JP2619249B2 - Method for producing semiconductor-doped glass thin film - Google Patents
Method for producing semiconductor-doped glass thin filmInfo
- Publication number
- JP2619249B2 JP2619249B2 JP29545487A JP29545487A JP2619249B2 JP 2619249 B2 JP2619249 B2 JP 2619249B2 JP 29545487 A JP29545487 A JP 29545487A JP 29545487 A JP29545487 A JP 29545487A JP 2619249 B2 JP2619249 B2 JP 2619249B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- semiconductor
- fine particles
- thin film
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1446—Means for after-treatment or catching of worked reactant gases
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1415—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/58—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with metals in non-oxide form, e.g. CdSe
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/06—Concentric circular ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
- C03B2207/26—Multiple ports for glass precursor
- C03B2207/28—Multiple ports for glass precursor for different glass precursors, reactants or modifiers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Glass Melting And Manufacturing (AREA)
- Surface Treatment Of Glass (AREA)
Description
【発明の詳細な説明】 〔発明の産業上利用分野〕 本発明は半導体ドープガラス薄膜の製造方法、さらに
詳細には非線形効果の大きい半導体ドープガラスの作製
に関するものである。The present invention relates to a method for producing a semiconductor-doped glass thin film, and more particularly to a method for producing a semiconductor-doped glass having a large nonlinear effect.
最近、可視域の色ガラスフィルターとして知られる半
導体ドープガラスにおいて3次の非線形係数が非常に大
きいことが明らかにされた。この色ガラスフィルターは
ホストガラスである硅酸塩ガラスに半導体混晶であるCd
SexS1-xをドープしたもので、CdSexS1-xはガラス中で10
0Å程度の大きさで分散している。このガラスでは微小
な半導体における量子サイズ効果とキャリアの閉じ込め
効果により非線形効果が大きくなると考えられている。Recently, it has been found that semiconductor-doped glass known as a color glass filter in the visible region has a very large third-order nonlinear coefficient. This color glass filter is composed of silicate glass as host glass and Cd as semiconductor mixed crystal.
Se x S 1-x is doped, CdSe x S 1-x is 10% in glass
It is dispersed in a size of about 0 mm. In this glass, it is considered that the nonlinear effect becomes large due to the quantum size effect and the carrier confinement effect in the minute semiconductor.
CdSexS1-xドープ硅酸塩ガラスはバッチ溶融法により
作製される。半導体用の原料には金属セレンと硫化カド
ミウムを用い、それらを硅砂、ソーダ灰、炭酸カリ、酸
化亜鉛のガラス原料中に混ぜ、溶融冷却する。このガラ
ス冷却過程において、CdSが微細な結晶核として析出す
る。この後、ガラスを再度熱処理することで、Cd2+、S
2-、Se2-が拡散し、CdSの結晶核を中心にCdS−CdSeの混
晶が形成され発色する。しかし、このバッチ溶融法では
ガラスの純度が低く、ガラス自体の光損失が大きいとい
う欠点があった。したがって、光スイッチなどの素子と
してこのガラスを用いた場合、高密度の光を入射した場
合には吸収が大きく耐熱性が悪いという欠点があった。
また、バッチ溶融では膜厚が均一な薄膜を作製すること
が困難であるなどの欠点があった。CdSe x S 1-x doped silicate glass is produced by a batch melting method. Metal selenium and cadmium sulfide are used as raw materials for semiconductors, and they are mixed into glass raw materials of silica sand, soda ash, potassium carbonate, and zinc oxide, and are melt-cooled. During this glass cooling process, CdS precipitates as fine crystal nuclei. Thereafter, the glass is again heat-treated to obtain Cd 2+ , S
2- and Se 2- are diffused, and a CdS-CdSe mixed crystal is formed around the CdS crystal nucleus to develop color. However, this batch melting method has the disadvantage that the purity of the glass is low and the light loss of the glass itself is large. Therefore, when this glass is used as an element such as an optical switch, there is a disadvantage that when high-density light is incident, absorption is large and heat resistance is poor.
In addition, batch melting has a drawback such as difficulty in producing a thin film having a uniform film thickness.
そこで、半導体ドープガラス薄膜の作製方法として、
従来のバッチ法とは全く異なり、SiまたはGeの塩化物を
ドーパント材であるGe、P、B、Al、Sbなどの塩化物と
一緒に酸水素バーナで加水分解反応させ、酸化物ガラス
微粒子を基盤に堆積させる過程において、同時に半導体
微粒子を噴霧器で噴霧し、ガラス微粒子と混合して堆積
させ、その後加熱して透明ガラス化し、ガラス薄膜を得
る方法が提案された。その方法によれば、高純度のガラ
ス原料を気相法で合成するので不純物をほとんど含まな
いガラスを合成することができ、さらに、膜厚が一定で
大面積の薄膜ができるなどの利点があった。上記の方法
では1μm以下の半導体粒子は反応性に富むため、ガラ
ス堆積中に火炎中で高温度に曝されて酸化反応し、酸化
物になってしまう問題があった。すなわち、粒径が小さ
いほど半導体粒子が酸化されてしまい、ドープされる半
導体粒子は異種材料となって非線形効果が期待できなく
なる欠点があった。Therefore, as a method for producing a semiconductor-doped glass thin film,
Unlike the conventional batch method, Si or Ge chloride is hydrolyzed with an oxyhydrogen burner together with a dopant such as Ge, P, B, Al, Sb, etc. to reduce oxide glass particles. In the process of depositing on a substrate, there has been proposed a method in which semiconductor fine particles are simultaneously sprayed by a sprayer, mixed with glass fine particles and deposited, and then heated to form a transparent glass to obtain a glass thin film. According to this method, high-purity glass raw material is synthesized by a gas phase method, so that glass containing almost no impurities can be synthesized, and further, there is an advantage that a thin film having a constant thickness and a large area can be formed. Was. In the above method, since the semiconductor particles having a diameter of 1 μm or less are highly reactive, there is a problem that the glass is exposed to a high temperature in a flame during the deposition of the glass and undergoes an oxidation reaction to become an oxide. That is, the smaller the particle size, the more the semiconductor particles are oxidized, and the semiconductor particles to be doped become different materials, so that there is a disadvantage that the nonlinear effect cannot be expected.
本発明は上述の問題点に鑑みなされたものであり、非
線形効果が大きく、高純度で光に対して低損失な半導体
ドープガラス薄膜の製造方法を提供することを目的とす
る。The present invention has been made in view of the above problems, and has as its object to provide a method for producing a semiconductor-doped glass thin film having a large nonlinear effect, high purity, and low loss with respect to light.
上述の問題点を解決するため、本発明による半導体ド
ープガラス薄膜の製造方法は、酸水素バーナに輸送ガス
により原料を送り、ホストガラス微粒子を基盤に堆積
し、この堆積と同時に半導体微粒子を含むガラス粉体を
輸送し、前記ホストガラス微粒子中に分散させ、その後
ガラス微粒子膜を加熱し、透明ガラス化する半導体ドー
プガラスの製造方法において、前記半導体微粒子の輸送
に先立って、前記半導体微粒子表面に低温で酸化物ガラ
ス膜を形成させることを特徴としている。In order to solve the above-mentioned problems, the method for producing a semiconductor-doped glass thin film according to the present invention comprises feeding a raw material by a transport gas to an oxyhydrogen burner, depositing host glass fine particles on a base, and simultaneously depositing the glass containing semiconductor fine particles. In a method for producing semiconductor-doped glass in which powder is transported and dispersed in the host glass microparticles, and then the glass microparticle film is heated and vitrified, a low temperature is applied to the surface of the semiconductor microparticle before transporting the semiconductor microparticle. Is characterized by forming an oxide glass film.
本発明では、酸水素バーナを用いて塩化物原料と半導
体微粒子粉体から半導体ドープ酸化物ガラス薄膜を作製
する方法において、半導体微粒子の前処理として、半導
体微粒子を、たとえばSiやGeなどの金属アルコキシドの
ゾル溶液中に分散させる方法または、ボロシリケートガ
ラスのように低い軟化温度を有するガラスに溶かす方法
などにより、半導体微粒子表面に酸化物ガラス膜を形成
し、半導体微粒子を安定化することを特徴とする。In the present invention, in a method of producing a semiconductor-doped oxide glass thin film from a chloride raw material and semiconductor fine particle powder using an oxyhydrogen burner, the semiconductor fine particles are treated as a metal alkoxide such as Si or Ge as pretreatment of the semiconductor fine particles. A method of dispersing in a sol solution of, or a method of dissolving in a glass having a low softening temperature such as borosilicate glass, by forming an oxide glass film on the surface of the semiconductor fine particles, and stabilizing the semiconductor fine particles. I do.
このような方法では半導体粒子表面に酸化物を形成で
きるので半導体粒子の酸化反応を防ぐことができる。ち
なみに工程温度としては、半導体微粒子を金属アルコキ
シドのゾル溶液中に分散させる方法では最大でも300
℃、また半導体微粒子をボロシリケートガラスに溶かす
方法では最大でも600℃であり、従来工程におけるガラ
ス堆積工程の火炎温度1200℃に比べて格段に低い。さら
に低温で表面に酸化物が形成された半導体粒子は、その
後の工程で高温度で曝されても表面酸化物の酸素結合が
強いので半導体粒子そのものは酸化反応することなく、
したがって本発明によれば、粒径が小さくとも半導体粒
子をドープすることができる。In such a method, an oxide can be formed on the surface of the semiconductor particles, so that an oxidation reaction of the semiconductor particles can be prevented. By the way, as the process temperature, the method of dispersing the semiconductor fine particles in the sol solution of the metal alkoxide is at most 300.
In the method of melting semiconductor fine particles into borosilicate glass, the maximum is 600 ° C., which is much lower than the flame temperature of 1200 ° C. in the conventional glass deposition process. Further, even if the semiconductor particles having an oxide formed on the surface at a low temperature are exposed at a high temperature in a subsequent step, the oxygen bond of the surface oxide is strong, so the semiconductor particles themselves do not undergo an oxidation reaction,
Therefore, according to the present invention, semiconductor particles can be doped even if the particle size is small.
本発明をさらに詳しく説明する。 The present invention will be described in more detail.
本発明においては、基盤上にガラス微粒子を堆積させ
るが、この基盤は基本的に限定されるものではなく、基
盤上に形成するガラスのガラス化温度により高温の軟化
温度または融点を有する材料であれば、いかなるもので
もよい。たとえば、石英ガラス基盤を用いることができ
る。In the present invention, glass fine particles are deposited on a substrate, but the substrate is not limited in principle, and any material having a high softening temperature or melting point depending on the vitrification temperature of the glass formed on the substrate. Anything may be used. For example, a quartz glass substrate can be used.
また、この基盤上に堆積させるホストガラス微粒子
も、本発明において基本的に限定されるものではなく、
たとえば石英ガス(SiO2)、二酸化ゲルマニウムガラス
(GeO2)などを有効に使用できる。Further, the host glass particles deposited on the substrate are not basically limited in the present invention,
For example, quartz gas (SiO 2 ), germanium dioxide glass (GeO 2 ), etc. can be used effectively.
ホストガラス微粒子には、ドーパントを分散させるこ
とが可能である。このようなドーパントは、本発明にお
いて限定されるものではなく、たとえば軟化温度を下げ
るような、Ge、P、B、F、Al、Ti、Sb等の一種以上を
分散させることができる。A dopant can be dispersed in the host glass fine particles. Such a dopant is not limited in the present invention. For example, one or more of Ge, P, B, F, Al, Ti, Sb, and the like that lower the softening temperature can be dispersed.
このようなホストガラス微粒子堆積膜中に、半導体微
粒子を含むガラス粉体を分散させるものであるが、この
半導体微粒子の材料は、本発明において基本的に限定さ
れるものではなく、たとえばSi、Ge、化合物半導体、In
/GaAa等の混晶などを使用することができる。A glass powder containing semiconductor fine particles is dispersed in such a host glass fine particle deposited film, but the material of the semiconductor fine particles is not fundamentally limited in the present invention. For example, Si, Ge , Compound semiconductor, In
Mixed crystals such as / GaAa can be used.
このような半導体微粒子に低温において酸化物ガラス
膜を形成するものであるが、このような酸化物ガラス膜
を形成する方法は、基本的に限定されるものではなく、
たとえば半導体微粒子をSiやGeなどの金属アルコキシド
のゾル溶液中に分散させ、形成することができる。また
ボロシリケートガラスのように低い軟化温度を有するガ
ラスに半導体微粒子を溶かして、低温において半導体微
粒子表面に酸化物ガラス膜を形成することができる。Although an oxide glass film is formed on such semiconductor fine particles at a low temperature, a method of forming such an oxide glass film is not basically limited,
For example, it can be formed by dispersing semiconductor fine particles in a sol solution of a metal alkoxide such as Si or Ge. Further, by dissolving the semiconductor fine particles in glass having a low softening temperature, such as borosilicate glass, an oxide glass film can be formed on the surface of the semiconductor fine particles at a low temperature.
このような半導体微粒子を含むガラスを粉砕して、表
面に酸化物ガラス膜を有する半導体微粒子を含むガラス
粉体とする。The glass containing such semiconductor particles is pulverized to obtain a glass powder containing semiconductor particles having an oxide glass film on the surface.
このようなガラス粉体を輸送する方法は基本的に限定
されるものではなく、たとえばHeなどのキャアリアガス
を使用する方法、超音波振動子によって輸送する方法な
どを使用できる。The method of transporting such a glass powder is not particularly limited, and for example, a method using a carrier gas such as He, a method using an ultrasonic vibrator, and the like can be used.
以下本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.
〔実施例1〕 第1図は本発明の実施例1を説明する図であって、1
は石英ガラス4重管バーナ、2は排気管、3は石英ガラ
ス基盤、4はヒータ、5は超音波噴霧器、6,6a,6bはサ
チュレータである。第2図は4重管バーナ1の断面図で
あって、各々の管に流したものを示す。第3図は作製し
たガラス薄膜の透過特性である。第4図は4光子混合の
実験から求めた入射光強度とその位相共役波の反射率と
の関係を示す図である。Embodiment 1 FIG. 1 is a view for explaining Embodiment 1 of the present invention.
Is a quartz glass quadruple tube burner, 2 is an exhaust pipe, 3 is a quartz glass substrate, 4 is a heater, 5 is an ultrasonic atomizer, and 6, 6a and 6b are saturators. FIG. 2 is a cross-sectional view of the quadruple tube burner 1, showing the flow through each tube. FIG. 3 shows the transmission characteristics of the produced glass thin film. FIG. 4 is a diagram showing the relationship between the intensity of incident light obtained from an experiment of four-photon mixing and the reflectance of its phase conjugate wave.
まず、ホストガラス薄膜の作製について説明する。ガ
ラス原料は、たとえばSiCl4、GeCl4、PCl3(GeとPはド
ーパント)であり、それぞれサチュレータ6,6a,6bに入
れた。サチュレータ6,6a,6bの温度をそれぞれ32、27、2
4℃とし、0.3l/minのArガスのバブリングにより原料を
バーナ1の第1層に輸送した。バーナ1にはH2:3.2l/mi
nとO2:5l/minをそれぞれ第IIと第IV層に供給した。ま
た、膜厚を一定にするためにバーア1を横方向に500mm/
minで、基盤を縦方向に50mm/minで移動させた。バーナ
1に供給された原料は酸水素炎中で反応し、ヒータ4で
600℃に加熱された石英ガラス基盤3に堆積した。ドー
プする半導体材料には真空蒸発法で作製した平均粒径0.
1μmのSiを用い、そのSiの微粒子を、アルコールを溶
媒としたSiのアルコキシド中に分散させ、Siのアルコキ
シド1モルに対して純水4モルを加えてSiのアルコキシ
ドを加水分解反応させた。得られたゾルを乾燥したゲル
体をメノウ鉢で粉砕し、微粒子を得た。この微粒子を超
音波振動子5により0.1g/minで噴霧し、1l/minのHeガス
によりバーナ1の第III層に送り、ガラス微粒子の堆積
と同時に混合した。First, the production of the host glass thin film will be described. The glass raw materials were, for example, SiCl 4 , GeCl 4 , and PCl 3 (Ge and P are dopants), which were put in saturators 6, 6a, and 6b, respectively. The temperatures of saturators 6, 6a, 6b are 32, 27, 2 respectively
The temperature was set to 4 ° C., and the raw material was transported to the first layer of the burner 1 by bubbling Ar gas at 0.3 l / min. H 2 : 3.2 l / mi for burner 1
n and O 2 : 5 l / min were supplied to the II and IV layers, respectively. In addition, in order to keep the film thickness constant, the burner 1
At min, the substrate was moved vertically at 50 mm / min. The raw material supplied to the burner 1 reacts in the oxyhydrogen flame,
It was deposited on the quartz glass substrate 3 heated to 600 ° C. The semiconductor material to be doped has an average particle size of 0.
Using 1 μm of Si, the fine particles of Si were dispersed in an alkoxide of Si using alcohol as a solvent, and 4 mol of pure water was added to 1 mol of the alkoxide of Si to cause a hydrolysis reaction of the alkoxide of Si. The dried gel body of the obtained sol was pulverized in an agate bowl to obtain fine particles. The fine particles were sprayed at 0.1 g / min by the ultrasonic vibrator 5, sent to the third layer of the burner 1 with 1 l / min of He gas, and mixed simultaneously with the deposition of the glass fine particles.
微粒子を堆積した基盤4をカーボン電気炉に入れ、酸
素雰囲気中、900℃で4時間保持した後、He雰囲気で135
0℃に温度を上げ、堆積したガラス微粒子を透明化し
た。酸素雰囲気中で熱処理はSiの酸化反応を進め、粒径
を数百オングストロームに調節するために行った。The substrate 4 on which the fine particles have been deposited is placed in a carbon electric furnace and maintained at 900 ° C. for 4 hours in an oxygen atmosphere.
The temperature was raised to 0 ° C. to make the deposited glass fine particles transparent. The heat treatment was performed in an oxygen atmosphere to promote the oxidation reaction of Si and adjust the grain size to several hundred angstroms.
第3図は得られたガラス薄膜の透過特性であり、Siの
基礎吸収端(1.12μm)に起因した吸収が形成され、シ
ャープカットフィルターになっていることがわかる。FIG. 3 shows the transmission characteristics of the obtained glass thin film. It can be seen that the absorption due to the basic absorption edge of Si (1.12 μm) is formed, and a sharp cut filter is formed.
第4図は得られたガラス薄膜の4光子混合の実験から
求めた入射光強度とその位相共役波の反射率との関係を
示す図である。第3図において入射強度が低いところの
反射率は、従来の可視域のCdSexS1-xドープ硅酸塩ガラ
スについて得られた値より2倍以上大きい値であり、本
発明の有効性が確認された。FIG. 4 is a diagram showing the relationship between the intensity of incident light obtained from an experiment of four-photon mixing of the obtained glass thin film and the reflectance of the phase conjugate wave. In FIG. 3, the reflectivity where the incident intensity is low is a value that is at least twice as large as the value obtained for the conventional CdSe x S 1 -x- doped silicate glass in the visible region, and the effectiveness of the present invention is low. confirmed.
〔実施例2〕 本実施例では、ホストガラスとなるガッス微粒子の堆
積は実施例1と同一の方法で行い、半導体微粒子を含む
ガラス粉体として市販の色ガラスフィルター(HOYA製0
−56)を粉砕して得たガラス微粒子を用いた。すでに述
べたように、このガラスにはCdSexS1-xがドープされて
おり、バッチのガラス溶融法により作製される。作製し
た半導体を含むガラス微粒子を堆積した基盤を電気炉に
入れ、He(5l/min)雰囲気、温度1350℃で透明ガラス化
した。本実施例によって得られた半導体ドープガラス薄
膜はシャープカットフィルターとしての特性およびバル
クガラスとほぼ同等の位相共役波の反射率を示し、ガラ
ス薄膜を形成する本発明の有効性が確認された。[Example 2] In this example, deposition of gaseous particles serving as host glass was performed in the same manner as in Example 1, and a commercially available colored glass filter (available from HOYA 0) was used as glass powder containing semiconductor particles.
-56) was used. As already mentioned, this glass is doped with CdSe x S 1-x and is made by a batch glass melting method. The substrate on which the glass fine particles containing the semiconductor thus prepared were deposited was placed in an electric furnace and vitrified in a He (5 l / min) atmosphere at a temperature of 1350 ° C. The semiconductor-doped glass thin film obtained by this example exhibited characteristics as a sharp cut filter and a phase conjugate wave reflectance almost equivalent to that of bulk glass, confirming the effectiveness of the present invention for forming a glass thin film.
〔実施例3〕 本実施例では、ホストガラスにGeO2を、ドープする半
導体にはInPを用いた。GeO2の堆積はガラス原料にGeCl4
を用い、サチュレータ6aだけをオープンにして実施例1
と同じ装置で行った。H2とO2はそれぞれ1.6と3.2l/min
でバーナに供給した。基盤3にはGeO2板を用い、ヒータ
4で350℃に加熱した。Example 3 In this example, GeO 2 was used for the host glass, and InP was used for the semiconductor to be doped. GeO 2 is deposited on the glass raw material GeCl 4
Example 1 with only the saturator 6a open using
The same apparatus was used. H 2 and O 2 are 1.6 and 3.2 l / min respectively
At the burner. The substrate 3 was a GeO 2 plate, and was heated to 350 ° C. by the heater 4.
InP微粒子(平均粒径0.1μm)は、真空蒸着法で作製
し、アルコールを溶媒としたGeのアルコキシド中に分散
させ、実施例1と同じ方法で微粒子化し、ホストガラス
中に分散させた。InP fine particles (average particle size: 0.1 μm) were prepared by a vacuum evaporation method, dispersed in Ge alkoxide using alcohol as a solvent, formed into fine particles by the same method as in Example 1, and dispersed in host glass.
本実施例によって得られた半導体ドープガラス薄膜は
シャープカットフィルターとしての特性およびバルクの
InPとほぼ同等の位相共役波の反射率を示し、ガラス薄
膜を形成する本発明の有効性が確認された。The semiconductor-doped glass thin film obtained according to the present example has properties as a sharp cut filter and a bulk cut filter.
It showed almost the same phase conjugate wave reflectance as InP, confirming the effectiveness of the present invention for forming a glass thin film.
以上に示した実施例以外に、本発明では以下の方法で
も実施できる。In addition to the embodiments described above, the present invention can be implemented by the following method.
上述の実施例では、半導体微粒子を含むゾルゲル微粒
子を4重管バーナの第III層を通して堆積させたが、こ
れ以外に第III層以外の層からでも、また、第5図に示
すようにバーナを通さず噴霧ノズル7を通して外部から
堆積されても同様の効果がある、さらに、上記の実施例
では半導体微粒子を超音波振動子とHeガスにより輸送し
たが、本発明の効果は輸送方法に左右されるものではな
いのは前述の通りである。In the above-described embodiment, the sol-gel fine particles containing the semiconductor fine particles are deposited through the third layer of the quadruple tube burner. However, the burner may be formed from a layer other than the third layer, as shown in FIG. The same effect can be obtained even if the semiconductor particles are deposited from the outside through the spray nozzle 7 without passing through. Further, in the above embodiment, the semiconductor fine particles are transported by the ultrasonic vibrator and the He gas, but the effect of the present invention depends on the transport method. It is not as described above.
以上説明したように、本発明によればInPなどの反応
性に富む半導体微粒子でも種々のガラスに添加すること
が可能である。したがって、従来の半導体ドープガラス
より種々の半導体ドープガラス膜作製が可能であり、か
つ光素子として導波路を構成する場合には、膜厚が一定
であるから加工精度が高く高性能の光スイッチを作製す
ることができる。As explained above, according to the present invention, even reactive semiconductor fine particles such as InP can be added to various glasses. Therefore, it is possible to produce various semiconductor-doped glass films from the conventional semiconductor-doped glass, and when a waveguide is configured as an optical element, a high-performance optical switch with high processing accuracy is used because the film thickness is constant. Can be made.
第1図は本発明の実施例1および実施例2を説明する
図、第2図は石英ガラス4重管バーナの断面図、第3図
は実施例1で作製したガラス薄膜の透過特性を示す図、
第4図は実施例1で作製したガラス薄膜の4光子混合の
実験から求めた入射光強度とその位相共役波強度の関係
を示す図、第5図は半導体微粒子を供給する方法の他の
例を示す図である。 1……石英ガラスバーナ、2,2′……排気管、3,3′……
石英ガラス基盤、4,4′……ヒータ、5,5′……超音波振
動子、6,6a,6b,6′,6a′……サチュレータ、7……噴霧
ノズル、8……石英ガラス3重管バーナ。FIG. 1 is a view for explaining Examples 1 and 2 of the present invention, FIG. 2 is a sectional view of a quartz glass quadruple tube burner, and FIG. 3 shows transmission characteristics of a glass thin film produced in Example 1. Figure,
FIG. 4 is a diagram showing the relationship between the intensity of incident light and its phase conjugate wave intensity obtained from an experiment of four-photon mixing of the glass thin film produced in Example 1, and FIG. 5 is another example of a method of supplying semiconductor fine particles. FIG. 1 ... Quartz glass burner, 2,2 '... Exhaust pipe, 3,3' ...
Quartz glass base, 4, 4 'heater, 5, 5' ultrasonic transducer, 6, 6a, 6b, 6 ', 6a' saturator, 7 spray nozzle, 8 quartz glass 3 Heavy tube burner.
Claims (5)
り、ホストガラス微粒子を基盤に堆積し、この堆積と同
時に半導体粒子を輸送し、前記ホストガラス微粒子中に
分散させ、その後ガラス微粒子膜を加熱し、透明ガラス
化する半導体ドープガラス薄膜の製造方法において、半
導体微粒子の酸化温度以下で酸化物ガラス膜を表面に形
成させた半導体粒子をガラス粉体として輸送することを
特徴とする半導体ドープガラス薄膜の製造方法。1. A raw material is sent to an oxyhydrogen burner by a transport gas, and host glass fine particles are deposited on a base. At the same time as the deposition, semiconductor particles are transported and dispersed in the host glass fine particles. And a method for producing a semiconductor-doped glass thin film that is turned into a transparent vitreous, wherein the semiconductor particles having an oxide glass film formed on the surface thereof at a temperature lower than the oxidation temperature of the semiconductor fine particles are transported as glass powder. Manufacturing method.
化温度を下げるドーパントを含む石英ガラス(SiO2)微
粒子を使用することを特徴とする特許請求の範囲第1項
記載の半導体ドープガラス薄膜の製造方法。2. The method according to claim 1, wherein quartz glass (SiO 2 ) fine particles containing a dopant for lowering the softening temperature are used as said host glass fine particle deposited film. Method.
を下げるドーパントを含む二酸化ゲルマニウムガラス
(GeO2)微粒子を使用することを特徴とする特許請求の
範囲第1項記載の半導体ドープガラス薄膜の製造方法。3. The method for producing a semiconductor-doped glass thin film according to claim 1, wherein germanium dioxide glass (GeO 2 ) fine particles containing a dopant for lowering the softening temperature are used as said host glass fine particles. .
ルコキシドゾル中に分散させ、前記ゾルをゲル化するこ
とによって形成することを特徴とする特許請求の範囲第
1項から第3項いずれかに記載の半導体ドープガラス薄
膜の製造方法。4. The oxide glass film according to claim 1, wherein said oxide glass film is formed by dispersing semiconductor fine particles in an alkoxide sol and gelling said sol. 3. The method for producing a semiconductor-doped glass thin film according to item 1.
度を有するガラスに溶解することにより形成することを
特徴とする特許請求の範囲第1項から第3項のいずれか
に記載の半導体ドープガラス薄膜の製造方法。5. The semiconductor doped film according to claim 1, wherein said glass film is formed by dissolving semiconductor particles in glass having a low softening temperature. Manufacturing method of glass thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29545487A JP2619249B2 (en) | 1987-11-24 | 1987-11-24 | Method for producing semiconductor-doped glass thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29545487A JP2619249B2 (en) | 1987-11-24 | 1987-11-24 | Method for producing semiconductor-doped glass thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01138149A JPH01138149A (en) | 1989-05-31 |
JP2619249B2 true JP2619249B2 (en) | 1997-06-11 |
Family
ID=17820793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29545487A Expired - Lifetime JP2619249B2 (en) | 1987-11-24 | 1987-11-24 | Method for producing semiconductor-doped glass thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2619249B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4553822B2 (en) * | 2005-10-12 | 2010-09-29 | 日本電信電話株式会社 | Wavelength conversion module |
-
1987
- 1987-11-24 JP JP29545487A patent/JP2619249B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01138149A (en) | 1989-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3954431A (en) | Optical glass and its production | |
US5093286A (en) | Semiconductor-containing glass and method of producing the same | |
US4011006A (en) | GeO2 -B2 O3 -SiO2 Optical glass and lightguides | |
TW200304435A (en) | Dispersion comprising silicon/titanium mixed oxide powder, and green bodies and shaped glass articles produced therefrom | |
JP3190698B2 (en) | Method for producing glass article without devitrification | |
Tohge et al. | Coating Films of 20B2O3· 80SiO2 by the Sol‐Gel Method | |
US3785722A (en) | USE OF SiO{11 -NB{11 O{11 {11 AND/OR Ta{11 O{11 {11 GLASSES AS ULTRAVIOLET FILTERS | |
JP2619249B2 (en) | Method for producing semiconductor-doped glass thin film | |
JP2718476B2 (en) | Method for producing glass thin film for optical waveguide | |
JPH0244031A (en) | Production of nonlinear optical glass | |
JP2813393B2 (en) | Method for producing semiconductor-containing glass | |
JPH03199137A (en) | Production of amorphous body containing dispersed fine particles of semiconductor | |
JPH01153553A (en) | Production of glass thin film | |
JP3078590B2 (en) | Manufacturing method of synthetic quartz glass | |
JPH05270842A (en) | Glass containing gold particulate and production thereof | |
JP2803229B2 (en) | Method for producing semiconductor fine particle dispersed glass | |
JPH01294545A (en) | Method for forming glass | |
JPH01152431A (en) | Production of nonlinear light guide | |
JPH04270131A (en) | Production of semiconductor fine particle-dispersed glass | |
JPS62167233A (en) | Production of quartz glass | |
JPH03168728A (en) | Nonlinear optical material and its production | |
JPS6116740B2 (en) | ||
JP3268004B2 (en) | Method for producing fine particle-dispersed glass for nonlinear optical material | |
JPH04276724A (en) | Production of semiconductor particle dispersed glass | |
JPS6253450B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080311 Year of fee payment: 11 |