JP2604114Y2 - Radiation detector - Google Patents
Radiation detectorInfo
- Publication number
- JP2604114Y2 JP2604114Y2 JP1993063992U JP6399293U JP2604114Y2 JP 2604114 Y2 JP2604114 Y2 JP 2604114Y2 JP 1993063992 U JP1993063992 U JP 1993063992U JP 6399293 U JP6399293 U JP 6399293U JP 2604114 Y2 JP2604114 Y2 JP 2604114Y2
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- electrode
- characteristic
- generated
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本考案は、医療用放射線受像装
置、被破壊検査用放射線検査装置等に用いられる放射線
検出器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detector used in a medical radiation image receiving apparatus, a radiation inspection apparatus for a destructive inspection, and the like.
【0002】[0002]
【従来の技術】一般に、放射線検出器は、図5に示され
るように、例えばCdTe結晶、GaAs結晶等の化合
物半導体基板51の両面側に電極52、53を備えてお
り、その電極52、53間に所定レベルの電圧を印加す
るよう構成されている。そして、放射線γの入射により
発生した誘導電荷qによって生じる電流やパルスを検出
することで放射線の入射量を検知することができる。そ
して、従来においては被検体の一次元または二次元撮影
等を行うべく、図6に示すように化合物半導体基板64
の一方の面に多数の信号取出電極・・62n-1,62n,6
2n+1 ・・を形成することで多数の検出チャンネルをア
レイ化した構成が採用されている。2. Description of the Related Art Generally, a radiation detector is provided with electrodes 52 and 53 on both sides of a compound semiconductor substrate 51 such as a CdTe crystal or a GaAs crystal, as shown in FIG. It is configured to apply a predetermined level of voltage in between. Then, by detecting a current or a pulse generated by the induced charge q generated by the incidence of the radiation γ, the incident amount of the radiation can be detected. Conventionally, in order to perform one-dimensional or two-dimensional imaging of a subject, as shown in FIG.
A large number of signal extraction electrodes 62n-1, 62n, 6
A configuration in which a large number of detection channels are arrayed by forming 2n + 1.
【0003】[0003]
【考案が解決しようとする課題】しかしながら、このよ
うに多数の検出チャンネルをアレイ化した構成では、例
えば、入射放射線65により検出領域64n で発生した
特性X線66が隣接する検出領域64n-1 へエスケープ
することで、この隣接する検出領域64n-1 に誘導電荷
qを発生させるため、隣接する検出領域からエスケープ
した特性X線による入射放射線の検出誤差が発生して空
間分解能を低下させるという問題があった。However, in such a configuration in which a large number of detection channels are arrayed, for example, the characteristic X-ray 66 generated in the detection region 64n by the incident radiation 65 is transmitted to the adjacent detection region 64n-1. By escaping, an induced charge q is generated in the adjacent detection region 64n-1. Therefore, there is a problem that a detection error of incident radiation due to the characteristic X-rays escaped from the adjacent detection region occurs to lower the spatial resolution. there were.
【0004】そこで、本考案はこれらの問題点を解決す
るため、簡単な構成で特性X線の隣接する検出領域への
エスケープを防止し、より精度の高い入射放射線の濃度
分布の測定が可能な放射線検出器を提供することを目的
とする。In order to solve these problems, the present invention prevents characteristic X-rays from escaping to an adjacent detection region with a simple configuration, and enables more accurate measurement of the concentration distribution of incident radiation. It is an object to provide a radiation detector.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
に本考案の放射線検出器は、化合物半導体基板の両面に
電極を形成し、両電極間に所定電圧を印加することによ
り入射放射線を検出する放射線検出器において、前記化
合物半導体基板の放射線入射側とは反対の面に信号取出
電極と特性X線の平均自由工程程度の幅を持ったダミー
電極とを交互に複数個形成したことを特徴とする。In order to solve the above problems, a radiation detector according to the present invention detects electrodes by forming electrodes on both surfaces of a compound semiconductor substrate and applying a predetermined voltage between both electrodes. In the radiation detector, a plurality of signal extraction electrodes and dummy electrodes having a width of about the mean free path of characteristic X-rays are alternately formed on the surface of the compound semiconductor substrate opposite to the radiation incident side. And
【0006】[0006]
【作用】本考案の作用を図2に基づいて説明する。放射
線5が化合物半導体基板4に入射すると、検出領域4n
で誘導電荷qが発生すると共に特性X線6を発生させ、
発生した特性X線6は隣接する検出領域4n-1 へ向か
う。このとき、ダミー電極・・3n-1,3n ・・が特性X
線の平均自由行程程度の幅を持って形成されているた
め、特性X線6は隣接する検出領域4n-1 へ到達するこ
となく干渉領域4’n-1 で誘導電荷q’を発生させる。
発生した誘導電荷はダミー電極3n-1 に引き寄せられる
ため、隣接する検出領域4n 等で発生した特性X線6に
よる検出誤差がほとんどなくなり入射放射線の濃度分布
の正確な測定が可能となる。The operation of the present invention will be described with reference to FIG. When the radiation 5 enters the compound semiconductor substrate 4, the detection region 4n
Generates an induced charge q and a characteristic X-ray 6,
The generated characteristic X-ray 6 travels to the adjacent detection area 4n-1. At this time, the dummy electrodes... 3n-1, 3n.
Since the characteristic X-ray 6 is formed with a width about the mean free path of the line, the characteristic X-ray 6 generates the induced charge q 'in the interference region 4'n-1 without reaching the adjacent detection region 4n-1.
The generated induced charges are attracted to the dummy electrode 3n-1, so that there is almost no detection error due to the characteristic X-rays 6 generated in the adjacent detection areas 4n and the like, and accurate measurement of the concentration distribution of incident radiation becomes possible.
【0007】[0007]
【実施例】本考案の実施例を、図1〜図4に基づいて説
明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.
【0008】図1は、本考案を1次元アレイ状の放射線
検出器に応用した場合を示す一例であり、図1aはその
正面図、また図1bは信号取出電極側から見た平面図で
ある。同図において、1はバイアス電極で化合物半導体
基板4の放射線の入射面側にその面全体を覆うように形
成されている。2は信号取出電極で、前記バイアス電極
1と対向する面に多数形成されており、それぞれの電極
で入射放射線5により発生した誘導電荷を検出する。3
は前記多数形成された信号取出電極2と交互に配置して
形成されたダミー電極で、それぞれ特性X線の平均自由
行程程度の幅を持って形成されており、化合物半導体基
板4で発生した特性X線により生じる誘導電荷を吸収す
る。なお、上述したバイアス電極1と信号取出電極2と
の間にはバイアス電極1が陰極となるよう所定の電圧が
印加されており、またダミー電極3は共通のダミー電位
供給用電極6に接続され、発生した誘導電荷を有効に吸
収できるよう所定の電位に保持されている。FIG. 1 shows an example in which the present invention is applied to a one-dimensional array of radiation detectors. FIG. 1A is a front view thereof, and FIG. 1B is a plan view seen from a signal extraction electrode side. . In the figure, reference numeral 1 denotes a bias electrode which is formed on the radiation incident surface side of the compound semiconductor substrate 4 so as to cover the entire surface. Reference numeral 2 denotes a signal extraction electrode, which is formed in a large number on a surface facing the bias electrode 1, and detects an induced charge generated by the incident radiation 5 at each electrode. 3
Are dummy electrodes formed by alternately arranging the large number of signal extraction electrodes 2, each having a width of about the mean free path of characteristic X-rays, and having characteristics generated in the compound semiconductor substrate 4. Absorbs induced charge generated by X-rays. A predetermined voltage is applied between the bias electrode 1 and the signal extraction electrode 2 so that the bias electrode 1 serves as a cathode, and the dummy electrode 3 is connected to a common dummy potential supply electrode 6. , And is maintained at a predetermined potential so that the generated induced charge can be effectively absorbed.
【0009】図2は1次元アレイ状の放射線検出器の正
面図を示す図1aの詳細図である。同図において、化合
物半導体基板4はそれぞれ信号取出電極・・2n-1,2n,
2n+1 ・・の位置に応じた放射線の検出領域・・4n-1,
4n,4n+1 ・・、及びダミー電極・・3n-1,3n,3n+1
・・の位置に応じた干渉領域・・4’n-1,4’n,4’n+
1 ・・の領域に区分される。そして、化合物半導体基板
4に入射した放射線5は、例えば検出領域4n で誘導電
荷qを発生させると共に特性X線6を発生させ、発生し
た特性X線6は隣接する検出領域4n-1 へ向かう。この
とき、ダミー電極・・3n-1,3n,3n+1 ・・は特性X線
の平均自由行程程度の幅を持って形成されているため、
検出領域4n で発生した特性X線6は隣接する検出領域
4n-1 に到達することなく干渉領域4’n-1 で誘導電荷
q’を発生させる。発生した誘導電荷はダミー電極3n-
1 に引き寄せられ吸収されるため、隣接する検出領域4
n等で発生した特性X線による誘導電荷の発生を防止で
き検出誤差のほとんどない正確な入射放射線の濃度分布
の測定が可能となる。FIG. 2 is a detailed view of FIG. 1a showing a front view of a one-dimensional array of radiation detectors. In the figure, the compound semiconductor substrate 4 has signal extraction electrodes 2n-1, 2n,
2n + 1 ··· Radiation detection area according to position ··· 4n-1,
4n, 4n + 1... And dummy electrodes 3n-1, 3n, 3n + 1
..Interference area according to the position of 4'n-1, 4'n, 4'n +
It is divided into 1 ... The radiation 5 incident on the compound semiconductor substrate 4 generates, for example, an induced charge q in the detection region 4n and also generates a characteristic X-ray 6, and the generated characteristic X-ray 6 travels to the adjacent detection region 4n-1. At this time, since the dummy electrodes 3n-1, 3n, 3n + 1... Are formed with a width about the mean free path of the characteristic X-ray,
The characteristic X-ray 6 generated in the detection area 4n generates the induced charge q 'in the interference area 4'n-1 without reaching the adjacent detection area 4n-1. The induced charge generated is the dummy electrode 3n-
1 and is absorbed by the
Generation of induced charges due to characteristic X-rays generated at n or the like can be prevented, and accurate measurement of the concentration distribution of incident radiation with almost no detection error becomes possible.
【0010】ここで、化合物半導体基板4にCdTe結
晶を用いた場合では約30keV、GaAs結晶を用い
た場合では約10keV以上のX線が入射した時にそれ
ぞれ約30keV、約10keVの特性X線が発生し、
その平均自由行程はCdTeで約80μm、GaAsで
約50μmである。従って、ダミー電極3の電極幅は化
合物半導体基板4に用いる材料等に応じて定まる特性X
線の平均自由行程に基づき適宜定めればよい。Here, when a CdTe crystal is used for the compound semiconductor substrate 4, characteristic X-rays of about 30 keV and about 10 keV are generated when X-rays of about 30 keV or more are incident when a GaAs crystal is used. And
The mean free path is about 80 μm for CdTe and about 50 μm for GaAs. Accordingly, the electrode width of the dummy electrode 3 has a characteristic X determined by the material used for the compound semiconductor substrate 4 and the like.
What is necessary is just to determine suitably based on the mean free path of a line.
【0011】なお、上述したように、入射放射線5の入
射側にバイアス電極1を、その対向側に信号取出電極2
及びダミー電極3を設けることで、信号取出電極2から
バイアス電極1に向かう電界は矢印7のようになる。こ
のとき、誘導電荷のほとんどが入射放射線5の入射側で
あるバイアス電極1の近傍付近で発生するため、入射放
射線5の入射側に信号取出電極2及びダミー電極3を設
ける場合に比べて検出領域4nと干渉領域3n-1 入射放
射線5の入射側であるバイアス電極1の近傍で発生した
誘導電荷をより確実に検知することが可能となる。As described above, the bias electrode 1 is provided on the incident side of the incident radiation 5 and the signal extraction electrode 2 is provided on the opposite side thereof.
By providing the dummy electrode 3, the electric field from the signal extraction electrode 2 toward the bias electrode 1 becomes as indicated by an arrow 7. At this time, since most of the induced charges are generated in the vicinity of the bias electrode 1 on the incident side of the incident radiation 5, the detection area is smaller than when the signal extracting electrode 2 and the dummy electrode 3 are provided on the incident side of the incident radiation 5. 4n and the interference region 3n-1 It is possible to more reliably detect the induced charges generated in the vicinity of the bias electrode 1, which is the incident side of the incident radiation 5.
【0012】図3は、図1、図2で示した1次元アレイ
状の放射線検出器を実際に使用する場合の模式図を示し
ている。放射線検出器は配線基板7にバンプや接着剤等
を用いて接続され、複数の信号取出電極2から得られる
検出信号は、アンプアレイ7aで増幅されると共に、コ
ンパレータアレイ7bでパルス化されカウンターアレイ
7cにて計数される。この時、それぞれのダミー電極3
はダミー電位供給用電極6を介して、0電位、または、
アンプアレイ7aの入力ゲートと等電位、または、その
他の適当な電位に固定される。FIG. 3 is a schematic diagram showing a case where the one-dimensional array radiation detector shown in FIGS. 1 and 2 is actually used. The radiation detector is connected to the wiring board 7 by using a bump, an adhesive, or the like, and detection signals obtained from the plurality of signal extraction electrodes 2 are amplified by the amplifier array 7a and pulsed by the comparator array 7b to be counter-arrayed. It is counted at 7c. At this time, each dummy electrode 3
Is 0 potential via the dummy potential supply electrode 6 or
It is fixed to the same potential as the input gate of the amplifier array 7a, or to another appropriate potential.
【0013】図4は本考案を2次元のアレイ状放射線検
出器に応用した場合の一例を示す変形実施例で、信号取
出電極42の方向から見た平面図である。同図に示され
るように平面状の化合物半導体基板44に略正方形の信
号取出電極42が所定間隔で2次元状に形成されてお
り、ダミー電極43はダミー電位供給用電極46を共通
電極として信号取出電極42を囲むように格子状に形成
されている。これにより、信号取出電極42のそれぞれ
に対応する化合物半導体基板4の検出領域で発生した特
性X線は、上述した一次元アレイ状に形成された放射線
検出器の場合と同様に、それぞれのダミー電極3に対応
する干渉領域で誘導電荷を発生させ、発生した誘導電荷
はそれぞれのダミー電極3に吸収される。FIG. 4 is a modified embodiment showing an example in which the present invention is applied to a two-dimensional array radiation detector, and is a plan view seen from the direction of the signal extraction electrode 42. As shown in the figure, substantially square signal extraction electrodes 42 are formed two-dimensionally at predetermined intervals on a planar compound semiconductor substrate 44, and the dummy electrodes 43 use a dummy potential supply electrode 46 as a common electrode. It is formed in a lattice shape so as to surround the extraction electrode 42. As a result, the characteristic X-rays generated in the detection region of the compound semiconductor substrate 4 corresponding to each of the signal extraction electrodes 42 are applied to the respective dummy electrodes as in the case of the above-described radiation detector formed in a one-dimensional array. Induced charges are generated in the interference region corresponding to 3, and the generated induced charges are absorbed by each dummy electrode 3.
【0014】[0014]
【考案の効果】本考案によれば、化合物半導体基板の一
方の面に多数形成した信号取出電極間に特性X線の平均
自由行程程度の幅を持ったダミー電極を交互に形成する
構成を採用したため、隣接した電極部分で生じた特性X
線のエスケープを防止できると共に、エスケープした特
性X線によって生じた誘導電荷をこのダミー電極によっ
て吸収できる。このため、特性X線に入射放射線の検出
誤差を大幅に削減でき、より簡単な構成で高精度な入射
放射線の濃度分布の測定が可能となる。According to the present invention, a configuration is adopted in which dummy electrodes having a width of about the mean free path of characteristic X-rays are alternately formed between a large number of signal extraction electrodes formed on one surface of a compound semiconductor substrate. As a result, the characteristic X generated at the adjacent electrode portion
The escape of the line can be prevented, and the induced charge generated by the escaped characteristic X-ray can be absorbed by the dummy electrode. For this reason, the detection error of the incident radiation in the characteristic X-ray can be significantly reduced, and the concentration distribution of the incident radiation can be measured with a simpler configuration and with high accuracy.
【図1】本考案を一次元アレイ状の放射線検出器に適用
した場合を示す図である。FIG. 1 is a diagram showing a case where the present invention is applied to a one-dimensional array of radiation detectors.
【図2】本考案の作用を示す図である。FIG. 2 is a diagram showing the operation of the present invention.
【図3】本考案を実際に使用する場合の模式図を示す図
である。FIG. 3 is a schematic view showing a case where the present invention is actually used.
【図4】本考案の変形実施例を示す図である。FIG. 4 is a view showing a modified embodiment of the present invention.
【図5】従来の放射線検出器を示す図である。FIG. 5 is a diagram showing a conventional radiation detector.
【図6】従来の放射線検出器を示す図である。FIG. 6 is a diagram showing a conventional radiation detector.
1・・・バイアス電極 2・・・信号取出電極 3・・・ダミー電極 4・・・化合物半導体基板 5・・・入射放射線 REFERENCE SIGNS LIST 1 bias electrode 2 signal extraction electrode 3 dummy electrode 4 compound semiconductor substrate 5 incident radiation
Claims (1)
両電極間に所定電圧を印加することにより入射放射線を
検出する放射線検出器において、前記化合物半導体基板
の放射線入射側とは反対の面に信号取出電極と特性X線
の平均自由工程程度の幅を持ったダミー電極とを交互に
複数個形成したことを特徴とする放射線検出器。An electrode is formed on both surfaces of a compound semiconductor substrate,
In a radiation detector that detects incident radiation by applying a predetermined voltage between both electrodes, a width of about an average free path of a signal extraction electrode and a characteristic X-ray is formed on a surface of the compound semiconductor substrate opposite to a radiation incident side. A radiation detector, wherein a plurality of dummy electrodes are alternately formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1993063992U JP2604114Y2 (en) | 1993-11-30 | 1993-11-30 | Radiation detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1993063992U JP2604114Y2 (en) | 1993-11-30 | 1993-11-30 | Radiation detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0732968U JPH0732968U (en) | 1995-06-16 |
JP2604114Y2 true JP2604114Y2 (en) | 2000-04-17 |
Family
ID=13245287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1993063992U Expired - Fee Related JP2604114Y2 (en) | 1993-11-30 | 1993-11-30 | Radiation detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2604114Y2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2318411B (en) * | 1996-10-15 | 1999-03-10 | Simage Oy | Imaging device for imaging radiation |
US6028313A (en) * | 1997-12-31 | 2000-02-22 | Mcdaniel; David L. | Direct conversion photon detector |
JP2001257335A (en) * | 2000-01-07 | 2001-09-21 | Nippon Sheet Glass Co Ltd | Photodetector array |
JP4799746B2 (en) * | 2001-03-02 | 2011-10-26 | 浜松ホトニクス株式会社 | Radiation detector module |
JP4594855B2 (en) * | 2005-11-30 | 2010-12-08 | 株式会社日立製作所 | Nuclear medicine diagnostic apparatus, radiation camera, and radiation detection method in nuclear medicine diagnostic apparatus |
-
1993
- 1993-11-30 JP JP1993063992U patent/JP2604114Y2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0732968U (en) | 1995-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6765213B2 (en) | Gamma-ray detector for coincidence detection | |
EP1116047B1 (en) | Pixelated photon detector | |
US6847040B2 (en) | Sensor arrangement and method in digital X-ray imaging | |
JP5162085B2 (en) | Solid X-ray detector with improved spatial resolution | |
US11002864B2 (en) | Depth correction in pixellated detectors of ionizing radiation | |
US7518118B2 (en) | Depth sensing in CdZnTe pixel detectors | |
CN103097913B (en) | There is the radiation detector of steering electrode | |
JP2009534671A (en) | Radiation detector and polarization-reduced detection method | |
US6365900B1 (en) | Sensing head and collimator for gamma-camera | |
JP2604114Y2 (en) | Radiation detector | |
JP4464998B2 (en) | Semiconductor detector module, and radiation detection apparatus or nuclear medicine diagnostic apparatus using the semiconductor detector module | |
US7705318B2 (en) | Device and method for measuring the energy and position of an incident ionising particle in a detector | |
US11779296B2 (en) | Photon counting detector based edge reference detector design and calibration method for small pixelated photon counting CT apparatus | |
JPH0627852B2 (en) | Radiation detector | |
US5111052A (en) | Radiation sensor and a radiation detecting apparatus using the same | |
RU2730045C2 (en) | Hybrid pixel detector of ionizing radiations | |
EP1717603A1 (en) | PIixelated proton detector | |
Ortendahl et al. | Operating characteristics of small position-sensitive mercuric iodide detectors | |
WO2023130199A1 (en) | Image sensors and methods of operation | |
JPH02218990A (en) | Radiation detecting element array and radiation image pickup device | |
Narita et al. | Development of prototype pixellated PIN CdZnTe detectors | |
JP2000174982A (en) | Method and system for reading radiation image and solid- state radiation detector used for the same | |
JP3538999B2 (en) | Semiconductor radiation detector | |
TW569030B (en) | Radiation image detector | |
JPH0898831A (en) | Ring shape photographing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |