JP2611265B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2611265B2 JP2611265B2 JP62261971A JP26197187A JP2611265B2 JP 2611265 B2 JP2611265 B2 JP 2611265B2 JP 62261971 A JP62261971 A JP 62261971A JP 26197187 A JP26197187 A JP 26197187A JP 2611265 B2 JP2611265 B2 JP 2611265B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- graphite
- battery
- limn
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非水電解液二次電池に関するものであり、
特にLiMn2O4を正極活物質とする非水電解液電池の正極
材の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, the present invention relates to improvement of a positive electrode material of a non-aqueous electrolyte battery using LiMn 2 O 4 as a positive electrode active material.
本発明は、負極にリチウム,リチウム合金あるいは導
電性高分子等を用い正極にLiMn2O4を用いた非水電解液
二次電池において、前記正極中に導電剤として添加され
るグラファイトの添加量を所定の範囲に規定することに
より、高容量を有し充放電サイクル特性に優れた非水電
解液二次電池を実現しようとするものである。The present invention relates to a non-aqueous electrolyte secondary battery using lithium, a lithium alloy or a conductive polymer for a negative electrode and LiMn 2 O 4 for a positive electrode, and the amount of graphite added as a conductive agent in the positive electrode. Is specified within a predetermined range, thereby realizing a non-aqueous electrolyte secondary battery having a high capacity and excellent charge / discharge cycle characteristics.
負極活物質としてリチウムを使用し電解液に非水電解
液を使用した,いわゆる非水電解液電池は、自己放電が
少なく保存性に優れた電池として知られており、特に5
年〜10年という長期間使用が要求される電子腕時計や種
々のメモリーバックアップ用電源として広く利用される
ようになっている。A so-called non-aqueous electrolyte battery using lithium as a negative electrode active material and a non-aqueous electrolyte as an electrolyte is known as a battery having a low self-discharge and excellent storage stability.
It has been widely used as an electronic wristwatch and a power source for various memory backups, which are required to be used for a long time of 10 to 10 years.
ところで、これら従来使用されている非水電解液電池
は通常は一次電池であるが、長時間経済的に使用できる
電源として再充電可能な非水電解液二次電池への要望が
多く、各方面で研究が進められている。By the way, these conventional non-aqueous electrolyte batteries are usually primary batteries, but there are many demands for rechargeable non-aqueous electrolyte secondary batteries as a power source that can be used economically for a long time. Research is ongoing.
かかる状況下で、非水電解液二次電池用の正極材につ
いてもこれまで多くの研究,提案がなされてきたが、そ
の代表的なものとして、負極にLi、正極にTiS2,MoS2,Nb
Se2,V2O5等が組み合わされ検討されてきた。Under such circumstances, many studies and proposals have been made on cathode materials for non-aqueous electrolyte secondary batteries. Typical examples are Li for the negative electrode, TiS 2 , MoS 2 , and the like for the positive electrode. Nb
Se 2 , V 2 O 5 and the like have been studied in combination.
しかしながら、これらの正極材を使用した二次電池で
は、充放電を繰り返していくと急激に放電容量が減少し
てしまうという傾向を示し、サイクル特性の点で問題を
残している。However, a secondary battery using such a positive electrode material tends to rapidly decrease in discharge capacity as charge / discharge is repeated, leaving a problem in cycle characteristics.
さらに、これらの正極材は入手も困難で、大容量の二
次電池を作成しようとすると製造コストが増大し、二次
電池の主流となっているアルカリ蓄電池(いわゆるニッ
ケルカドミウム電池)と比べても不利である。Furthermore, it is difficult to obtain these positive electrode materials, and the production cost increases if a large-capacity secondary battery is to be produced. Compared with the alkaline storage battery (so-called nickel cadmium battery), which is the mainstream of secondary batteries, Disadvantageous.
そこで本願出願人は、先に高容量で優れた充放電特性
を有する安価な正極材として炭酸リチウムまたはヨウ化
リチウムと二酸化マンガンとから合成されるLiMn2O4を
見出し、これを使用した二次電池を特願昭61−257479号
明細書,特願昭62−107989号明細書等において提案し
た。Therefore, the applicant of the present application has previously found LiMn 2 O 4 synthesized from lithium carbonate or lithium iodide and manganese dioxide as an inexpensive positive electrode material having a high capacity and excellent charge / discharge characteristics. Batteries were proposed in Japanese Patent Application Nos. 61-257479 and 62-107989.
本発明は前述のLiMn2O4を正極活物質とする非水電解
液電池のより一層の改良の狙ったもので、特に放電容量
のさらなる拡大,充放電サイクル特性の向上を目的とす
るものである。The present invention aims at further improvement of the above-mentioned non-aqueous electrolyte battery using LiMn 2 O 4 as a positive electrode active material, and particularly aims at further expansion of discharge capacity and improvement of charge / discharge cycle characteristics. is there.
本発明者等は、先に炭酸リチウムまたはヨウ化リチウ
ムと安価な二酸化マンガンから正極活物質として高容量
で優れた充放電特性を有するLiMn2O4を合成することに
成功したが、さらに種々の検討を重ねた結果、正極材の
導電材としてグラファイトを添加し、さらにその添加量
を所定の範囲に規制することでより一層の高容量を有し
優れたサイクル特性を有する二次電池を得ることに成功
した。The present inventors have previously succeeded in synthesizing LiMn 2 O 4 having high capacity and excellent charge / discharge characteristics as a positive electrode active material from lithium carbonate or lithium iodide and inexpensive manganese dioxide. As a result of repeated studies, it was found that graphite was added as a conductive material for the positive electrode material, and that the amount of addition was regulated within a predetermined range to obtain a secondary battery with higher capacity and superior cycle characteristics. succeeded in.
本発明は、かかる知見に基づいて完成されたものであ
って、LiMn2O4及びグラファイトを主体とする正極と負
極と非水電解液よりなり、グラファイトの割合が8〜22
重量%であることを特徴とするものである。The present invention has been completed based on this finding, and comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte mainly composed of LiMn 2 O 4 and graphite, and has a graphite content of 8 to 22.
% By weight.
本発明にかかる非水電解液二次電池の正極活物質とし
て使用されるLiMn2O4は、例えば炭酸リチウムと二酸化
マンガンを空気中や窒素等の不活性ガス雰囲気中等で40
0℃程度に加熱して反応させるか、またはヨウ化リチウ
ムと二酸化マンガンとを同様の雰囲気中等で300℃程度
に加熱し反応させることによって容易に得ることができ
るものである。LiMn 2 O 4 used as a positive electrode active material of the non-aqueous electrolyte secondary battery according to the present invention is, for example, lithium carbonate and manganese dioxide in air or in an inert gas atmosphere such as nitrogen.
It can be easily obtained by heating to about 0 ° C. to cause a reaction, or by heating lithium iodide and manganese dioxide to about 300 ° C. in a similar atmosphere or the like to cause a reaction.
特に、FeKα線を使用してX線回折を行った際に、回
折角46.1゜における回折ピークの半値幅が1.1゜〜2.1゜
であるようなLiMn2O4を正極活物質として使用すれば、
より優れた充放電特性が得られる。In particular, when X-ray diffraction is performed using FeKα rays, if LiMn 2 O 4 having a half width of a diffraction peak at a diffraction angle of 46.1 ° of 1.1 ° to 2.1 ° is used as a positive electrode active material,
Excellent charge / discharge characteristics can be obtained.
前述の正極活物質には、導電剤としてグラファイトが
添加されるが、本発明においてはこのグラファイトの添
加量が重要で、正極活物質であるLiMn2O4とグラファイ
トの合計量中のグラファイトの割合が8〜22重量%とな
るように設定する。In the above-mentioned positive electrode active material, graphite is added as a conductive agent.In the present invention, the amount of graphite added is important, and the proportion of graphite in the total amount of LiMn 2 O 4 and graphite which is the positive electrode active material is Is set to 8 to 22% by weight.
グラファイトの添加量が8重量%未満であると、正極
活物質の放電による体積収縮によって正極活物質粒子と
グラファイト粒子の分離が起こり、容量が劣化する。逆
にグラファイトの添加量が22重量%を越えると実質的に
作用する正極活物質の量が減りやはり容量が劣化する。If the added amount of graphite is less than 8% by weight, the positive electrode active material particles are separated from the graphite particles due to volume shrinkage due to the discharge of the positive electrode active material, and the capacity is deteriorated. Conversely, if the amount of graphite exceeds 22% by weight, the amount of the positive electrode active material that acts substantially decreases, and the capacity also deteriorates.
グラファイトの添加量としては前述の範囲であるが、
特に8.4〜21.1重量%とすることが好ましく、10.5〜15.
8重量%とすることがより好ましい。The amount of graphite added is within the above range,
In particular, it is preferably 8.4 to 21.1% by weight, and 10.5 to 15.
More preferably, it is 8% by weight.
ところで、LiMn2O4を正極出発材料として用いた場
合、充電・放電によるリチウムイオンのデインターカー
レーション及びインターカーレーション反応により、正
極活物質はLixMn2O4として存在し、xの値は下記の反応
式に従って0.05≦x≦2の範囲にて変動する。By the way, when LiMn 2 O 4 is used as a positive electrode starting material, the positive electrode active material exists as Li x Mn 2 O 4 due to the deintercalation and intercalation reaction of lithium ions due to charge and discharge, and the value of x Varies in the range of 0.05 ≦ x ≦ 2 according to the following reaction formula.
ここでxは放電前のxの値を表し、yは反応するリチ
ウムイオン量を表す。 Here, x represents the value of x before discharging, and y represents the amount of lithium ions that react.
放電によりリチウムイオンのインターカーレーション
が起こり、xの値は大きくなり、完全放電状態ではxの
値は平均組成でx=2に達する。The discharge causes intercalation of lithium ions, and the value of x increases. In a fully discharged state, the value of x reaches x = 2 in average composition.
また、充電によりリチウムイオンのデインターカーレ
ーションが起こり、xの値は次第に小さくなり、完全充
電状態ではxの値は平均組成で0.05に達する。In addition, lithium ion deintercalation occurs due to charging, and the value of x gradually decreases. In a fully charged state, the value of x reaches 0.05 as an average composition.
つまり、LiMn2O4を正極出発材料とする電池は、これ
を完全放電すると LiMn2O4+Li→2LiMnO2 となり、再充電を完全に行うと、 LiMnO→Li0.05Mn2O4+1.95Li と進む。In other words, a battery using LiMn 2 O 4 as a positive electrode starting material becomes LiMn 2 O 4 + Li → 2LiMnO 2 when it is completely discharged, and LiMnO → Li 0.05 Mn 2 O 4 + 1.95Li when it is completely recharged. move on.
しかしながら、実使用では完全充電または完全放電さ
れることはまれで、一般的には先の(A)式で平均組成
を表すことができる。However, in actual use, it is rare that the battery is completely charged or completely discharged. In general, the average composition can be represented by the above formula (A).
そこで本発明では、正極活物質の状態にかかわらず、
LiMn2O4に換算した時の重さで先のグラファイトの添加
量を決めることとする。Therefore, in the present invention, regardless of the state of the positive electrode active material,
The amount of graphite to be added is determined by the weight when converted to LiMn 2 O 4 .
一方負極に使用される物質としては、金属リチウム、
リチウム合金(例えばLiAl,liPb,LiSn,LiBi,LiCd等)、
リチウムイオンを結晶中に混入した層間化合物(例えば
TiS2,MoS2等の層間にリチウムをはさんだもの。)、ポ
リアセチレン,ポリアニリン,ポリチオフェン等の導電
性高分子、前述の導電性高分子にリチウムイオンをドー
ピングしたもの、ピッチ,高分子等を600〜14000℃程度
で焼成したもの等のようにリチウムイオンが出入りでき
る程度に結晶性の悪い炭素等が挙げられる。On the other hand, the materials used for the negative electrode include metallic lithium,
Lithium alloys (eg, LiAl, liPb, LiSn, LiBi, LiCd, etc.),
Intercalation compound in which lithium ions are mixed in the crystal (for example,
Lithium sandwiched between layers such as TiS 2 and MoS 2 . ), Conductive polymers such as polyacetylene, polyaniline, and polythiophene; doping of the above-mentioned conductive polymers with lithium ions; Carbon or the like having poor crystallinity so that it can enter and exit can be used.
また、電解液には、リチウム塩を電解質としこれを有
機溶剤に溶解した非水電解液が使用される。ここで有機
溶剤としては、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、1,3−ジオキソラン、
4−メチル−1,3−ジオキソラン等の単独または2種以
上の混合溶剤が使用できる。As the electrolyte, a non-aqueous electrolyte in which a lithium salt is used as an electrolyte and dissolved in an organic solvent is used. Here, as the organic solvent, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran,
2-methyltetrahydrofuran, 1,3-dioxolane,
A single solvent such as 4-methyl-1,3-dioxolane or a mixture of two or more solvents can be used.
電解質としては、LiClO4,LiAsF6,LiPF6,LiBF4,LiB(C
6H5)4等の1種または2種以上を混合したもの等が使
用可能である。As the electrolyte, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5 ) One of four or the like or a mixture of two or more of them can be used.
電池の形状としては、円筒型,コイン型,ボタン型等
従来公知のものにいずれも適用可能である。As the shape of the battery, any of conventionally known ones such as a cylindrical type, a coin type, and a button type can be applied.
LiMn2O4を正極活物質とし導電剤としてグラファイト
を添加するとともに、LiMn2O4とグラファイトの合計量
中のグラファイトの割合が8〜22重量%となるように設
定することにより、正極活物質の放電による体積収縮に
よって生ずる正極活物質粒子とグラファイト粒子の分離
が抑制され、実質的な放電容量が拡大されサイクル特性
が改善される。LiMn 2 O 4 is used as a positive electrode active material, graphite is added as a conductive agent, and the ratio of graphite in the total amount of LiMn 2 O 4 and graphite is set to be 8 to 22% by weight, so that the positive electrode active material is The separation of the positive electrode active material particles and the graphite particles caused by the volume shrinkage due to the discharge is suppressed, the substantial discharge capacity is expanded, and the cycle characteristics are improved.
以下、本発明の具体的な実施例について説明するが、
本発明がこれらの実施例に限定されるものでないことは
言うまでもない。Hereinafter, specific examples of the present invention will be described,
It goes without saying that the present invention is not limited to these examples.
でないことは言うまでもない。It goes without saying that it is not.
実施例1 本例は負極にリチウムを用いた円筒型(いわゆるジェ
リーロールタイプ)の電池に適用したものである。Example 1 This example is applied to a cylindrical (so-called jelly roll type) battery using lithium for the negative electrode.
先ず、市販の二酸化マンガン86.9gに18.5gの炭酸リチ
ウムを加え、これを乳鉢にて充分に混合した。次いでこ
の混合物をアルミナボート上で450℃の温度にて空気中,
1時間の焼成を行った。First, 18.5 g of lithium carbonate was added to 86.9 g of commercially available manganese dioxide, and this was mixed well in a mortar. This mixture is then placed on an alumina boat at a temperature of 450 ° C in air,
The firing was performed for one hour.
冷却後、得られた生成物をX線分析したところ、第1
図に示すようなX線回折チャートを得た。これをASTMカ
ードにおいて化学式LiMn2O4で示される物質のX線回折
チャートと比較したところ、完全に合致した。After cooling, the obtained product was analyzed by X-ray.
An X-ray diffraction chart as shown in the figure was obtained. When this was compared with the X-ray diffraction chart of the substance represented by the chemical formula LiMn 2 O 4 on an ASTM card, it was completely matched.
そこで次に、得られたLiMn2O4と導電剤であるグラフ
ァイトを用い、第2図に示すような円筒型の電池を作成
した。Then, using the obtained LiMn 2 O 4 and graphite as a conductive agent, a cylindrical battery as shown in FIG. 2 was prepared.
すなわち、前述の手法で得られたLiMn2O4に導電剤と
してグラファイト(ロンザ社製KS−15,平均粒子径7μ
m)を第1表に示す割合で加えて混合し、さらに結合剤
としてポリフッ化ビニリデン,分散剤としてN−メチル
−2−ピロリドンを加えて湿式混合し、正極ペーストを
作製した。That is, graphite (KS-15 manufactured by Lonza, average particle size of 7 μm) was added to LiMn 2 O 4 obtained by the above-mentioned method as a conductive agent.
m) was added and mixed in the proportions shown in Table 1, and polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone as a dispersant were added and wet-mixed to prepare a positive electrode paste.
次に、この正極ペーストを長さ470mm,幅26mm,厚さ0.0
3mmのアルミニウム集電体両面に均一に塗布し、厚さ0.1
5m,重量5.1gの正極板(1)を作製した。Next, the positive electrode paste was 470 mm long, 26 mm wide, and 0.0 mm thick.
3mm aluminum current collector
A positive electrode plate (1) weighing 5 g and weighing 5.1 g was produced.
一方、長さ470mm,幅26mm,厚さ0.07mmのリチウム箔を
負極(2)とし、先の正極板(1)とこの負極板(2)
とを厚さ0.05mmのポリプロピレン製のセパレータ(3)
を介してロール状に巻き取り、両端面に絶縁板(4)を
配置して内径15.3mmのニッケルメッキを施した鉄製缶
(5)に収納した。ここで、前記鉄製缶(5)の内周面
には負極(2)が接することになり、したがって鉄製缶
(5)は負極缶に相当することになる。On the other hand, a lithium foil having a length of 470 mm, a width of 26 mm and a thickness of 0.07 mm is used as a negative electrode (2), and the positive electrode plate (1) and the negative electrode plate (2) are used.
And a 0.05 mm thick polypropylene separator (3)
, And placed in an iron can (5) plated with nickel and having an inner diameter of 15.3 mm with an insulating plate (4) disposed on both end surfaces. Here, the negative electrode (2) comes into contact with the inner peripheral surface of the iron can (5), and thus the iron can (5) corresponds to the negative electrode can.
次いで、LiPF6を1モル/の割合で溶解した炭酸プ
ロピレンと1,2−ジメトキシエタンの混合電解液を前記
鉄製缶(5)内に含浸せしめ、ガスケット(6)を介し
てやはりニッケルメッキを施した鉄よりなる蓋体(7)
で封口した。なお、この蓋体(7)の内面には、正極板
(1)と接続されるリード(8)が溶接され、したがっ
てこの蓋体(7)が電池の正極缶となっている。Next, a mixed electrolytic solution of propylene carbonate and 1,2-dimethoxyethane in which LiPF 6 was dissolved at a rate of 1 mol / l was impregnated in the iron can (5), and nickel plating was performed again via a gasket (6). Cover made of damaged iron (7)
And sealed. A lead (8) connected to the positive electrode plate (1) is welded to the inner surface of the lid (7), so that the lid (7) serves as a positive electrode can of the battery.
以上により、外径15.9mm,高さ33mmの円筒型電池A〜
電池Hを組み立てた。As described above, cylindrical batteries A with an outer diameter of 15.9 mm and a height of 33 mm
Battery H was assembled.
これら電池A〜電池Hについて、13Ωの定抵抗による
終止電圧2.0Vまでの放電を行った後、3.9V終止電圧で60
mA,9時間の充電を行い、これを1サイクルとしてサイク
ル寿命テストを実施した。The batteries A to H were discharged to a final voltage of 2.0 V with a constant resistance of 13 Ω, and then discharged at a final voltage of 3.9 V.
The battery was charged for 9 hours at mA, and the cycle was tested as a cycle life test.
第1表に20サイクル目における容量の劣化率を示す。
また、第3図にグラファイトの添加量と放電容量の関係
を示す。Table 1 shows the capacity deterioration rate at the 20th cycle.
FIG. 3 shows the relationship between the amount of graphite added and the discharge capacity.
なお、容量劣化率は次式に従って求めた。 The capacity deterioration rate was obtained according to the following equation.
その結果、まず第1表からは、グラファイトを10.5重
量%以上添加した電池D〜電池Hで容量劣化率が5%以
下と少なく、優れたサイクル特性を示すことが判明し
た。これに対して、グラファイトを4.2重量%あるいは
6.3重量%添加した電池A,電池Bでは、10%以上の容量
劣化率を示している。 As a result, Table 1 first revealed that the batteries D to H to which graphite was added at 10.5% by weight or more had a small capacity deterioration rate of 5% or less and exhibited excellent cycle characteristics. On the other hand, 4.2% by weight of graphite or
Batteries A and B to which 6.3% by weight was added show a capacity deterioration rate of 10% or more.
この容量劣化が生ずる原因は、LiMn2O4の放電による
体積収縮により活物質粒子とグラファイト粒子の分離が
生じ集電効果が低下するためであり、グラファイト添加
量が少ないとこの影響が大きく現れてくることによるも
のと考えられる。The cause of this capacity deterioration is that the volumetric shrinkage due to the discharge of LiMn 2 O 4 causes the separation of the active material particles and the graphite particles and the current collection effect decreases, and this effect appears significantly when the amount of added graphite is small. This is probably due to
一方、前記第1表及び第3図から、グラファイトを8
〜22重量%とした電池では20サイクル目でも400mAH以
上、特にグラファイトを10.5〜15.8重量%添加した電池
D,電池E,電池Fでは450mAH以上と非常に高い放電容量を
有していることが確認された。これらサイクル特性や放
電容量は、この種の電池の性能としては非常に優れたも
のであると言える。On the other hand, from Table 1 and FIG.
Batteries with up to 22% by weight, even at the 20th cycle, 400mAH or more, especially batteries with 10.5-15.8% by weight of graphite added
It was confirmed that D, Battery E, and Battery F had extremely high discharge capacities of 450 mAH or more. It can be said that these cycle characteristics and discharge capacity are extremely excellent as the performance of this type of battery.
なお、グラファイト26.4重量%添加した電池Hについ
ては、容量劣化率は少ないものの、正極板(1)中の活
物質含有量が少なくなり、放電容量が減少して実用上好
ましくないものとなっている。In the battery H to which 26.4% by weight of graphite was added, although the capacity deterioration rate was small, the content of the active material in the positive electrode plate (1) was small, and the discharge capacity was reduced, which was not practically preferable. .
実施例2 本例は、第4図に示すような負極にLi−Al合金を用い
たコイン型の電池に適用したものである。Example 2 This example is applied to a coin-type battery using a Li-Al alloy for the negative electrode as shown in FIG.
先ず、先の実施例1と同様の手法により合成したLiMn
2O4に導電剤としてグラファイト(ロンザ社製KS−15,平
均粒子径7μm)を第2表に示す割合で加えて混合し、
さらに結合剤としてポリフッ化ビニリデン,分散剤とし
てN−メチル−2−ピロリドンを加えて湿式混合し、正
極ペーストを作製した。First, LiMn synthesized by the same method as in the first embodiment
Graphite (KS-15, manufactured by Lonza, average particle diameter 7 μm) was added to 2 O 4 as a conductive agent at the ratio shown in Table 2 and mixed.
Further, polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone as a dispersant were added and wet-mixed to prepare a positive electrode paste.
次に、この正極ペーストを厚さ0.03mmのアルミニウム
集電体両面に均一に塗布し、厚さ0.18mmの正極板を作製
した後、直径15.5mmに打抜き重量0.096gの正極(11)と
した。Next, this positive electrode paste was uniformly applied to both surfaces of an aluminum current collector having a thickness of 0.03 mm to form a positive electrode plate having a thickness of 0.18 mm, and then punched into a diameter of 15.5 mm to obtain a positive electrode (11) having a weight of 0.096 g. .
一方、市販の厚さ0.3mmのアルミニウム板を直径15.5m
mに打抜き、この打抜いたアルミニウム板をアノードカ
ップ(12)にスポット溶接し、さらにその上に直径15m
m,厚さ0.18mmのリチウム箔を打抜き圧着して負極(13)
を作製した。On the other hand, a commercially available aluminum plate with a thickness of 0.3 mm is 15.5 m in diameter.
m, and the punched aluminum plate is spot-welded to the anode cup (12), and a 15m diameter
m, negative electrode (13)
Was prepared.
この負極(13)上にセパレータ(14)を置き、プラス
チックのガスケット(15)を嵌め込み、電解液として1
モル/の割合でLiPF6と溶解した炭酸プロピレンと1,2
−ジメトキシエタンの混合電解液を注入し、さらに先の
正極(11)を入れてカソード缶(16)を被せてシール
し、外径20mm,厚さ1.2mmのコイン型電池I〜電池Pをそ
れぞれ組み立てた。A separator (14) is placed on the negative electrode (13), and a plastic gasket (15) is fitted.
Propylene carbonate dissolved in LiPF 6 and 1,2
Injecting a mixed electrolyte of dimethoxyethane, further inserting the positive electrode (11), covering with a cathode can (16) and sealing the same, coin type batteries I to P having an outer diameter of 20 mm and a thickness of 1.2 mm were respectively obtained. Assembled.
これら電池I〜電池Pについて、1.5kΩの定抵抗によ
る終止電圧2.0Vまでの放電を行った後、3.1V終止電圧で
0.5mA,21時間の充電を行い、これを1サイクルとしてサ
イクル寿命テストを実施した。After discharging the batteries I to P to a cutoff voltage of 2.0 V with a constant resistance of 1.5 kΩ, the batteries were charged at a cutoff voltage of 3.1 V.
The battery was charged at 0.5 mA for 21 hours, and a cycle life test was performed using this as one cycle.
第2表に20サイクル目における容量の劣化率を示す。
また、第5図にグラファイトの添加量と放電容量の関係
を示す。なお、容量劣化率は先の実施例1同様に求め
た。Table 2 shows the capacity deterioration rate at the 20th cycle.
FIG. 5 shows the relationship between the added amount of graphite and the discharge capacity. The capacity deterioration rate was obtained in the same manner as in the first embodiment.
この第2表より、コイン型の電池においてもグラファ
イトを特に10.5重量%以上添加した電池L〜電池Pでは
容量劣化率が少なく優れたサイクル特性を有しているこ
とがわかる。 From Table 2, it can be seen that even in the coin-type batteries, the batteries L to P to which graphite was particularly added at 10.5% by weight or more had a small capacity deterioration rate and had excellent cycle characteristics.
また、第2表及び第5図より、グラファイト添加量を
8重量%以上とすることで放電容量を大きくすることが
でき、特にグラファイト添加量10.5〜15.8重量%とした
電池L,電池M,電池Nでは20サイクル目でも8mAH以上の放
電容量が確保されることが判明した。In addition, from Table 2 and FIG. 5, the discharge capacity can be increased by setting the graphite addition amount to 8% by weight or more, and in particular, the batteries L, M, and the battery having the graphite addition amount of 10.5 to 15.8% by weight can be obtained. In N, it was found that a discharge capacity of 8 mAH or more was secured even in the 20th cycle.
以上の説明からも明らかなように、本発明の非水電解
液二次電池においては、LiMn2O4を正極出発材料とし、
さらに導電剤として使用するグラファイトの添加量を所
定の値に規制しているので、正極活物質の放電による体
積収縮によって生ずる正極活物質粒子とグラファイト粒
子の分離に起因する容量劣化を抑えることができ、優れ
たサイクル特性と高放電容量を有する二次電池とするこ
とができ、その工業的価値は大である。As is clear from the above description, in the nonaqueous electrolyte secondary battery of the present invention, LiMn 2 O 4 is used as a positive electrode starting material,
Further, since the amount of graphite used as a conductive agent is regulated to a predetermined value, it is possible to suppress the capacity deterioration due to the separation of the positive electrode active material particles and the graphite particles caused by the volume shrinkage due to the discharge of the positive electrode active material. A secondary battery having excellent cycle characteristics and high discharge capacity can be obtained, and its industrial value is great.
第1図は合成したLiMn2O4のX線回折結果を示す特性図
である。 第2図は円筒型電池の構成例を示す一部破断側面図であ
り、第3図はかかる構成の円筒型電池におけるグラファ
イト添加量と放電容量の関係を示す特性図である。 第4図はコイン型電池の構成例を示す概略断面図であ
り、第5図はかかる構成のコイン型電池におけるグラフ
ァイト添加量と放電容量の関係を示す特性図である。 1……正極板 2……負極 11……正極 13……負極 3,14……セパレータFIG. 1 is a characteristic diagram showing an X-ray diffraction result of synthesized LiMn 2 O 4 . FIG. 2 is a partially cutaway side view showing an example of the configuration of a cylindrical battery, and FIG. 3 is a characteristic diagram showing the relationship between the amount of graphite added and the discharge capacity in the cylindrical battery having such a configuration. FIG. 4 is a schematic sectional view showing a configuration example of a coin-type battery, and FIG. 5 is a characteristic diagram showing the relationship between the amount of graphite added and the discharge capacity in the coin-type battery having such a configuration. 1 Positive electrode plate 2 Negative electrode 11 Positive electrode 13 Negative electrode 3, 14 Separator
Claims (1)
極と負極と非水電解液よりなり、 上記LiMn2O4とグラファイトの合計量中のグラファイト
の割合が8〜22重量%であることを特徴とする非水電解
液二次電池。1. A positive electrode mainly composed of LiMn 2 O 4 and graphite, a negative electrode, and a non-aqueous electrolyte, wherein the proportion of graphite in the total amount of LiMn 2 O 4 and graphite is 8 to 22% by weight. Non-aqueous electrolyte secondary battery characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62261971A JP2611265B2 (en) | 1987-10-17 | 1987-10-17 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62261971A JP2611265B2 (en) | 1987-10-17 | 1987-10-17 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01105459A JPH01105459A (en) | 1989-04-21 |
JP2611265B2 true JP2611265B2 (en) | 1997-05-21 |
Family
ID=17369202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62261971A Expired - Lifetime JP2611265B2 (en) | 1987-10-17 | 1987-10-17 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2611265B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4529288B2 (en) | 1998-07-06 | 2010-08-25 | Tdk株式会社 | Nonaqueous electrolyte secondary battery electrode |
US8709648B2 (en) | 2002-06-04 | 2014-04-29 | Ener1, Inc. | Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material |
AU2003241997A1 (en) * | 2002-06-04 | 2003-12-19 | Itochu Corporation | Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580271A (en) * | 1978-12-12 | 1980-06-17 | Matsushita Electric Ind Co Ltd | Organic electrolyte cell |
JPS5682574A (en) * | 1979-11-06 | 1981-07-06 | South African Inventions | Method of manufacturing cathode adapted for secondary electrochemical battery |
US4507371A (en) * | 1982-06-02 | 1985-03-26 | South African Inventions Development Corporation | Solid state cell wherein an anode, solid electrolyte and cathode each comprise a cubic-close-packed framework structure |
JPS6290863A (en) * | 1985-05-10 | 1987-04-25 | Asahi Chem Ind Co Ltd | Secondary cell |
JPS62126555A (en) * | 1985-11-28 | 1987-06-08 | Toshiba Battery Co Ltd | Manufacture of positive electrode for nonaqueous solvent battery |
JPH0746607B2 (en) * | 1987-01-29 | 1995-05-17 | 三洋電機株式会社 | Non-aqueous secondary battery |
JPH0748377B2 (en) * | 1987-03-05 | 1995-05-24 | 三洋電機株式会社 | Non-aqueous secondary battery |
JPH0724220B2 (en) * | 1987-03-10 | 1995-03-15 | 三洋電機株式会社 | Non-aqueous secondary battery |
-
1987
- 1987-10-17 JP JP62261971A patent/JP2611265B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01105459A (en) | 1989-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8697288B2 (en) | High energy lithium ion secondary batteries | |
KR100975773B1 (en) | Positive electrode and non-aqueous electrolyte cell | |
JP2997741B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
US6541157B1 (en) | Nonaqueous electrolyte battery having large capacity and long cycle life | |
JP2000058122A (en) | Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery | |
JP2000348722A (en) | Nonaqueous electrolyte battery | |
JP3050885B2 (en) | Non-aqueous solvent secondary battery and method of manufacturing the same | |
JP2000243449A (en) | Nonaqueous electrolyte secondary battery | |
JPH06275265A (en) | Nonaqueous electrolyte secondary battery | |
JPH06275268A (en) | Nonaqueous electrolyte secondary battery | |
JP2611265B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2550990B2 (en) | Non-aqueous electrolyte battery | |
JP2003229179A (en) | Nonaqueous electrolyte secondary battery | |
JP2600214B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002117903A (en) | Nonaqueous electrolyte battery | |
US7172836B2 (en) | Nonaqueous electrolyte battery and method for manufacturing it, and positive active material, and method for producing it | |
JPH0821431B2 (en) | Organic electrolyte secondary battery | |
JP2006024417A (en) | Manufacturing method of battery | |
JPH05343101A (en) | Non-aqueous electrolyte secondary battery and manufacture thereof | |
JP3081981B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JP3179459B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH06275269A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JP2952367B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3173425B2 (en) | Organic electrolyte secondary battery | |
JP2638849B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 11 |