JP2612449B2 - Ultrasonic concentration measuring device - Google Patents
Ultrasonic concentration measuring deviceInfo
- Publication number
- JP2612449B2 JP2612449B2 JP62146942A JP14694287A JP2612449B2 JP 2612449 B2 JP2612449 B2 JP 2612449B2 JP 62146942 A JP62146942 A JP 62146942A JP 14694287 A JP14694287 A JP 14694287A JP 2612449 B2 JP2612449 B2 JP 2612449B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- solution
- measured
- ultrasonic
- solute
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02809—Concentration of a compound, e.g. measured by a surface mass change
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は超音波濃度測定装置に関する。Description: TECHNICAL FIELD The present invention relates to an ultrasonic concentration measuring device.
[従来の技術] 従来、溶媒に溶解された複数(n)の溶質の各濃度
(D1…Dn)を測定する場合には、液体クロマトグラフィ
ーが用いられている。液体クロマトグラフィーは、サン
プリングした溶液をカラムに流し込んで、各溶質を分離
定量することにより、各溶質の濃度を測定可能とする。[Prior Art] Conventionally, liquid chromatography is used to measure each concentration (D 1 ... D n ) of a plurality (n) of solutes dissolved in a solvent. In liquid chromatography, the concentration of each solute can be measured by pouring a sampled solution into a column and separating and quantifying each solute.
[発明が解決しようとする問題点] しかしながら、液体クロマトグラフィーは複雑な装置
と操作を必要とし、各溶質の濃度を得るまでに多大な労
力と時間を必要とする。また、液体クロマトグラフィー
はサンプリング測定法であるため、例えば薬液製造ライ
ン等における薬液濃度をオンラインにて自動測定する等
はできない。[Problems to be Solved by the Invention] However, liquid chromatography requires complicated equipment and operation, and requires a great deal of labor and time to obtain the concentration of each solute. Further, since liquid chromatography is a sampling measurement method, for example, it is not possible to automatically measure the concentration of a drug solution online in a drug solution production line or the like.
なお、特開昭58−77656号公報には超音波を用いた濃
度測定装置が提案されているが、この濃度測定装置は溶
媒に単一の溶質を溶解してなる溶液の濃度測定において
のみ有用である。Incidentally, Japanese Patent Application Laid-Open No. 58-77656 proposes a concentration measuring device using ultrasonic waves, but this concentration measuring device is useful only for measuring the concentration of a solution obtained by dissolving a single solute in a solvent. It is.
本発明は、溶媒に複数の溶質を溶解してなる多成分溶
液における各溶質の濃度を確実かつ容易に測定すること
を目的とする。An object of the present invention is to reliably and easily measure the concentration of each solute in a multi-component solution obtained by dissolving a plurality of solutes in a solvent.
[問題点を解決するための手段] 本発明は、溶媒に溶解された複数(n)の溶質の各濃
度(D1…Dn)を測定する超音波濃度測定装置であって、
被測定溶液に超音波を送波する超音波送波器と、被測定
溶液中を伝播した超音波を受波する超音波受波器と、超
音波の伝播時間と伝播距離から伝播速度(V)を演算す
る速度演算部と、被測定溶液の温度(T)を検出する温
度検出器と、各溶質の濃度および被測定溶液の温度によ
り上記伝播速度とはそれぞれ独立に影響を受ける(n−
1)種類の特定物性量(α1…αn-1)であり、且つ各
溶質の濃度および被測定溶液の温度により互いに独立に
影響を受ける(n−1)種類の特定物性量(α1…α
n-1)を検出する特定物性量検出器と、被測定溶液の濃
度(T)、上記特定物性量(α1…αn-1)と超音波の
伝播速度(V)と各溶質の濃度(D1…Dn)との関係を示
す関数D1=F1(V,T,α1…αn-1)…Dn=Fn(V,T,α1
…αn-1)を予め記憶している記憶部と、前記温度検出
器の出力(T)と特定物性量検出器の出力(α1…α
n-1)と速度演算部の出力(V)から、前記関数に基づ
いて各溶質の濃度(D1…Dn)を演算する濃度演算部と、
濃度演算部の演算結果を出力する出力装置とを有してな
るようにしたものである。[Means for Solving the Problems] The present invention relates to an ultrasonic concentration measuring device for measuring each concentration (D 1 ... D n ) of a plurality (n) of solutes dissolved in a solvent,
An ultrasonic transmitter for transmitting ultrasonic waves to the solution to be measured, an ultrasonic receiver for receiving ultrasonic waves propagated in the solution to be measured, and a propagation speed (V) based on the propagation time and propagation distance of the ultrasonic waves. ), A temperature detector for detecting the temperature (T) of the solution to be measured, and the above-mentioned propagation speed are independently influenced by the concentration of each solute and the temperature of the solution to be measured (n−
1) kinds of specific physical quantities (α 1 ... Α n-1 ) and (n-1) kinds of specific physical quantities (α 1 ) which are independently influenced by the concentration of each solute and the temperature of the solution to be measured. … Α
n-1 ), a specific physical quantity detector for detecting the concentration of the solution to be measured (T), the specific physical quantity (α 1 ... α n-1 ), the ultrasonic wave propagation velocity (V), and the concentration of each solute. A function D 1 = F 1 (V, T, α 1 ... Α n-1 )... D n = F n (V, T, α 1 ) indicating a relationship with (D 1 ... D n )
.. Α n-1 ), the output (T) of the temperature detector and the output (α 1 ... Α) of the specific physical quantity detector.
n-1 ) and the output (V) of the speed calculator, a concentration calculator for calculating the concentration (D 1 ... D n ) of each solute based on the function.
And an output device for outputting a calculation result of the density calculation unit.
[作用] 本発明にあっては、被測定溶液としての各種多成分溶
液毎に、該溶液の温度(T)と、密度(ρ)もしくは導
電率(σ)等の、特定物性量(α1…αn-1)と、超音
波の伝播速度(V)と、各溶質の濃度(D1…Dn)との関
係を示す関数D1=F1(V,T,α1…αn-1)…Dn=Fn(V,
T,α1…αn-1)が予め定められ記憶部に記憶される。
しかして、温度検出器、特定物性量検出器にて被測定溶
液の温度(T)、特定物性量(α1…αn-1)を検出す
るとともに、速度演算部にて超音波の伝播速度(V)を
演算し、それら検出結果と演算結果を前述の関数に代入
処理することにより、各溶質の濃度(D1…Dn)を確実か
つ容易に測定できる。[Action] In the present invention, for each of various multi-component solutions as the solution to be measured, the specific physical quantity (α 1 ) such as the temperature (T) and the density (ρ) or the conductivity (σ) of the solution is measured. ... Α n-1 ), a function D 1 = F 1 (V, T, α 1 ... Α n ) showing a relationship between the ultrasonic wave propagation velocity (V) and the concentration of each solute (D 1 ... D n ). -1 )… D n = F n (V,
T, α 1 ... Α n-1 ) are predetermined and stored in the storage unit.
The temperature (T) of the solution to be measured and the specific physical quantity (α 1 ... Α n-1 ) are detected by the temperature detector and the specific physical quantity detector. By calculating (V) and substituting the detection result and the calculation result into the above-described function, the concentration (D 1 ... D n ) of each solute can be measured reliably and easily.
[実施例] 第1図は本発明の一実施例に係る超音波濃度測定装置
を示すブロック図、第2図(A)は本発明の実施に用い
られるセンサを示す正面図、第2図(B)は第2図
(A)のB−B線に沿う断面図、第2図(C)は第2図
(A)のC−C線に沿う断面図、第3図は超音波の送受
波状態を示す波形図、第4図は超音波濃度測定装置の作
動を示す流れ図である。Embodiment FIG. 1 is a block diagram showing an ultrasonic concentration measuring apparatus according to one embodiment of the present invention, FIG. 2 (A) is a front view showing a sensor used for carrying out the present invention, and FIG. 2B is a sectional view taken along line BB of FIG. 2A, FIG. 2C is a sectional view taken along line CC of FIG. 2A, and FIG. FIG. 4 is a flowchart showing the operation of the ultrasonic concentration measuring apparatus.
超音波度測定装置10は、溶媒に複数(n)の溶質を溶
解してなる多成分溶液における各溶質の濃度を測定する
ものであり、演算装置11(第1図参照)と、センサ12
(第2図参照)とを有してなり、演算装置11には表示器
13を付帯的に備えている。The ultrasonic degree measuring apparatus 10 measures the concentration of each solute in a multi-component solution obtained by dissolving a plurality (n) of solutes in a solvent, and includes an arithmetic unit 11 (see FIG. 1), a sensor 12
(See FIG. 2).
It has 13 incidentally.
センサ12は被測定溶液1に投入されて用いられる。 The sensor 12 is used by being charged into the solution 1 to be measured.
センサ12は、超音波送波器と超音波受波器を兼ねる超
音波送受波器(振動子)14と反射板15とを備える。超音
波送受波器14から被測定溶液1に送出された超音波は、
被測定溶液1を伝播するとともに反射板15で反射されて
超音波送受波器14により受信される。The sensor 12 includes an ultrasonic transmitter / receiver (vibrator) 14 that also functions as an ultrasonic transmitter and an ultrasonic receiver, and a reflector 15. The ultrasonic wave transmitted from the ultrasonic transducer 14 to the solution 1 to be measured is
The light propagates through the solution to be measured 1 and is reflected by the reflection plate 15 and received by the ultrasonic transducer 14.
また、センサ12は、サーミスタからなる温度検出器16
を備え、被測定溶液1の温度(T)を検出する。The sensor 12 is a temperature detector 16 composed of a thermistor.
And detects the temperature (T) of the solution 1 to be measured.
さらに、センサ12は、被測定溶液1に溶解されている
各溶質の濃度および被測定溶液の温度(T)により上記
伝播速度(V)とはそれぞれ独立に影響を受ける(n−
1)種類の特定物性量(α1…αn-1)であり、且つ各
溶質の濃度および被測定溶液の温度により互いに独立に
影響を受ける(n−1)種類の特定物性量(α1…α
n-1)を検出する特定物性量検出器を備える。被測定溶
液1が例えば2つの溶質を溶解してなるもの(例えばNa
OHとNaClの水溶液)であれば、センサ12は、1種類の特
定物性量例えば導電率σを検出する導電率検出器17を備
える。Further, the sensor 12 is independently affected by the propagation velocity (V) by the concentration of each solute dissolved in the solution 1 to be measured and the temperature (T) of the solution to be measured (n−
1) kinds of specific physical quantities (α 1 ... Α n-1 ) and (n-1) kinds of specific physical quantities (α 1 ) which are independently influenced by the concentration of each solute and the temperature of the solution to be measured. … Α
n-1 ) is provided. The solution 1 to be measured is obtained by dissolving two solutes (for example, Na
If it is an aqueous solution of OH and NaCl), the sensor 12 includes a conductivity detector 17 for detecting one kind of specific physical quantity, for example, conductivity σ.
演算装置11はシングアラウンド部18、温度計測部19、
特定物性量計測部の一例としての導電率計測部20、入出
力部21、CPU22、ROM23、RAM24を備えている。The arithmetic unit 11 includes a sing-around unit 18, a temperature measurement unit 19,
A conductivity measuring unit 20, an input / output unit 21, a CPU 22, a ROM 23, and a RAM 24 are provided as an example of the specific physical property measuring unit.
超音波送受波器14の検出量はシングアラウンド部18、
入出力部21を経てCPU22に転送され、速度演算部として
のCPU22にて超音波の伝播速度(V)が演算され、演算
された速度データ(V)はRAM24に格納される。シング
アラウンド方式は超音波バーストを送信し反射波を受信
してからτ0秒後に再度送信し、その反射波を受信して
からτ0秒後に送信を行なうというくり返しを行なって
超音波の伝播速度(V)を測定する方式である。第3図
のAは送信波、Bは受信波である。任意の送信時点から
(k+1)回の送信が行なわれるまでの時間をt(第3
図のC参照)とし、演算によって得られたP=t/Kをデ
ータPとすれば、伝播速度Vは次式で与えられる。The detection amount of the ultrasonic transducer 14 is the sing-around part 18,
The ultrasonic wave is transferred to the CPU 22 via the input / output unit 21, the propagation speed (V) of the ultrasonic wave is calculated by the CPU 22 as a speed calculation unit, and the calculated speed data (V) is stored in the RAM 24. Sing around method is sent back to tau 0 seconds after receiving a reflected wave transmits ultrasound burst, the propagation velocity of the repeat conducted ultrasound that performs transmission from the reception of the reflected wave tau after 0 seconds This is a method for measuring (V). A in FIG. 3 is a transmission wave, and B is a reception wave. The time from the arbitrary transmission time point until the (k + 1) times transmission is performed is represented by t (3rd
Assuming that P = t / K obtained by the calculation is data P, the propagation velocity V is given by the following equation.
V=2L0/(P−τ0) ここで、L0は超音波送受波器14と反射板15との距離で
ある。τ0、L0はτ0設定部25、L0設定部26にて初期設
定される。V = 2L 0 / (P−τ 0 ) where L 0 is the distance between the ultrasonic transducer 14 and the reflector 15. τ 0 and L 0 are initialized by the τ 0 setting unit 25 and the L 0 setting unit 26.
温度検出器16が検出した被測定溶液1の温度データ
(T)は温度計測部19、A/D変換部27、入出力部21を経
てRAM24に格納される。The temperature data (T) of the solution 1 to be measured detected by the temperature detector 16 is stored in the RAM 24 via the temperature measuring unit 19, the A / D converter 27, and the input / output unit 21.
導電率検出器17が検出した被測定溶液1の導電率デー
タ(σ)は導電率計測部20、A/D変換部28、入出力部21
を経てRAM24に格納される。The conductivity data (σ) of the solution 1 to be measured detected by the conductivity detector 17 is converted into a conductivity measurement unit 20, an A / D conversion unit 28, and an input / output unit 21.
And stored in the RAM 24.
演算装置11のROM23は、本発明の記憶部を構成し、被
測定溶液1の温度(T)、前述の特定物性量(α1…α
n-1)と超音波の伝播速度(V)と各溶質の濃度(D1…D
n)との関係を示す下記の関数を記憶している。The ROM 23 of the arithmetic unit 11 constitutes the storage unit of the present invention, and includes the temperature (T) of the solution 1 to be measured, the specific physical quantity (α 1 .
n-1 ), ultrasonic wave propagation velocity (V), and concentration of each solute (D 1 … D
The following function indicating the relationship with n ) is stored.
D1=F1(V,T,α1…αn-1) …(1) Dn=Fn(V,T,α1…αn-1) …(2) 被測定溶液1が例えば前述の如く2つの溶質NaOH、Na
Clを溶解してなるものであり、特定物性量として導電率
σを選定する場合には、NaOHの濃度D1とNaClの濃度D2は
以下の如くなる。D 1 = F 1 (V, T, α 1 ... Α n-1 ) (1) D n = F n (V, T, α 1 ... Α n-1 ) (2) The solution 1 to be measured is, for example, As mentioned above, the two solutes NaOH and Na
Are those obtained by dissolving a Cl, when selecting the conductivity σ as a specific physical property quantity is the concentration D 1 and the density D 2 of NaCl of NaOH is as follows.
D1=F1(V,T,σ) …(3) D2=F2(V,T,σ) …(4) 上記関数は多次多項式にて表わすことができ、例えば
NaOHとNaClの2成分を溶質とする水溶液について、未知
の定数C(1)〜C(44)を含む多次多項式を設定すれ
ば例えば以下の如くなる。ここで、多次多項式を何次の
項まで利用するかは濃度測定の要求精度にて定められ
る。D 1 = F 1 (V, T, σ) (3) D 2 = F 2 (V, T, σ) (4) The above function can be represented by a polynomial polynomial.
For an aqueous solution containing two components of NaOH and NaCl as a solute, a polynomial equation including unknown constants C (1) to C (44) is set as follows, for example. Here, up to what order the multi-order polynomial is used is determined by the required accuracy of the concentration measurement.
D1=C(29)*X+C(30) …(5) X=(B(1)+C(28)* (B(1)2+B(2)*B(3))1/2)/B(3) B(1)=C(1)+C(2)*T+C(3)*T2 +C(4)*T3+C(5)*T4 +V*(C(6)+C(7)*T+C(8)*T2) +σ*(C(9)+C(10)*T+C(11)*T2) B(2)=C(12)+C(13)*T+C(14)*T2 +C(15)*T3+C(16)*T4 +V*(C(17)+C(18)*T+C(19)*T2) +σ*(C(20)+C(21)*T+C(22)*T2) B(3)=C(23)+C(24)*T+C(25)*T2 +C(26)*T3+C(27)*T4 D2=C(31)*Y+C(32) …(6) Y=(X*(C(33)+C(34)*T+C(35)*T2) +C(36)+C(37)*T+C(38)*T2+V) /(X*(C(39)+C(40)*T+C(41)*T2) +C(42)+C(43)*T+C(44)*T2) 上記多次多項式の定数C(1)〜C(44)は以下の如
くして決定される。すなわち、NaOHとNaClの2成分を溶
質とする溶液において、NaOHの濃度(D1)2.00〜4.00
%、NaClの濃度(D2)10.00〜14.00%、温度(T)45〜
60℃の組合せにつき、表1の如く、溶液中の超音波の伝
播速度Vと導電率σを測定する。上記温度(T)、速度
(V)、導電率(σ)の測定は後述するように、本発明
の測定装置10を用いて行なうことができる。表1に示し
たD1、D2、T、V、σの組合せを少なくとも44組用意
し、各組をデータを前記(5)、(6)式に代入して、
定数C(1)〜C(44)を未知数とする44元連立方程式
を解くことにより、表2に示すように各定数C(1)〜
C(44)を決定することができる。この定数C(i)を
ROMライタにて演算装置11のROM23に記憶させることとな
る。なお、ROMライタは各D1、D2、T、V、σから各定
数C(i)を算出し検算し(上記C(i)の算出に用い
ないD1、D2、T、V、σによる)各C(i)が適正な場
合にのみROM23に記憶させる。D 1 = C (29) * X + C (30) (5) X = (B (1) + C (28) * (B (1) 2 + B (2) * B (3)) 1/2 ) / B (3) B (1) = C (1) + C (2) * T + C (3) * T 2 + C (4) * T 3 + C (5) * T 4 + V * (C (6) + C (7) * T + C (8) * T 2 ) + σ * (C (9) + C (10) * T + C (11) * T 2 ) B (2) = C (12) + C (13) * T + C (14) * T 2 + C (15) * T 3 + C (16) * T 4 + V * (C (17) + C (18) * T + C (19) * T 2 ) + σ * (C (20) + C (21) * T + C (22) * T 2) B (3) = C (23) + C (24) * T + C (25) * T 2 + C (26) * T 3 + C (27) * T 4 D 2 = C (31) * Y + C (32) ... (6) Y = (X * (C (33) + C (34) * T + C (35) * T 2) + C (36) + C (37) * T + C (38) * T 2 + V) / (X * ( C (39) + C (40 * T + C (41) * T 2) + C (42) + C (43) * T + C (44) * T 2) constant of the multiple order polynomial C (1) ~C (44) is determined by as follows . That is, in a solution containing two components of NaOH and NaCl as a solute, the concentration of NaOH (D 1 ) 2.00 to 4.00
%, NaCl concentration (D 2 ) 10.00-14.00%, temperature (T) 45-
With respect to the combination at 60 ° C., as shown in Table 1, the ultrasonic wave propagation velocity V and the conductivity σ in the solution are measured. The measurement of the temperature (T), speed (V), and conductivity (σ) can be performed using the measuring device 10 of the present invention, as described later. At least 44 combinations of D 1 , D 2 , T, V, and σ shown in Table 1 are prepared, and each pair is substituted for the data in the above formulas (5) and (6).
By solving a 44-element simultaneous equation in which the constants C (1) to C (44) are unknown, as shown in Table 2, each constant C (1) to C (44)
C (44) can be determined. This constant C (i) is
The data is stored in the ROM 23 of the arithmetic unit 11 by the ROM writer. The ROM writer calculates each constant C (i) from each of D 1 , D 2 , T, V, and σ, and performs a check (D 1 , D 2 , T, V, Only when each C (i) is proper (according to σ) is stored in the ROM 23.
しかして、本発明の濃度演算部としてのCPU22は、複
数(n)の溶質(例えばNaOHとNaCl)が溶解されてなる
溶液の濃度を以下の如くして演算する。すなわち、CPU2
2は、超音波送受波器14の検出量に基づいて演算された
超音波の伝播速度(V)、温度検出器16が検出した温度
(T)、特定物性量検出器の検出したデータ例えば導電
率(σ)のそれぞれを、前述の(1)、(2)式具体的
には例えば(5)、(6)式に代入することにより、各
溶質の濃度(D1…Dn)例えばNaOHの濃度D1とNaClの濃度
D2を演算する。Thus, the CPU 22 as the concentration calculator of the present invention calculates the concentration of a solution in which a plurality (n) of solutes (eg, NaOH and NaCl) are dissolved as follows. That is, CPU2
2 is the ultrasonic wave propagation velocity (V) calculated based on the detection amount of the ultrasonic wave transducer 14, the temperature (T) detected by the temperature detector 16, and the data detected by the specific physical quantity detector, for example, conductivity. By substituting each of the rates (σ) into the above formulas (1) and (2), specifically, for example, formulas (5) and (6), the concentration (D 1 ... D n ) of each solute, for example, NaOH Concentration D 1 and NaCl concentration
Calculating a D 2.
演算装置11はファンクション設定部29を備えている。
ファンクション設定部29は、演算装置11の動作を設定す
るものであり、超音波の伝播速度Vのみを測定表示す
るモード、温度Tのみを測定表示するモード、特定
物性量(α1…αn-1)例えば導電率σのみを測定表示
するモード、濃度D1、D2を演算表示するモードを設定
する。ファンクション設定部29の設定にて得られる測定
結果、演算結果は、表示器13に表示され、あるいは出力
部30からアナログ出力として外部に取り出される。表示
器13と出力部30は本発明の出力装置を構成し、これらの
出力は被測定溶液その他の制御情報として利用できる。The arithmetic unit 11 includes a function setting unit 29.
The function setting unit 29 is for setting the operation of the arithmetic unit 11, and is a mode for measuring and displaying only the propagation speed V of the ultrasonic wave, a mode for measuring and displaying only the temperature T, and a specific physical quantity (α 1 ... Α n−). 1 ) For example, a mode for measuring and displaying only the conductivity σ and a mode for calculating and displaying the densities D 1 and D 2 are set. The measurement result and the calculation result obtained by the setting of the function setting unit 29 are displayed on the display unit 13 or taken out from the output unit 30 as an analog output. The display 13 and the output unit 30 constitute an output device of the present invention, and these outputs can be used as a solution to be measured and other control information.
以下、上記濃度測定装置10によりNaOHとNaClの2成分
を溶質とする水溶液の濃度を測定する手順について説明
する(第4図参照)。演算装置11のτ0設定部25、L0設
定部26にて前述のτ0、L0を設定するとともに、ファン
クション設定部29をいずれかの測定/演算モードに設定
する。A procedure for measuring the concentration of an aqueous solution containing two components of NaOH and NaCl as a solute by the concentration measuring device 10 will be described below (see FIG. 4). The above-mentioned τ 0 and L 0 are set by the τ 0 setting unit 25 and the L 0 setting unit 26 of the arithmetic unit 11, and the function setting unit 29 is set to one of the measurement / calculation modes.
音速演算モードにては、音速処理サブルーチンが作動
し、被測定溶液1における超音波の伝播速度(V)が前
述の如くして演算され出力される。In the sonic velocity calculation mode, the sonic velocity processing subroutine operates, and the propagation velocity (V) of the ultrasonic wave in the solution to be measured 1 is calculated and output as described above.
温度測定モードにては、温度処理サブルーチンが作動
し、被測定溶液1の温度(T)が前述の如くして測定さ
れ出力される。In the temperature measurement mode, the temperature processing subroutine operates, and the temperature (T) of the solution 1 to be measured is measured and output as described above.
導電率測定モードにては、導電率処理サブルーチンが
作動し、被測定溶液1の導電率(σ)が前述の如くして
測定され出力される。In the conductivity measurement mode, the conductivity processing subroutine operates, and the conductivity (σ) of the solution 1 to be measured is measured and output as described above.
濃度演算モードにては、上記〜の各サブルーチン
にて得られたデータが利用され、前述の如くROM23に記
憶されている関数からNaOHの濃度D1、NaClの濃度D2が演
算され出力される。In the concentration calculation mode, data obtained in the above subroutines is used, and the NaOH concentration D 1 and the NaCl concentration D 2 are calculated and output from the function stored in the ROM 23 as described above. .
前述のNaOHとNaClの2成分を溶質とする水溶液につい
て既に知られている数種類の濃度D1、D2の溶液につい
て、種々の濃度につき、上記濃度測定装置10にて測定し
たD1、D2を超音波の伝播速度(V)と導電率(σ)とと
もに表3に示した。表3によれば、本発明は高精度にて
濃度測定できることが認められる。For several concentrations D 1, a solution of D 2 already known for an aqueous solution of two components of the aforementioned NaOH and NaCl as a solute, per various concentrations, D 1 measured at the concentration measuring apparatus 10, D 2 Are shown in Table 3 together with the propagation speed (V) of the ultrasonic wave and the conductivity (σ). According to Table 3, it is recognized that the present invention can measure the concentration with high accuracy.
なお、本発明の実施に用いられる特定物性量として
は、導電率に限らず、密度、PH、光の屈折率、放射線の
減衰率、超音波の使用周波数、被測定溶液に対する第3
の溶質添加量等を広く採用できる。例えば、溶倍にn=
3種類の溶質が溶解してなる多成分溶液にあっては、n
−1=2種類の特定物性量を用いることになるから、例
えば特定物性量として導電率σと密度ρを選定すれば、
各溶質の濃度D1、D2、D3は下記の関数にて演算されるこ
とになる。The specific physical quantity used in the practice of the present invention is not limited to the electric conductivity, but may be a density, a PH, a refractive index of light, an attenuation rate of radiation, an operating frequency of ultrasonic waves, and a third
Can be widely adopted. For example, n =
In a multi-component solution in which three types of solutes are dissolved, n
Since −1 = two types of specific physical quantities are used, for example, if the conductivity σ and the density ρ are selected as the specific physical quantities,
The concentrations D 1 , D 2 , and D 3 of each solute are calculated by the following functions.
D1=F1(V,T,σ,ρ) …(7) D2=F2(V,T,σ,ρ) …(8) D3=F3(V,T,σ,ρ) …(9) すなわち、本発明によれば、被測定溶液の濃度をリア
ルタイムで出力できかつ高い精度が得られるので、各種
の多成分溶液の濃度測定に有用であり、薬液、食品等の
工業的プロセスに広く適用できる。D 1 = F 1 (V, T, σ, ρ) ... (7) D 2 = F 2 (V, T, σ, ρ) ... (8) D 3 = F 3 (V, T, σ, ρ) (9) That is, according to the present invention, since the concentration of the solution to be measured can be output in real time and high accuracy can be obtained, it is useful for measuring the concentration of various multi-component solutions, and can be used for industrial solutions such as chemicals and foods. Widely applicable to process.
[発明の効果] 以上のように、本発明によれば、溶媒に複数の溶質を
溶解してなる多成分溶液における各溶質の濃度を確実か
つ容易に測定することができる。[Effects of the Invention] As described above, according to the present invention, the concentration of each solute in a multi-component solution obtained by dissolving a plurality of solutes in a solvent can be measured reliably and easily.
第1図は本発明の一実施例に係る超音波濃度測定装置を
示すブロック図、第2図(A)は本発明の実施に用いら
れるセンサを示す正面図、第2図(B)は第2図(A)
のB−B線に沿う断面図、第2図(C)は第2図(A)
のC−C線に沿う断面図、第3図は超音波の送受波状態
を示す波形図、第4図は超音波濃度測定装置の作動を示
す流れ図である。 10……超音波濃度測定装置、 11……演算装置、 13……表示器、 14……超音波送受波器、 16……温度検出器、 17……導電率検出器、 22……CPU(速度演算部、濃度演算部)、 23……ROM(記憶部)、 30……出力部。FIG. 1 is a block diagram showing an ultrasonic concentration measuring apparatus according to one embodiment of the present invention, FIG. 2 (A) is a front view showing a sensor used in the embodiment of the present invention, and FIG. Fig. 2 (A)
FIG. 2 (C) is a cross-sectional view taken along the line BB of FIG.
3 is a waveform diagram showing the state of transmission and reception of ultrasonic waves, and FIG. 4 is a flowchart showing the operation of the ultrasonic concentration measuring device. 10… Ultrasonic concentration measuring device, 11… Computing device, 13 …… Display unit, 14 …… Ultrasonic transducer, 16 …… Temperature detector, 17 …… Conductivity detector, 22 …… CPU ( Speed calculation unit, density calculation unit), 23 ROM (storage unit), 30 output unit.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−73147(JP,A) 特開 昭61−50062(JP,A) 特開 昭62−25254(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-73147 (JP, A) JP-A-61-50062 (JP, A) JP-A-62-25254 (JP, A)
Claims (1)
度(D1…Dn)を測定する超音波濃度測定装置であって、
被測定溶液に超音波を送波する超音波送波器と、被測定
溶液中を伝播した超音波を受波する超音波受波器と、超
音波の伝播時間と伝播距離から伝播速度(V)を演算す
る速度演算部と、被測定溶液の温度(T)を検出する温
度検出器と、各溶質の濃度および被測定溶液の温度によ
り上記伝播速度とはそれぞれ独立に影響を受ける(n−
1)種類の特定物性量(α1…αn-1)であり、且つ各
溶質の濃度および被測定溶液の温度により互いに独立に
影響を受ける(n−1)種類の特定物性量(α1…α
n-1)を検出する特定物性量検出器と、被測定溶液の濃
度(T)、上記特定物性量(α1…αn-1)と超音波の
伝播速度(V)と各溶質の濃度(D1…Dn)との関係を示
す関数D1=F1(V,T,α1…αn-1)…Dn=Fn(V,T,α1
…αn-1)を予め記憶している記憶部と、前記温度検出
器の出力(T)と特定物性量検出器の出力(α1…α
n-1)と速度演算部の出力(V)から、前記関数に基づ
いて各溶質の濃度(D1…Dn)を演算する濃度演算部と、
濃度演算部の演算結果を出力する出力装置とを有してな
る超音波濃度測定装置。An ultrasonic concentration measuring device for measuring each concentration (D 1 ... D n ) of a plurality (n) of solutes dissolved in a solvent,
An ultrasonic transmitter for transmitting ultrasonic waves to the solution to be measured, an ultrasonic receiver for receiving ultrasonic waves propagated in the solution to be measured, and a propagation speed (V) based on the propagation time and propagation distance of the ultrasonic waves. ), A temperature detector for detecting the temperature (T) of the solution to be measured, and the above-mentioned propagation speed are independently influenced by the concentration of each solute and the temperature of the solution to be measured (n−
1) kinds of specific physical quantities (α 1 ... Α n-1 ) and (n-1) kinds of specific physical quantities (α 1 ) which are independently influenced by the concentration of each solute and the temperature of the solution to be measured. … Α
n-1 ), a specific physical quantity detector for detecting the concentration of the solution to be measured (T), the specific physical quantity (α 1 ... α n-1 ), the ultrasonic wave propagation velocity (V), and the concentration of each solute. A function D 1 = F 1 (V, T, α 1 ... Α n-1 )... D n = F n (V, T, α 1 ) indicating a relationship with (D 1 ... D n )
.. Α n-1 ), the output (T) of the temperature detector and the output (α 1 ... Α) of the specific physical quantity detector.
n-1 ) and the output (V) of the speed calculator, a concentration calculator for calculating the concentration (D 1 ... D n ) of each solute based on the function.
An ultrasonic concentration measurement device comprising: an output device that outputs a calculation result of the concentration calculation unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62146942A JP2612449B2 (en) | 1987-06-15 | 1987-06-15 | Ultrasonic concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62146942A JP2612449B2 (en) | 1987-06-15 | 1987-06-15 | Ultrasonic concentration measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63311166A JPS63311166A (en) | 1988-12-19 |
JP2612449B2 true JP2612449B2 (en) | 1997-05-21 |
Family
ID=15419060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62146942A Expired - Lifetime JP2612449B2 (en) | 1987-06-15 | 1987-06-15 | Ultrasonic concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2612449B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005091318A (en) * | 2003-09-19 | 2005-04-07 | Fuji Kogyo Kk | Ultrasonic densitometer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002237478A (en) * | 2001-02-08 | 2002-08-23 | Hitachi Chem Co Ltd | Method of polishing cmp |
JP2003185537A (en) | 2001-12-20 | 2003-07-03 | Fujitsu Ltd | Measuring apparatus for chemical liquid, chemical liquid- supplying method, and measuring method for concentration of chemical liquid |
JP2004101999A (en) * | 2002-09-11 | 2004-04-02 | Mitsubishi Chemical Engineering Corp | Apparatus for recycling and supplying developer solution |
-
1987
- 1987-06-15 JP JP62146942A patent/JP2612449B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005091318A (en) * | 2003-09-19 | 2005-04-07 | Fuji Kogyo Kk | Ultrasonic densitometer |
Also Published As
Publication number | Publication date |
---|---|
JPS63311166A (en) | 1988-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES447049A1 (en) | Device for accurate measurement of the dimensions of an object by ultrasonic waves | |
JP2612449B2 (en) | Ultrasonic concentration measuring device | |
US6820462B2 (en) | Acoustic gas monitor | |
Carnvale et al. | Absolute Sound‐Velocity Measurement in Distilled Water | |
GB2195767A (en) | Method and apparatus for on-line concentration measurement of a substance using ultrasonic pulses | |
JPH048746B2 (en) | ||
JP2006184258A (en) | Ultrasonic method and ultrasonic apparatus for computing concentration | |
JPH02116745A (en) | Ultrasonic solution density measuring apparatus | |
JPH08219854A (en) | Ultrasonic liquid level meter | |
FR2562264A1 (en) | METHOD FOR MEASURING THE DISTANCE BETWEEN TWO ANY OBJECTS AND TRANSMITTER AND RECEIVER FOR APPLYING THE METHOD | |
JP2651269B2 (en) | Ultrasonic thickness gauge | |
JP2005164396A (en) | Washing liquid concentration measuring apparatus | |
JPS5897633A (en) | Temperature measurement system | |
JPS60222763A (en) | Method and apparatus for measuring total protein density of serum | |
Yasunaga et al. | Studies of Chemical Kinetics by Means of the Velocity of Sound. I. The Hydrolysis of Acetic Esters | |
JPH0320697B2 (en) | ||
JPH0666775A (en) | Measuring instrument for sugar content of drink in sealed container | |
JPH11183404A (en) | Densitometer | |
JPH02198357A (en) | Ultrasonic wave gas densitometer | |
JPS63311167A (en) | Ultrasonic-wave concentration measuring apparatus | |
Le Huerou et al. | Compressibility of nano inclusions in complex fluids by ultrasound velocity measurements | |
JPH0666620A (en) | Ultrasonic level indicator | |
JPH0729447Y2 (en) | Ultrasonic measuring device | |
JPH0961145A (en) | Method and apparatus for measurement of thickness or sound velocity | |
JP2654203B2 (en) | Pulse type ultrasonic distance measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 11 |