そこで、電気ヒータ22の電流を遮断し、循環ポンプ23
を停止するとともに、三方弁15をA→C側に切換えて冷
却水循環系10を通して循環させることにより、燃料電池
1の発電生成熱を熱源として改質に必要な飽和水蒸気を
発生でき、かつ気化熱を奪われることによって降温した
包蔵水が冷却水として燃料電池に環流されることにより
燃料電池1が冷却され、所定の作動温度を保持して発電
運転が行われる。燃料電池の冷却水の入口温度は、前述
のように圧力調節器5A及び圧力調整弁5の開口制御によ
り所定温度に保持される。燃料電池の負荷があがれば、
冷却水の燃料電池出口温度が上昇するので、その分燃料
電池自体の温度は上昇する。Therefore, the current of the electric heater 22 is cut off, and the circulation pump 23
Is stopped, and the three-way valve 15 is switched from the A to the C side to circulate through the cooling water circulation system 10, so that the heat generated by the power generation of the fuel cell 1 can be used as a heat source to generate saturated steam required for reforming, The fuel cell 1 is cooled by flowing the stored water whose temperature has been reduced by being deprived of the fuel cell as cooling water to the fuel cell, and the power generation operation is performed while maintaining a predetermined operating temperature. The inlet temperature of the cooling water of the fuel cell is maintained at a predetermined temperature by controlling the opening of the pressure regulator 5A and the pressure regulating valve 5 as described above. When the fuel cell load increases,
Since the fuel cell outlet temperature of the cooling water rises, the temperature of the fuel cell itself rises accordingly.
発電運転を停止する場合には、燃料電池に供給される
反応ガスを遮断したあと、三方弁をA→B側に切換え、
冷却器32の冷却水開閉弁32Bを開くことによって分岐循
環系30を通る循環水の温度が低下するので、温度調節弁
33により燃料電池入口側における冷却水温度が規定の降
温速度で低下するよう制御することにより、電池の冷却
板温度および水蒸気分離器内水温は第4図に曲線111お
よび112で示すように低下し、電池入口温度が70℃ない
し80℃程度に低下した時点で弁32Bを閉じることによっ
て冷却水系の停止操作が終了する。When stopping the power generation operation, after shutting off the reaction gas supplied to the fuel cell, the three-way valve is switched from A to B side,
By opening the cooling water on-off valve 32B of the cooler 32, the temperature of the circulating water passing through the branch circulating system 30 is reduced.
By controlling the cooling water temperature at the fuel cell inlet side to fall at a prescribed cooling rate according to 33, the cooling plate temperature of the cell and the water temperature in the steam separator decrease as shown by curves 111 and 112 in FIG. When the battery inlet temperature has dropped to about 70 ° C. to 80 ° C., the valve 32B is closed to terminate the operation of stopping the cooling water system.
電気ヒータ22のオン・オフ制御はその接続図を第2図
に示すように、始動時には電磁開閉器45および46を閉じ
て電力系統側から例えば二つの電気ヒータ22A,22Bに電
力を供給して水系の始動操作を開始し、改質ガス量が規
定値に到達した時点で直流開閉器43を閉じて直交変換装
置41を起動し、電子開閉器45,46を開き、代わりに電磁
開閉器47,48を閉じて一方の電気ヒータ22Aを発熱させ、
さらに改質ガス量が増えた時点で電磁開閉器49を閉じて
他方の電気ヒータ22Bを発熱させる。燃料電池への規定
のガス量の導入が終了し、ガス,水系の起動が完了した
ならば電磁開閉器47,48,49を切り、連系開閉器44を閉じ
て電力系統への送電を開始する。ただし、燃料電池発電
装置が起動用の蓄電池を備える場合には、これを電気ヒ
ータの電源とすることができる。なお、前述の実施例の
説明における三方弁式の温度調節弁および三方弁は、そ
れぞれ二方弁を2つ用いる方式に置き換えることもでき
る。The on / off control of the electric heater 22 is performed by closing the electromagnetic switches 45 and 46 at the time of starting and supplying electric power to, for example, the two electric heaters 22A and 22B from the electric power system side as shown in FIG. When the starting operation of the water system is started, when the reformed gas amount reaches the specified value, the DC switch 43 is closed and the orthogonal transformer 41 is started, and the electronic switches 45 and 46 are opened. , 48 is closed and one electric heater 22A generates heat,
When the reformed gas amount further increases, the electromagnetic switch 49 is closed to cause the other electric heater 22B to generate heat. When the introduction of the specified amount of gas into the fuel cell is completed and the activation of the gas and water systems is completed, the electromagnetic switches 47, 48, and 49 are turned off, the interconnection switch 44 is closed, and power transmission to the power system is started. I do. However, when the fuel cell power generator includes a starting storage battery, this can be used as a power source for the electric heater. The three-way valve type temperature control valve and the three-way valve in the description of the above-described embodiment can be replaced with a system using two two-way valves.
この発明は前述のように、燃料電池と、水蒸気を原燃
料の水蒸気改質器系へ供給する水蒸気分離器と、これら
に冷却水を循環させる冷却水循環系とを備える燃料電池
発電装置において、 前記水蒸気分離器は、燃料電池の起動時に電気ヒータ
により包蔵水を燃料電池の起動に好適な温度に昇温する
加熱循環系と、包蔵水の水温を調節する温度調節器とを
有し、 前記冷却水循環系は、前記燃料電池の冷却水出口,三
方弁,水蒸気分離器,冷却水循環用のポンプ,前記燃料
電池の冷却水入口を順次接続してなり、かつ前記三方弁
より分離する分岐循環系を有し、 前記分岐循環系は、前記三方弁と、燃料電池の停止時
に前記冷却水を冷却する冷却器と、燃料電池入口冷却水
温度を調節するために設けた三方弁式温度調節弁とを順
に接続してなり、さらに前記三方弁式温度調節弁の一つ
の冷却水出口を前記冷却水循環系の前記三方弁と前記水
蒸気分離器との間に配管接続し、かつ他方の冷却水出口
を前記冷却水系の前記水蒸気分離器と前記ポンプとの間
に配管接続するものとした。その結果、電気ヒータを蒸
気発生用および燃料電池予熱用を兼ねた熱源とし、分岐
循環系の温度調節弁によって燃料電池の始動温度を制御
して水系の始動操作を行うことが可能となり、かつ始動
操作中の燃料電池の発生電力を電気ヒータの加熱に利用
できるので、従来装置における蒸気発生用のボイラやそ
の配管が不要になって装置の構成を簡素化できるととも
に、加熱媒体流量を絞ってオン・オフ制御する従来方法
で問題となった燃料電池の温度差の拡大とこれに起因す
る性能低下が排除され、したがって燃料電池の性能に悪
影響を及ぼすことなく装置の始動を効率よく行える簡素
化された水冷式燃料電池発電装置を提供することができ
る。また、発電運転の停止に際しては分岐循環系に配さ
れた冷却器および温度調節弁によって冷却水温を制御し
ながら冷却できるので、燃料電池を従来装置より短時間
でかつ能率的に冷却しつつ停止操作を行うことが可能と
なり、燃料電池をその作動温度で停止する従来方法で問
題となった電極触媒の劣化とそれに起因する性能低下が
排除され、燃料電池の寿命の延長に貢献できる利点が得
られる。As described above, the present invention relates to a fuel cell power generator including a fuel cell, a steam separator for supplying steam to a steam reformer system for raw fuel, and a cooling water circulation system for circulating cooling water therethrough. The steam separator has a heating circulation system that raises the temperature of the stored water to a temperature suitable for starting the fuel cell by an electric heater when the fuel cell is started, and a temperature controller that adjusts the temperature of the stored water. The water circulation system includes a cooling water outlet of the fuel cell, a three-way valve, a steam separator, a pump for cooling water circulation, a cooling water inlet of the fuel cell, and a branch circulation system which is separated from the three-way valve. The branch circulation system has the three-way valve, a cooler that cools the cooling water when the fuel cell is stopped, and a three-way valve-type temperature control valve that is provided for adjusting the temperature of the fuel cell inlet cooling water. Connected in order, One of the cooling water outlets of the three-way valve type temperature control valve is connected to the piping between the three-way valve of the cooling water circulation system and the steam separator, and the other cooling water outlet is connected to the steam separation of the cooling water system. A pipe was connected between the pump and the pump. As a result, the electric heater can be used as a heat source for both steam generation and fuel cell preheating, and the starting temperature of the fuel cell can be controlled by the temperature control valve of the branch circulation system to perform the water-based starting operation. Since the electric power generated by the fuel cell during operation can be used for heating the electric heater, the boiler for steam generation and its piping in the conventional device are not required, so that the configuration of the device can be simplified, and the flow rate of the heating medium can be reduced by turning on the heating medium. The elimination of an increase in the temperature difference of the fuel cell and a decrease in performance due to the problem, which have been a problem with the conventional method of turning off the power, are eliminated, thereby simplifying the start-up of the device efficiently without adversely affecting the performance of the fuel cell. A water-cooled fuel cell power generator can be provided. In addition, when the power generation operation is stopped, cooling can be performed while controlling the cooling water temperature by a cooler and a temperature control valve arranged in the branch circulation system. Can be performed, and the deterioration of the electrode catalyst and the deterioration in performance caused by the problem of the conventional method of stopping the fuel cell at the operating temperature are eliminated, and the advantage that the life of the fuel cell can be extended can be obtained. .
第1図および第2図はこの発明の実施例装置の要部を示
す配管系統図、およびその電気系統の接続図、第3図は
実施例装置における始動時の温度特性図、第4図は実施
例装置における停止時の温度特性図である。 1:水冷式燃料電池、2:水蒸気改質器系、2A:水蒸気改質
器、3:水蒸気分離器、5:圧力調整弁、8:包蔵水、9:飽和
水蒸気、10:冷却水循環系、15:三方弁、21:加熱循環
系、22,22A,22B:電気ヒータ、30:分岐循環系、32:冷却
器、33:温度調節弁、12,23:循環ポンプ、41:直交変換装
置、45,46,47,48,49:電磁開閉器、43:開閉器、44:連系
開閉器。FIGS. 1 and 2 are piping diagrams showing the main parts of the apparatus of the embodiment of the present invention, and connection diagrams of the electric system, FIG. 3 is a temperature characteristic diagram at the time of starting in the embodiment apparatus, and FIG. It is a temperature characteristic figure at the time of a stop in an example device. 1: Water-cooled fuel cell, 2: Steam reformer system, 2A: Steam reformer, 3: Steam separator, 5: Pressure regulating valve, 8: Included water, 9: Saturated steam, 10: Cooling water circulation system, 15: three-way valve, 21: heating circulation system, 22, 22A, 22B: electric heater, 30: branch circulation system, 32: cooler, 33: temperature control valve, 12, 23: circulation pump, 41: orthogonal transformation device, 45, 46, 47, 48, 49: electromagnetic switch, 43: switch, 44: interconnection switch.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 康幹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭60−208067(JP,A) 特開 昭63−174281(JP,A) 実開 昭62−191165(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasuki Kubota 1-1-1, Tanabe-Nita, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (56) References JP-A-60-208067 (JP, A) Showa 63-174281 (JP, A) Actually open Showa 62-191165 (JP, U)
Claims (1)
器系へ供給する水蒸気分離器と、これらに冷却水を循環
させる冷却水循環系とを備える燃料電池発電装置におい
て、 前記水蒸気分離器は、燃料電池の起動時に電気ヒータに
より包蔵水を燃料電池の起動に好適な温度に昇温する加
熱循環系と、包蔵水の水温を調節する温度調節器とを有
し、 前記冷却水循環系は、前記燃料電池の冷却水出口,三方
弁,水蒸気分離器,冷却水循環用のポンプ,前記燃料電
池の冷却水入口を順次接続してなり、かつ前記三方弁よ
り分岐する分岐循環系を有し、 前記分岐循環系は、前記三方弁と、燃料電池の停止時に
前記冷却水を冷却する冷却器と、燃料電池入口冷却水温
度を調節するために設けた三方弁式温度調節弁とを順に
接続してなり、さらに前記三方弁式温度調節弁の一つの
冷却水出口を前記冷却水循環系の前記三方弁と前記水蒸
気分離器との間に配管接続し、かつ他方の冷却水出口を
前記冷却水系の前記水蒸気分離器と前記ポンプとの間に
配管接続してなる ことを特徴とする燃料電池発電装置。1. A fuel cell power generator comprising a fuel cell, a steam separator for supplying steam to a steam reformer system for raw fuel, and a cooling water circulation system for circulating cooling water therethrough. Has a heating circulation system that raises the temperature of the stored water to a temperature suitable for starting the fuel cell by an electric heater when the fuel cell is started, and a temperature controller that adjusts the temperature of the stored water. A cooling water outlet of the fuel cell, a three-way valve, a steam separator, a pump for cooling water circulation, a cooling water inlet of the fuel cell, and a branch circulation system branched from the three-way valve; The branch circulation system sequentially connects the three-way valve, a cooler that cools the cooling water when the fuel cell is stopped, and a three-way valve-type temperature control valve that is provided for adjusting the fuel cell inlet cooling water temperature. And the three sides One cooling water outlet of the temperature control valve is connected by piping between the three-way valve of the cooling water circulation system and the steam separator, and the other cooling water outlet is connected to the steam separator of the cooling water system and the pump. A fuel cell power generator characterized by being connected with a pipe between the fuel cell power generator and the fuel cell power generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1051610A JP2619947B2 (en) | 1989-03-03 | 1989-03-03 | Fuel cell generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1051610A JP2619947B2 (en) | 1989-03-03 | 1989-03-03 | Fuel cell generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02230665A JPH02230665A (en) | 1990-09-13 |
JP2619947B2 true JP2619947B2 (en) | 1997-06-11 |
Family
ID=12891674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1051610A Expired - Lifetime JP2619947B2 (en) | 1989-03-03 | 1989-03-03 | Fuel cell generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2619947B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001118593A (en) * | 1999-08-06 | 2001-04-27 | Denso Corp | Fuel cell system |
KR100519130B1 (en) | 2001-05-23 | 2005-10-04 | 마츠시타 덴끼 산교 가부시키가이샤 | Fuel cell power generating device |
JP3997466B2 (en) * | 2002-01-08 | 2007-10-24 | 富士電機ホールディングス株式会社 | Fuel cell power generator and operation control method thereof |
FR2851693B1 (en) * | 2003-02-20 | 2006-02-24 | Renault Sa | DEVICE AND METHOD FOR TEMPERATURE RUNNING WHEN STARTING AN ON-BOARD COMBUSTIBLE BATTERY CELL SYSTEM ON A MOTOR VEHICLE |
JP4615888B2 (en) * | 2004-04-15 | 2011-01-19 | パナソニック株式会社 | Fuel cell cogeneration system |
JP4872333B2 (en) * | 2005-12-09 | 2012-02-08 | 株式会社デンソー | Fuel cell system |
DE102013210098A1 (en) | 2012-06-04 | 2013-12-05 | Honda Motor Co., Ltd. | Fuel cell system and fuel cell system control method |
JP5478669B2 (en) * | 2012-06-04 | 2014-04-23 | 本田技研工業株式会社 | FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06105624B2 (en) * | 1984-03-31 | 1994-12-21 | 株式会社東芝 | Fuel cell power plant |
JPS62191165U (en) * | 1986-05-27 | 1987-12-04 | ||
JPH0638343B2 (en) * | 1987-01-12 | 1994-05-18 | 株式会社日立製作所 | Fuel cell power generator |
-
1989
- 1989-03-03 JP JP1051610A patent/JP2619947B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02230665A (en) | 1990-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101136897B1 (en) | Air conditioning control system | |
KR100525538B1 (en) | Solid high polymer type fuel cell power generating device | |
JP5064861B2 (en) | FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM | |
JP2619947B2 (en) | Fuel cell generator | |
KR20220108796A (en) | Improved fuel cell systems and methods | |
JP3966839B2 (en) | Waste heat utilization heat source device | |
KR100813274B1 (en) | Method of starting the fuel cell stack | |
JP3889553B2 (en) | Method and apparatus for controlling fuel cell system | |
KR101544479B1 (en) | Fuel cell system and method of managing the same | |
JP3530458B2 (en) | Method and apparatus for starting polymer electrolyte fuel cell | |
JP3448567B2 (en) | Polymer electrolyte fuel cell power generator | |
JP2005116256A (en) | Fuel cell cogeneration system | |
JP3580147B2 (en) | Polymer electrolyte fuel cell system | |
WO2014006988A1 (en) | Fuel cell generation system, and method of controlling fuel cell generation system | |
JPH03102776A (en) | Power generating plant with fuel cell | |
JP3679792B2 (en) | Solid polymer fuel cell power generator | |
JP3585249B2 (en) | Fuel cell power generator | |
JP2825285B2 (en) | Fuel cell power generation system | |
JPH06333585A (en) | Method and device for starting fuel cell generating device | |
JP3728742B2 (en) | Fuel cell equipment | |
JP2004335313A (en) | Solid polymer type fuel cell system | |
JPH0992316A (en) | Method of raising temperature of fuel cell power generating device | |
JP2002343392A (en) | Fuel cell system | |
JPH04284365A (en) | Fuel cell power generating device | |
JP3858913B2 (en) | Fuel cell system |