[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2613832B2 - Dye dilution curve measuring device - Google Patents

Dye dilution curve measuring device

Info

Publication number
JP2613832B2
JP2613832B2 JP4063307A JP6330792A JP2613832B2 JP 2613832 B2 JP2613832 B2 JP 2613832B2 JP 4063307 A JP4063307 A JP 4063307A JP 6330792 A JP6330792 A JP 6330792A JP 2613832 B2 JP2613832 B2 JP 2613832B2
Authority
JP
Japan
Prior art keywords
light
light intensity
irradiation
intensity ratio
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4063307A
Other languages
Japanese (ja)
Other versions
JPH0630916A (en
Inventor
卓雄 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kohden Corp
Original Assignee
Nihon Kohden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kohden Corp filed Critical Nihon Kohden Corp
Priority to JP4063307A priority Critical patent/JP2613832B2/en
Priority to US08/014,269 priority patent/US5385143A/en
Publication of JPH0630916A publication Critical patent/JPH0630916A/en
Application granted granted Critical
Publication of JP2613832B2 publication Critical patent/JP2613832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は色素希釈曲線測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dye dilution curve measuring device.

【0002】[0002]

【従来の技術】従来のこの種の装置としてはパルスオキ
シメータの原理によるものがある。その装置は、血液を
含む生体組織の脈動を利用して測定を行なうものであ
る。しかし脈動を利用した測定は脈動の低い場合には困
難であり正確な結果は得られないし、信号の微小変化を
用いるので被検者の体動の影響を受けやすい。
2. Description of the Related Art As a conventional apparatus of this kind, there is one based on the principle of a pulse oximeter. The device performs measurement using the pulsation of a living tissue including blood. However, measurement using pulsation is difficult when the pulsation is low, and an accurate result cannot be obtained. Further, since a minute change in the signal is used, the subject is easily affected by body movement of the subject.

【0003】また、耳朶を虚血状態にしてその透過光を
基準として測定する装置がある。しかしこれによると、
耳朶の虚血装置が煩雑であり、虚血操作に熟練を要す
る。また虚血時における組織の変形などにより誤差が生
じる。
[0003] Further, there is an apparatus for measuring an earlobe in an ischemic state based on the transmitted light. But according to this,
The ischemia device of the earlobe is complicated, and the ischemic operation requires skill. In addition, an error occurs due to deformation of the tissue at the time of ischemia.

【0004】[0004]

【発明が解決しようとする課題】このように従来の装置
は脈動の低い場合は正確な結果を得られないし、体動の
影響を受けやすい、あるいは測定時の操作が煩雑でかつ
誤差が大きいという欠点があった。
As described above, the conventional apparatus cannot obtain an accurate result when the pulsation is low, is susceptible to body motion, or the operation at the time of measurement is complicated and the error is large. There were drawbacks.

【0005】本発明はこのような従来の欠点を解消する
ためになされたもので、その目的は被検者の脈動が低い
場合であっても正確な測定を行なうことができ、体動の
影響を受け難く、しかも操作が容易で測定誤差が小さい
色素希釈曲線測定装置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional disadvantage, and an object of the present invention is to enable accurate measurement even when a subject's pulsation is low, and to reduce the influence of body movement. It is an object of the present invention to provide a dye dilution curve measuring apparatus which is hardly affected by the above, is easy to operate and has a small measurement error.

【0006】[0006]

【課題を解決するための手段】請求項1の構成は、3波
長の光を血液を含む組織に照射する照射手段と、前記組
織を透過した光を受光し電気信号に変換する光電変換手
段と、前記3波長の光の照射光強度、またはそれら相互
の照射光強度比を記憶する記憶手段と、この記憶手段が
記憶している内容と前記光電変換手段から得られる透過
光強度に基づいて、ある2波長の組合わせの、照射光強
度比の対数と、透過光強度比の対数との差を求め、他の
2波長の組合わせの、照射光強度比の対数と、透過光強
度比の対数との差を求め、この両者の比と血中吸光物に
よる減光度との関係式により、血液中の所定の色素の濃
度を計算する色素濃度計算手段と、を具備するものであ
る。
According to a first aspect of the present invention, there is provided an irradiation unit for irradiating a tissue containing blood with light of three wavelengths, and a photoelectric conversion unit for receiving light transmitted through the tissue and converting the light into an electric signal. A storage unit for storing the irradiation light intensity of the three wavelengths of light, or a ratio of irradiation light intensity of each other, based on the contents stored by the storage unit and the transmitted light intensity obtained from the photoelectric conversion unit, The difference between the logarithm of the irradiation light intensity ratio and the logarithm of the transmitted light intensity ratio of a certain combination of two wavelengths is obtained, and the logarithm of the irradiation light intensity ratio and the transmission light intensity ratio of the other two wavelength combinations are obtained. Dye concentration calculating means for calculating the difference between the logarithm and the ratio between the two and the degree of extinction due to light absorbed in blood to calculate the concentration of a predetermined dye in blood.

【0007】請求項2の構成は、請求項1の構成におい
て照射光強度比は照射手段から発生した光を光減衰特性
が既知である光減衰板を透過させて得られるものであ
り、その照射光強度比の計算にはその光減衰板の特性を
考慮したものであることを特徴とする。
According to a second aspect of the present invention, in the configuration of the first aspect, the irradiation light intensity ratio is obtained by transmitting light generated from the irradiation means through a light attenuation plate having a known light attenuation characteristic. It is characterized in that the calculation of the light intensity ratio takes into account the characteristics of the light attenuating plate.

【0008】[0008]

【作用】請求項1の構成において、色素濃度計算手段は
記憶手段が記憶している内容と光電変換手段から得られ
る透過光強度に基づいて、ある2波長の組合わせの、照
射光強度比の対数と、透過光強度比の対数との差を求
め、他の2波長の組合わせの、照射光強度比の対数と、
透過光強度比の対数との差を求め、この両者の比と血中
ヘモグロビンによる減光度との関係式により、所定の色
素濃度を計算する。
According to the first aspect of the present invention, the dye density calculating means calculates the irradiation light intensity ratio of a combination of certain two wavelengths based on the contents stored in the storage means and the transmitted light intensity obtained from the photoelectric conversion means. The difference between the logarithm and the logarithm of the transmitted light intensity ratio is obtained, and the logarithm of the irradiation light intensity ratio of the other two wavelength combinations,
The difference between the logarithm of the transmitted light intensity ratio and the logarithm of the transmitted light intensity ratio is obtained, and a predetermined dye concentration is calculated from the relational expression between the ratio of the two and the degree of extinction due to blood hemoglobin.

【0009】請求項2の構成において、3波長の光の照
射光強度は光減衰特性が既知である光減衰板を透過させ
た光を測定することにより得られるものである。このた
め直接測定するよりも弱い光の強度を測定することにな
る。従って測定に用いる光電変換手段は組織を透過した
光を電気信号に変換する光電変換手段と同じもので良
い、すなわち1つの光電変換手段で照射光強度と組織の
透過光強度のいずれの測定をも行うことができる。
According to the second aspect of the present invention, the irradiation light intensity of the light of three wavelengths is obtained by measuring the light transmitted through a light attenuating plate having a known light attenuation characteristic. For this reason, the intensity of light that is weaker than that measured directly is measured. Therefore, the photoelectric conversion means used for the measurement may be the same as the photoelectric conversion means for converting the light transmitted through the tissue into an electric signal. That is, one photoelectric conversion means can measure both the irradiation light intensity and the transmitted light intensity of the tissue. It can be carried out.

【0010】[0010]

【実施例】まず本発明の一実施例の原理を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of one embodiment of the present invention will be described.

【0011】測定に用いる光の3波長は λ1 =805nm λ2 =890nm λ3 =650nm で、それぞれ次の特性を持っている。 λ1 :酸素飽和度の影響なし。色素吸光は最大。 λ2 :酸素飽和度の影響は小。色素吸光の影響なし。 λ3 :酸素飽和度、色素吸光の影響を受ける。 以後用いる記号に付加するサフィックス1,2,3はこ
れらの波長の光を示すものとする。
The three wavelengths of light used in the measurement are λ 1 = 805 nm λ 2 = 890 nm λ 3 = 650 nm, and each has the following characteristics. λ 1 : No influence of oxygen saturation. Dye absorption maximum. λ 2 : The effect of oxygen saturation is small. No effect of dye absorption. λ 3 : affected by oxygen saturation and dye absorption. Suffixes 1, 2, and 3 added to symbols used hereinafter indicate light of these wavelengths.

【0012】血液を含む生体組織を透過した3波長の光
の減光度A1 ,A2 ,A3 は、入射光が適当な散乱光で
あれば、次のようになることが理論(シャスターの理
論)及び実験でわかっている。 色素注入前 A1 =log (Ie 1 /It 1 ) ={Eh 1 Hb (Eh 1 Hb +G)}1/2 Db +Zt Dt (1) A2 =log (Ie 2 /It 2 ) ={Eh 2 Hb (Eh 2 Hb +G)}1/2 Db +Zt Dt (2) A3 =log (Ie 3 /It 3 ) ={Eh 3 Hb (Eh 3 Hb +G)}1/2 Db +Zt Dt (3) 色素注入後 A1 =log (Ie 1 /It 1 ) ={(Eh 1 Hb +Ed 1 Cd )(Eh 1 Hb +Ed 1 Cd +G)}Db +Zt Dt (4) A2 =log (Ie 2 /It 2 ) ={(Eh 2 Hb )(Eh 2 Hb +G)}Db +Zt Dt (5) A3 =log (Ie 3 /It 3 ) ={(Eh 3 Hb +Ed 3 Cd )(Eh 3 Hb +Ed 3 Cd +G)}Db +Zt Dt (6) ここで、 Ie :照射光強度(単位面積当りのエネルギー) It :透過光強度(単位面積当りのエネルギー) Eh :ヘモグロビンの吸光係数 Hb :血中ヘモグロビンの濃度 G :血液の散乱定数 Ed :色素の吸光係数 Cd :血中色素濃度 Db :血液層の実効的な厚み Zt :血液を除いた組織(純組織と称する)の減光率 =減光度/厚みで上記いずれの波長においても一定であ
る。 Dt :純組織の厚み 上記「照射光として適当な散乱光」とは次のようなもの
である。
It is theorized that the dimming degrees A 1 , A 2 , and A 3 of the three wavelengths of light transmitted through the living tissue including blood are as follows if the incident light is appropriate scattered light (Shaster's report). Theory) and experiments. Before dye injection A 1 = log (Ie 1 / It 1 ) = {Eh 1 Hb (Eh 1 Hb + G)} 1/2 Db + Zt Dt (1) A 2 = log (Ie 2 / It 2 ) = {Eh 2 Hb (Eh 2 Hb + G) } 1/2 Db + Zt Dt (2) A 3 = log (Ie 3 / It 3) = {Eh 3 Hb (Eh 3 Hb + G)} 1/2 Db + Zt Dt (3) dye After injection A 1 = log (Ie 1 / It 1 ) = {(Eh 1 Hb + Ed 1 Cd) (Eh 1 Hb + Ed 1 Cd + G)} Db + Zt Dt (4) A 2 = log (Ie 2 / It 2 ) = {(Eh 2 Hb) (Eh 2 Hb + G)} Db + Zt Dt (5) A 3 = log (Ie 3 / It 3 ) = {(Eh 3 Hb + Ed 3 Cd) (Eh 3 Hb + Ed 3 Cd + G) } Db + Zt Dt (6) where, Ie: irradiation light intensity (energy per unit area) It: transmitted light intensity (energy per unit area) Eh: absorption coefficient of hemoglobin Hb: concentration of hemoglobin in blood G: blood Scattering Constant Ed: extinction coefficient of dye Cd: blood dye concentration Db: effective thickness of blood layer Zt: extinction ratio of tissue excluding blood (referred to as pure tissue) = extinction ratio / thickness at any of the above wavelengths Is also constant. Dt: Thickness of pure tissue The "scattered light suitable as irradiation light" is as follows.

【0013】平行入射光は散乱体に入射すると進入して
行くにつれて散乱されある程度以上の深い所でその散乱
体固有の散乱度に達する。従って直進光照射においては
散乱体の浅い部位と深い部位とでは減光率が異なってし
まうものである。
When the parallel incident light enters the scatterer, it is scattered as it enters the scatterer, and reaches a scatterer unique to the scatterer at a certain depth or more. Therefore, in the straight light irradiation, the light attenuation rate differs between a shallow part and a deep part of the scatterer.

【0014】例えば生体組織と同じ散乱性を有する散乱
板で照射光を散乱させれば生体組織全体にわたって減光
率が同じになる。
For example, if the irradiation light is scattered by a scattering plate having the same scattering property as that of the living tissue, the extinction ratio becomes the same over the whole living tissue.

【0015】従ってこのような散乱板を発光ダイオード
の裏面に配置すれば上記「照射光として適当な散乱光」
が得られる。
Therefore, if such a scattering plate is arranged on the back surface of the light emitting diode, the above-mentioned "scattering light suitable as irradiation light"
Is obtained.

【0016】ここで、各波長間の減光度の比Ψを次のよ
うに定義する。 Ψ=(A1 −A2 )/(A3 −A2 ) (4) 式(4) を式(1) ,(2) ,(3) より展開すると次のようになる。 Ψ=(A1 −A2 )/(A3 −A2 ) =log [(I e 1 /It 1 )/(Ie 2 /It 2 )]/log (Ie 3 / It 3 )/(Ie 2 /It 2 )] ={log (Ie 1 /Ie 2 )−log (It 1 /It 2 )}/{log (Ie 3 /Ie 2 )−log (It 3 /It 2 )} (4a) 式(4a)中、Ie 3 /Ie 2 ,Ie 1 /Ie 2 は照射光強
度比である。
Here, the ratio 減 of the dimming degree between the respective wavelengths is defined as follows. Ψ = (A 1 −A 2 ) / (A 3 −A 2 ) (4) Expanding equation (4) from equations (1), (2) and (3) gives the following. Ψ = (A 1 −A 2 ) / (A 3 −A 2 ) = log [(I e 1 / It 1 ) / (Ie 2 / It 2 )] / log (Ie 3 / It 3 ) / (Ie 2 / It 2 )] = {log (Ie 1 / Ie 2 ) −log (It 1 / It 2 )} / {log (Ie 3 / Ie 2 ) −log (It 3 / It 2 )} (4a) In 4a), Ie 3 / Ie 2 and Ie 1 / Ie 2 are irradiation light intensity ratios.

【0017】照射光強度そのものは光源と受光部との間
の距離などの測定条件に大きく影響されるが、3波長間
の光強度比である照射光強度比は上記測定条件の影響を
受けない。照射光強度比を求めるには次の方法がある。
The irradiation light intensity itself is greatly affected by measurement conditions such as the distance between the light source and the light receiving unit, but the irradiation light intensity ratio, which is the light intensity ratio between the three wavelengths, is not affected by the above measurement conditions. . There are the following methods for obtaining the irradiation light intensity ratio.

【0018】照射光を直接測定するには照度が強いため
透過光を受光する受光部で測定することはできない場合
がある。そこで例えば、使用する波長範囲の光に対し減
光度が均一な光減衰板に照射光を透過させ、その透過光
の3波長間の照射光強度比を算出する。
In order to directly measure the irradiation light, the illuminance is so strong that it may not be possible to measure the transmitted light with a light receiving section that receives the transmitted light. Therefore, for example, the irradiation light is transmitted through a light attenuating plate having a uniform dimming degree with respect to the light in the wavelength range to be used, and the irradiation light intensity ratio among the three wavelengths of the transmitted light is calculated.

【0019】このように、照射光強度比Ie 3 /Ie
2 ,Ie 1 /Ie 2 が求まれば透過光強度It 1 ,It
2 ,It 3 を測定して(4a)式によりΨを容易に計算す
ることができる。
Thus, the irradiation light intensity ratio Ie 3 / Ie
2 and Ie 1 / Ie 2 are obtained, the transmitted light intensities It 1 and It 1
2 and It 3 can be measured, and Ψ can be easily calculated by equation (4a).

【0020】色素注入前、Ψは式(1) ,(2) ,(3) に基
づいて次のように書くこともできる。 Ψ=[{Eh 1 Hb (Eh 1 Hb +G)}1/2 −{Eh 2 Hb (Eh 2 Hb +G)}1/2 ] /[{Eh 3 Hb (Eh 3 Hb +G)}1/2 −(Eh 2 Hb (Eh 2 Hb +G)}1/2 ] (7) 色素注入後、Ψは式(4) ,(5) ,(6) に基づいて次のよ
うに書くこともできる。 Ψ=[{(Eh 1 Hb +Ed 1 Cd )(Eh 1 Hb +Ed 1 Cd +G)}1/2 ・Db −{Eh 2 Hb (Eh 2 Hb +G)}1/2 Db ]/ [{(Eh 3 Hb +Ed 3 Cd )(Eh 3 Hb +Ed 3 Cd +G)}1/2 ・Db −{Eh 2 Hb (Eh 2 Hb +G)}1/2 Db ] (8)
Prior to dye injection, Ψ can also be written as follows based on equations (1), (2) and (3). Ψ = [{Eh 1 Hb (Eh 1 Hb + G)} 1/2 − {Eh 2 Hb (Eh 2 Hb + G)} 1/2 ] / [{Eh 3 Hb (Eh 3 Hb + G)} 1/2 − (Eh 2 Hb (Eh 2 Hb + G)} 1/2 ] (7) After dye injection, Ψ can also be written as follows based on equations (4), (5) and (6): Ψ = [{(Eh 1 Hb + Ed 1 Cd) (Eh 1 Hb + Ed 1 Cd + G)} 1/2 · Db - {Eh 2 Hb (Eh 2 Hb + G)} 1/2 Db] / [{(Eh 3 Hb + Ed 3 Cd) (Eh 3 Hb + Ed 3 Cd + G)} 1/2 · Db − {Eh 2 Hb (Eh 2 Hb + G)} 1/2 Db] (8)

【0021】ヘモグロビン濃度が異常に大でない場合、
すなわち、Hb <20[g/dL]の場合は G=FHb
(F:定数。散乱率と呼ぶことにする)とすることが
できる。 色素注入前 Ψ=[{Eh 1 (Eh 1 +F)}1/2 −{Eh 2 (Eh 2 +F)}1/2 ] /[{Eh 3 (Eh 3 +F)}1/2 −{Eh 2 (Eh 2 +F)}1/2 ] (9) 色素注入後 Ψ=[{(Eh 1 +Ed 1 Cd ′)(Eh 1 +Ed 1 Cd ′+F)}1/2 −{Eh 2 (Eh 2 +F)}1/2 ] /[{(Eh 3 +Ed 3 Cd ′)(Eh 3 +Ed 3 Cd ′+F)}1/2 −{Eh 2 (Eh 2 +F)}1/2 ] (10) ここで Cd ′=Cd /Hb (11) とした。 酸素飽和度S=1と近似すると、 Eh =Eo S+Er (1−S) (12) Eo :酸化ヘモグロビンの吸光係数 Er :還元ヘモグロビンの吸光係数 であるから次式が成立する。 Eh 1 =Eo 1 (13) Eh 2 =Eo 2 (14) Eh 3 =Eo 3 (15) この近似によれば、式(10)は、 Ψ=[{(Eo 1 +Ed 1 Cd ′)(Eo 1 +Ed 1 Cd ′+F)}1/2 −{Eo 2 (Eo 2 +F)}1/2 ] /[{(Eo 3 +Ed 3 Cd ′)(Eo 3 +Ed 3 Cd ′+F)}1/2 −{Eo 2 (Eo 2 +F)}1/2 ] (16) 更にEd 3 =0と近似すれば、式(16)は、 Ψ=[{(Eo 1 +Ed 1 Cd ′)(Eo 1 +Ed 1 Cd ′+F)}1/2 −{Eo 2 (Eo 2 +F)}] /[{Eo 3 (Eo 3 +F)}1/2 −{Eo 2 (Eo 2 +F)}1/2 ] (17) Z2 =Eo 2 (Eo 2 +F) (18) Z3 =Eo 3 (Eo 3 +F) (19) とすれば、式(17)は、 {(Eo 1 +Ed 1 Cd ′)(Eo 1 +Ed 1 Cd ′+F)}1/2 −Z2 =Ψ(Z3 −Z2 ) (20) 式(20)より、 Ed 1 2 Cd ′2 +Ed 1 Cd ′(2Eo 1 +F)+Eo 1 (Eo 1 +F) −{Ψ(Z3 −Z2 )+Z2 2 =0 (21) 式(21)を解くと、 Cd ′={−B+(B2 −4AC)1/2 }/2A (22) ここで、 A=Ed 1 2 :定数 (23) B=Ed 1 (2Eo 1 +F):定数 (24) C=Eo 1 (Eo 1 +F)−{Ψ(Z3 −Z2 )+Z2 2 (25) 色素注入前のCd ′をCd 0 ′とする。 血中色素濃度Dは、 D=(Cd ′−Dd 0 ′)Hb (26) で表わされる。従って色素注入前のΨをΨ0 とすると、
式(25)により、色素注入前のC、すなわちC0 は、 C0 =Eo 1 (Eo 1 +F)−{Ψ0 (Z3 −Z2 )+Z2 2 (27) 従って、Cd 0 ′={−B+(B2 −4AC0 1/2 }/2A (28) 式(26)より血中色素濃度Dは、次式であらわされる。 D=+{(B2 −4AC)1/2 −(B2 −4AC0 1/2 }Hb /2A (29)
When the hemoglobin concentration is not abnormally high,
That is, when Hb <20 [g / dL], G = FHb
(F: constant; referred to as a scattering rate). Before dye injection Ψ = [{Eh 1 (Eh 1 + F)} 1/ 2- {Eh 2 (Eh 2 + F)} 1/2 ] / [{Eh 3 (Eh 3 + F)} 1/ 2- {Eh 2 (Eh 2 + F)} 1/2 ] (9) After dye injection Ψ = [{(Eh 1 + Ed 1 Cd ′) (Eh 1 + Ed 1 Cd ′ + F)} 1/2 − {Eh 2 (Eh 2 + F) } 1/2] / [{(Eh 3 + Ed 3 Cd ') (Eh 3 + Ed 3 Cd' + F)} 1/2 - {Eh 2 (Eh 2 + F)} 1/2] (10) where Cd ' = Cd / Hb (11). When the oxygen saturation S is approximated to 1, Eh = EoS + Er (1-S) (12) Eo: extinction coefficient of oxyhemoglobin Er: extinction coefficient of reduced hemoglobin, the following equation is established. Eh 1 = Eo 1 (13) Eh 2 = Eo 2 (14) Eh 3 = Eo 3 (15) According to this approximation, equation (10) gives: Ψ = [{(Eo 1 + Ed 1 Cd ′) (Eo 1 + Ed 1 Cd '+ F )} 1/2 - {Eo 2 (Eo 2 + F)} 1/2] / [{(Eo 3 + Ed 3 Cd') (Eo 3 + Ed 3 Cd '+ F)} 1/2 - {Eo 2 (Eo 2 + F)} 1/2 ] (16) By further approximating Ed 3 = 0, equation (16) can be expressed as follows: Ψ = [{(Eo 1 + Ed 1 Cd ′) (Eo 1 + Ed 1 Cd ′) '+ F)} 1/ 2- {Eo 2 (Eo 2 + F)}] / [{Eo 3 (Eo 3 + F)} 1/ 2- {Eo 2 (Eo 2 + F)} 1/2 ] (17) Z 2 = Eo 2 (Eo 2 + F) (18) Assuming that Z 3 = Eo 3 (Eo 3 + F) (19), the equation (17) can be expressed as follows: {(Eo 1 + Ed 1 Cd ′) (Eo 1 + Ed 1 Cd ′) '+ F)} 1/2 -Z 2 = Ψ (Z 3 -Z 2) (20) equation (20) from, Ed 1 2 Cd' 2 + Ed 1 Cd '(2Eo 1 + F) + Eo 1 (Eo 1 + F) - {Ψ (Z 3 When Z 2) + Z 2} 2 = 0 Solving (21) (21), Cd '= { - B + (B 2 -4AC) 1/2} / 2A (22) where, A = Ed 1 2: Constant (23) B = Ed 1 (2Eo 1 + F): constant (24) C = Eo 1 (Eo 1 + F) − {Ψ (Z 3 −Z 2 ) + Z 22 (25) Cd ′ before dye injection Is Cd 0 ′. Blood dye density D is expressed by D = (Cd '-Dd 0' ) Hb (26). Therefore, if Ψ before dye injection is Ψ 0 ,
The equation (25), before the dye injection C, that C 0 is, C 0 = Eo 1 (Eo 1 + F) - {Ψ 0 (Z 3 -Z 2) + Z 2} 2 (27) Therefore, Cd 0 ' = {− B + (B 2 −4AC 0 ) 1/2 } / 2A (28) From the equation (26), the blood pigment concentration D is expressed by the following equation. D = + {(B 2 -4AC) 1/2 − (B 2 -4AC 0 ) 1/2 } Hb / 2A (29)

【0022】次に、上記原理に基づく装置を図1を参照
して説明する。
Next, an apparatus based on the above principle will be described with reference to FIG.

【0023】3波長光源1は波長805nm ,890nm ,650n
m それぞれの光を発生する3つの発光ダイオードと、そ
の発光ダイオードの光を透過する散乱板2を有してい
る。散乱板2は測定の対象となる生体組織に近い散乱性
を有するものである。
The three-wavelength light source 1 has wavelengths of 805 nm, 890 nm, and 650 nm.
m It has three light emitting diodes for generating respective lights, and a scattering plate 2 for transmitting the light of the light emitting diodes. The scattering plate 2 has a scattering property close to a living tissue to be measured.

【0024】受光部3は3波長光源1に対し適当な間隔
をあけて設けられ、3波長光源1からの光を電気信号に
変換する回路である。増幅器4は受光部3から出力され
る電気信号を増幅する回路である。A/D変換器6は増
幅器4から出力される信号をディジタル信号に変換する
回路である。3波長測定制御回路7は3波長光源1の3
つの発光ダイオードを所定のタイミングで順に発光させ
る信号を出力する回路である。この信号は同時に増幅器
4、A/D変換器6、記憶回路9Aおよび減光度比計算
回路10に至るようにされている。記憶回路9AはA/D
変換器6から与えられる波長λ1 ,λ2 ,λ3 の光それ
ぞれに対応する信号の強度を記憶する回路である。強度
比計算記憶回路9Bは記憶回路9Aが記憶した各強度相
互間の比を算出し、これを記憶する回路である。減光度
比計算回路10はA/D変換器6から与えられる波長
λ1 ,λ2 ,λ3 の光それぞれに対応する信号と、強度
比計算記憶回路9Bが記憶している強度比から所定の計
算を行なう回路である。
The light receiving section 3 is a circuit provided at an appropriate distance from the three-wavelength light source 1 and converts light from the three-wavelength light source 1 into an electric signal. The amplifier 4 is a circuit that amplifies an electric signal output from the light receiving unit 3. The A / D converter 6 is a circuit that converts a signal output from the amplifier 4 into a digital signal. The three-wavelength measurement control circuit 7 is a three-wavelength light source 1
It is a circuit that outputs a signal that causes two light emitting diodes to emit light sequentially at a predetermined timing. This signal is simultaneously supplied to the amplifier 4, the A / D converter 6, the storage circuit 9A, and the dimming ratio calculating circuit 10. The storage circuit 9A is A / D
This is a circuit for storing the intensity of the signal corresponding to each of the wavelengths λ 1 , λ 2 , and λ 3 provided from the converter 6. The intensity ratio calculation storage circuit 9B is a circuit that calculates the ratio between the respective intensities stored in the storage circuit 9A and stores this. The extinction ratio calculation circuit 10 calculates a predetermined value from the signals corresponding to the wavelengths λ 1 , λ 2 , and λ 3 provided from the A / D converter 6 and the intensity ratio stored in the intensity ratio calculation storage circuit 9B. It is a circuit that performs calculations.

【0025】切換スイッチ8はA/D変換器6の出力を
記憶回路9Aと減光度比計算回路10のいずれかへ切換え
て与えるスイッチである。校正/測定切換制御回路11は
切換スイッチ8の切換えを制御する回路である。
The changeover switch 8 is a switch for switching the output of the A / D converter 6 to one of the storage circuit 9A and the dimming degree calculation circuit 10. The calibration / measurement switching control circuit 11 is a circuit that controls switching of the changeover switch 8.

【0026】記憶回路14は切換スイッチ8が減光度比計
算回路10側に切換えられてから最初に算出した計算結果
を記憶する回路である。記憶回路16は、ヘモグロビン濃
度Hb が与えられるとこれを記憶する回路である。色素
濃度計算回路15は減光度比計算回路10の計算結果と記憶
回路14,16が記憶している値とに基づき、所定の計算を
行なって血中色素濃度を算出する回路である。
The storage circuit 14 is a circuit for storing a calculation result calculated first after the changeover switch 8 is switched to the extinction ratio calculation circuit 10 side. The storage circuit 16 is a circuit for storing the hemoglobin concentration Hb when given. The dye density calculation circuit 15 is a circuit that performs a predetermined calculation based on the calculation result of the light attenuation ratio calculation circuit 10 and the values stored in the storage circuits 14 and 16 to calculate the blood dye density.

【0027】表示装置12,記録器13はそれぞれ色素濃度
計算回路15の計算結果を表示、記録するものである。
The display device 12 and the recorder 13 display and record the calculation results of the dye density calculation circuit 15, respectively.

【0028】次に本実施例装置の動作を説明する。Next, the operation of this embodiment will be described.

【0029】まずオペレータは、光減衰板15を3波長光
源1と受光部3との間に配置する。ここでオペレータは
校正/測定切換制御回路11を操作して、切換スイッチ8
をA/D変換器6と記憶回路9Aとが接続されるように
切換える。次にオペレータは3波長測定制御回路7に制
御を開始させる。3波長光源1、記憶回路9A、減光度
比計算回路10およびA/D変換器6は3波長測定制御回
路7からの制御信号により制御される。すなわち3波長
光源1は波長λ1 (805nm) 、λ2 (890nm) 、λ3 (650n
m) の光を所定の間隔で発生させる。これらの光は光減
衰板15を透過して受光部3に至り、ここで電気信号に変
換される。そして増幅器4、A/D変換器6、記憶回路
9Aは3波長光源の点灯のタイミングと同期して動作す
る。このとき記憶手段9Aに与えられる信号が式(4a)中
のIe 1 ,Ie 2 ,Ie 3 に対応している。記憶回路9
AはIe 1 ,Ie 2 ,Ie 3 を記憶する。強度比計算記
憶回路9Bは記憶回路9Aの記憶内容からIe 3 /Ie
2 ,Ie 1 /Ie 2 を算出し、これを記憶する。
First, the operator places the light attenuating plate 15 between the three-wavelength light source 1 and the light receiving section 3. Here, the operator operates the calibration / measurement switching control circuit 11 to switch the changeover switch 8.
Is switched so that the A / D converter 6 and the storage circuit 9A are connected. Next, the operator causes the three-wavelength measurement control circuit 7 to start control. The three-wavelength light source 1, the storage circuit 9A, the extinction ratio calculation circuit 10, and the A / D converter 6 are controlled by control signals from the three-wavelength measurement control circuit 7. That is, the three-wavelength light source 1 uses the wavelengths λ 1 (805 nm), λ 2 (890 nm), λ 3 (650 n
m) is generated at predetermined intervals. These lights pass through the light attenuation plate 15 and reach the light receiving section 3, where they are converted into electric signals. Then, the amplifier 4, the A / D converter 6, and the storage circuit 9A operate in synchronization with the lighting timing of the three-wavelength light source. At this time, the signals supplied to the storage means 9A correspond to Ie 1 , Ie 2 and Ie 3 in the equation (4a). Storage circuit 9
A stores Ie 1 , Ie 2 , and Ie 3 . The intensity ratio calculation storage circuit 9B obtains Ie 3 / Ie from the storage contents of the storage circuit 9A.
2 , Ie 1 / Ie 2 are calculated and stored.

【0030】次にオペレータは光減衰板15を取り出し、
代りに測定の対象である生体組織17(指、耳朶など)を
3波長光源1と受光部3との間に配置する。ここでオペ
レータは校正/測定切換制御回路11を操作して切換スイ
ッチ8をA/D変換器6と減光度比計算回路10とが接続
されるように切換える。次にオペレータは3波長測定制
御回路7に制御を開始させる。前述の光減衰板15を用い
た照射光強度測定と同様にしてA/D変換器6からは式
(4a)中のIt 1 ,It 2 ,It 3 に対応した信号が減光
度比計算回路10に出力される。
Next, the operator takes out the light attenuation plate 15, and
Instead, a living tissue 17 (a finger, an earlobe, or the like) to be measured is disposed between the three-wavelength light source 1 and the light receiving unit 3. Here, the operator operates the calibration / measurement switching control circuit 11 to switch the changeover switch 8 so that the A / D converter 6 and the extinction ratio calculation circuit 10 are connected. Next, the operator causes the three-wavelength measurement control circuit 7 to start control. From the A / D converter 6 in the same manner as in the irradiation light intensity measurement using the light attenuating plate 15,
Signals corresponding to It 1 , It 2 , It 3 in (4a) are output to the dimming ratio calculating circuit 10.

【0031】減光度比計算回路10は強度比計算記憶回路
9Bが記憶しているIe 1 /Ie 2,Ie 3 /Ie 2
A/D変換器6から与えられるIt 1 ,It 2 ,It 3
を式(4a)に代入してΨを計算する。3波長測定制御回路
7は、3波長光源1が3波長の光を順次発生させること
を周期的に繰り返し行なうようにする。
The extinction ratio calculation circuit 10 stores Ie 1 / Ie 2 , Ie 3 / Ie 2 stored in the intensity ratio calculation storage circuit 9 B and It 1 , It 2 , It 3 given from the A / D converter 6.
Is substituted into equation (4a) to calculate Ψ. The three-wavelength measurement control circuit 7 causes the three-wavelength light source 1 to periodically and repeatedly generate light of three wavelengths.

【0032】記憶回路14は、切換スイッチ8が減光度比
計算回路10側に切換えられて最初に減光度比計算回路10
が算出するΨすなわちΨ0 を記憶する。
When the changeover switch 8 is switched to the extinction ratio calculation circuit 10 side, the storage circuit 14 first stores the extinction ratio calculation circuit 10.
Is calculated, that is, Ψ 0 is stored.

【0033】色素濃度計算回路15は記憶回路14が記憶し
ているΨ0 、記憶回路16が記憶しているHb および減光
度比計算回路10から与えられるΨを式(29)に代入して
(Ψ0は式中C0 に含まれ、Ψは式中Cに含まれてい
る)血中色素濃度Dを求める。
The dye density calculating circuit 15 substitutes the [psi applied from the memory circuit 14 0 [psi for storing the memory circuit 16 Hb and attenuation are stored ratio calculation circuit 10 in the formula (29) ( Ψ 0 is included in C 0 in the formula, and Ψ is included in C in the formula).

【0034】上記のように3波長の光は順次かつ繰り返
し生体組織17に照射されるので、色素濃度計算回路15は
その都度計算を行ない、その結果を表示装置12、記録器
13に出力する。このため切換スイッチ8が減光度比計算
回路10側に切換えられた後に生体組織17の血液中に所定
の色素が注入されるとその色素濃度Dの時間的変化すな
わち色素希釈曲線が表示装置12で表示され、記録器13で
記録される。
Since the three wavelengths of light are sequentially and repeatedly irradiated on the living tissue 17 as described above, the dye density calculation circuit 15 performs the calculation each time, and the result is displayed on the display device 12 and the recorder.
Output to 13. Therefore, when a predetermined dye is injected into the blood of the living tissue 17 after the changeover switch 8 is switched to the dimming ratio calculating circuit 10 side, the temporal change of the dye concentration D, that is, the dye dilution curve is displayed on the display device 12. It is displayed and recorded by the recorder 13.

【0035】本実施例によれば、照射光強度を測定する
場合光減衰板15を用いるので生体組織17を透過して光の
強度を測定する装置と同じ装置で測定できる。尚、光減
衰板15は光源の各波長に対して散乱度が等しいものが望
ましいが、散乱度に差異がある場合は、その差異が既知
であって、照射光強度比の計算手段にそれを補正する手
段が含まれていれば良い。尚、この例では3波長の光を
順に照射するようにしたが、この3波長の光を一斉に光
減衰板または生体組織に照射し、同時にそれぞれの透過
光を受光して光電変換し、これから直ちにIe 3 /Ie
2 ,Ie 2 /Ie 1 ,It 3 /It 2 ,It 1 /It 2
を求め、これらを記憶して式(4a)の計算に用いるように
しても良い。また3波長の各光を極めて短い周期で交互
に発生させ、これらの光を受光してそれぞれの波長の信
号に分離して再生する手段を設けるならば、ほぼ同時に
発生した3波長の光を処理する場合と同じ作用、効果が
得られる。
According to this embodiment, when measuring the irradiation light intensity, the light attenuating plate 15 is used, so that it can be measured by the same device as that for transmitting the living tissue 17 and measuring the light intensity. It is desirable that the light attenuating plate 15 has the same scattering degree for each wavelength of the light source. However, if there is a difference in the scattering degree, the difference is known, and the difference is calculated by the means for calculating the irradiation light intensity ratio. It suffices if a means for correction is included. In this example, the light of three wavelengths is irradiated in order. However, the light of three wavelengths is simultaneously irradiated to the light attenuating plate or the living tissue, and the respective transmitted light is simultaneously received and photoelectrically converted. Immediately Ie 3 / Ie
2, Ie 2 / Ie 1, It 3 / It 2, It 1 / It 2
May be obtained, and these may be stored and used in the calculation of equation (4a). If means for generating three wavelengths of light alternately at an extremely short cycle and receiving these lights and separating and reproducing the signals of the respective wavelengths is provided, the three wavelengths of light generated almost simultaneously can be processed. The same operation and effect as those in the case of performing the above are obtained.

【0036】また本実施例によれば、3波長光源1から
発生した光は散乱板を透過しているので生体組織の浅い
部位と深い部位とで減光率が異なることはない。
Further, according to the present embodiment, since the light generated from the three-wavelength light source 1 is transmitted through the scattering plate, the light reduction rate does not differ between the shallow part and the deep part of the living tissue.

【0037】また本実施例によれば、照射光強度の比を
用いているので測定条件に影響されることが少ない。ま
た、本実施例によれば、適時に照射強度を測定、記憶で
きるので発光部の経年変化や汚れなどによる影響を防ぐ
ことができる。
Further, according to the present embodiment, since the ratio of the irradiation light intensities is used, it is less affected by the measurement conditions. Further, according to the present embodiment, the irradiation intensity can be measured and stored in a timely manner, so that it is possible to prevent the light emitting section from being affected by aging or contamination.

【0038】上記実施例において色素濃度計算回路15
は、Ed 3 =0と近似して得られる式(29)を用いている
が、Ed 3 =0の近似を用いずに式(16)においてCd ′
を0から所定量ずつ漸増する値を順次代入し、それぞれ
における右辺の値を求めて左辺Ψと比較し、左辺Ψの値
を越えたときのCd ′の値を求める回路でも良い。
In the above embodiment, the dye density calculation circuit 15
It is is used formula obtained by approximating the Ed 3 = 0 (29), wherein without using approximation Ed 3 = 0 (16) in Cd '
May be sequentially substituted by values that gradually increase from 0 by a predetermined amount, the value of the right side in each is obtained and compared with the left side Ψ, and the value of Cd ′ when the value exceeds the left side Ψ may be obtained.

【0039】以上の実施例において、演算や制御を行な
う回路はそれぞれ独立した回路であるが、これらの演
算、制御をコンピュータにより行なっても良い。
In the above embodiments, the circuits for performing calculations and controls are independent circuits, but these calculations and controls may be performed by a computer.

【0040】[0040]

【発明の効果】本発明によれば被検者の脈動が低い場合
であっても正確な測定を行なうことができ、体動の影響
を受け難く、しかも操作が容易で測定誤差が小さい。
According to the present invention, accurate measurement can be performed even when the subject's pulsation is low, it is hardly affected by body movement, operation is easy, and measurement error is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例装置のブロック構成図。FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 3波長光源 3 受光部 9A,14,16 記憶回路 9B 強度比計算記
憶回路 10 減光度比計算回路 15 色素濃度計算回
Reference Signs List 1 3 wavelength light source 3 light receiving section 9A, 14, 16 storage circuit 9B intensity ratio calculation storage circuit 10 extinction ratio calculation circuit 15 dye density calculation circuit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3波長の光を血液を含む組織に照射する照
射手段と、 前記組織を透過した光を受光し電気信号に変換する光電
変換手段と、 前記3波長の光の照射光強度、またはそれら相互の照射
光強度比を記憶する記憶手段と、 この記憶手段が記憶している内容と前記光電変換手段か
ら得られる透過光強度に基づいて、ある2波長の組合わ
せの、照射光強度比の対数と、透過光強度比の対数との
差を求め、他の2波長の組合わせの、照射光強度比の対
数と、透過光強度比の対数との差を求め、この両者の比
と血中吸光物による減光度との関係式により、血液中の
所定の色素の濃度を計算する色素濃度計算手段と、 を具備する色素希釈曲線測定装置。
1. Irradiating means for irradiating a tissue containing blood with light of three wavelengths, photoelectric conversion means for receiving light transmitted through the tissue and converting the light into an electric signal, irradiating light intensity of the light of three wavelengths, Or a storage unit for storing the irradiation light intensity ratio between them, and an irradiation light intensity of a combination of two wavelengths based on the contents stored in the storage unit and the transmitted light intensity obtained from the photoelectric conversion unit. The difference between the logarithm of the ratio and the logarithm of the transmitted light intensity ratio is determined, and the difference between the logarithm of the irradiation light intensity ratio and the logarithm of the transmitted light intensity ratio of the other two wavelength combinations is determined. And a dye concentration calculating means for calculating the concentration of a predetermined dye in blood by a relational expression between the light intensity and the degree of extinction due to light absorbed in blood.
【請求項2】照射手段から発生した光を光減衰特性が既
知である光減衰板を透過させて得られる光強度と、その
光減衰板の特性とに基づき照射光強度比を計算しその結
果を記憶手段に記憶させる照射光強度比計算手段を具備
することを特徴とする請求項1記載の色素希釈曲線測定
装置。
2. An irradiation light intensity ratio is calculated based on the light intensity obtained by transmitting light generated from the irradiation means through a light attenuation plate having a known light attenuation characteristic and the characteristics of the light attenuation plate. 2. A dye dilution curve measuring apparatus according to claim 1, further comprising an irradiation light intensity ratio calculating means for storing the light intensity ratio in a storage means.
JP4063307A 1992-02-06 1992-03-19 Dye dilution curve measuring device Expired - Fee Related JP2613832B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4063307A JP2613832B2 (en) 1992-03-19 1992-03-19 Dye dilution curve measuring device
US08/014,269 US5385143A (en) 1992-02-06 1993-02-05 Apparatus for measuring predetermined data of living tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4063307A JP2613832B2 (en) 1992-03-19 1992-03-19 Dye dilution curve measuring device

Publications (2)

Publication Number Publication Date
JPH0630916A JPH0630916A (en) 1994-02-08
JP2613832B2 true JP2613832B2 (en) 1997-05-28

Family

ID=13225507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4063307A Expired - Fee Related JP2613832B2 (en) 1992-02-06 1992-03-19 Dye dilution curve measuring device

Country Status (1)

Country Link
JP (1) JP2613832B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326493C (en) * 2000-02-03 2007-07-18 浜松光子学株式会社 Nonionvasion biological optical measuring instrument
US6687521B2 (en) 2000-02-03 2004-02-03 Hamamatsu Photonics K.K. Noninvasion biological optical measuring instrument, measured portion holding device, and method for manufacturing the same
US7865223B1 (en) * 2005-03-14 2011-01-04 Peter Bernreuter In vivo blood spectrometry

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419969A (en) * 1977-07-15 1979-02-15 Yoshitomi Pharmaceut Ind Ltd Proline derivative and its preparation
JPS6111097A (en) * 1984-06-27 1986-01-18 三洋電機株式会社 Washing machine

Also Published As

Publication number Publication date
JPH0630916A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
US5088493A (en) Multiple wavelength light photometer for non-invasive monitoring
JP2608828B2 (en) Non-invasive oximeter
US5297548A (en) Arterial blood monitoring probe
US5564417A (en) Pathlength corrected oximeter and the like
US5596986A (en) Blood oximeter
KR100612827B1 (en) Method and apparatus for noninvasively measuring hemoglobin concentration and oxygen saturation
US6411832B1 (en) Method of improving reproducibility of non-invasive measurements
US5575285A (en) Apparatus for measuring oxygen saturation
US5983122A (en) Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
JP3270917B2 (en) Oxygen saturation measuring device, blood light absorbing substance concentration measuring device, and biological signal processing method
US20090076354A1 (en) Compensation of human variability in pulse oximetry
US20040176670A1 (en) Apparatus for measuring concentration of light-absorbing substance in blood
US20070149872A1 (en) Method and apparatus for eliminating interference in pulse oxygen measurement
WO2013099509A1 (en) Signal processing device and signal processing method
JPS6365845A (en) Oximeter apparatus
JPH01297049A (en) Apparatus and method for monitoring blood parameter
JP2004135854A (en) Reflection type photoelectric pulse wave detector and reflection type oxymeter
JPS63275325A (en) Diagnostic apparatus
US20050228253A1 (en) Photoplethysmography with a spatially homogenous multi-color source
US20120316410A1 (en) Cancellation of light shunting
JP2006075354A (en) Tissue oxygen saturation measuring device
CN116746917B (en) Jaundice tester calibrating device
JPH05269116A (en) Improved artery blood monitor device
JPH10337282A (en) Reflection type oxygen saturation degree measuring device
JP2613832B2 (en) Dye dilution curve measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961119

LAPS Cancellation because of no payment of annual fees