[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2699176B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2699176B2
JP2699176B2 JP63124393A JP12439388A JP2699176B2 JP 2699176 B2 JP2699176 B2 JP 2699176B2 JP 63124393 A JP63124393 A JP 63124393A JP 12439388 A JP12439388 A JP 12439388A JP 2699176 B2 JP2699176 B2 JP 2699176B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
charge
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63124393A
Other languages
Japanese (ja)
Other versions
JPH01294364A (en
Inventor
和伸 松本
耕三 梶田
俊勝 真辺
Original Assignee
日立マクセル 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル 株式会社 filed Critical 日立マクセル 株式会社
Priority to JP63124393A priority Critical patent/JP2699176B2/en
Publication of JPH01294364A publication Critical patent/JPH01294364A/en
Application granted granted Critical
Publication of JP2699176B2 publication Critical patent/JP2699176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム二次電池に係わり、さらに詳しく
はその正極活物質の改良に関する。
Description: TECHNICAL FIELD The present invention relates to a lithium secondary battery, and more particularly, to improvement of a positive electrode active material thereof.

〔従来の技術〕[Conventional technology]

従来、リチウム二次電池用の正極活物質としては、二
硫化チタン、二硫化モリブデンなどの金属硫化物が使用
されていた。
Conventionally, metal sulfides such as titanium disulfide and molybdenum disulfide have been used as positive electrode active materials for lithium secondary batteries.

しかし、これらの金属硫化物系正極活物質は、電池電
圧が3V以下で、エネルギー密度の高い電池を得る観点か
らは、電池電圧が低いという問題あった。
However, these metal sulfide-based positive electrode active materials have a problem that the battery voltage is low from the viewpoint of obtaining a battery having a battery voltage of 3 V or less and a high energy density.

そこで、よりエネルギー密度が高い電池を得るため、
LiCoO2を正極活物質として用いることが検討されている
(例えば、米国特許4,567,031号明細書)。
Therefore, to obtain batteries with higher energy density,
Use of LiCoO 2 as a positive electrode active material has been studied (for example, US Pat. No. 4,567,031).

このLiCoO2を二次電池に用いた場合の充放電サイクル
と容量の劣化の関係はいまだ報告されていないが、LiCo
O2を正極活物質として用いた場合、電圧が4.5〜3.9Vと
高いため、電解液の分解(正確には電解液の溶媒として
用いられている有機溶媒の酸化反応やポリマー化による
分解)が生じるものと考えられる。
Although the relationship between the charge / discharge cycle and capacity degradation when using this LiCoO 2 in a secondary battery has not yet been reported, LiCoO 2
When O 2 is used as the positive electrode active material, the voltage is as high as 4.5 to 3.9 V, so the decomposition of the electrolytic solution (more precisely, the decomposition of the organic solvent used as the solvent of the electrolytic solution by oxidation reaction or polymerization) may occur. It is thought to occur.

電解液溶媒として用いられる有機溶媒のなかで、耐酸
化性に優れたプロピレンカーボネートでさえ、白金極上
25℃においてリチウム極に対して4.2V〜4.5V付近より酸
化されて分解しはじめ、炭酸ガス(CO2)を発生する
〔G.Eggert etal.,Electrochimica Acta.,31(11),144
3(1986)他〕。
Among the organic solvents used as the electrolyte solvent, even propylene carbonate, which has excellent oxidation resistance, is superior to platinum.
At 25 ° C, the lithium electrode is oxidized from 4.2V to 4.5V and starts to decompose, generating carbon dioxide (CO 2 ) [G. Eggert et al., Electrochimica Acta., 31 (11), 144
3 (1986) and others].

また、ポリマー電解質も4V付近より分解するものが多
い。
In addition, many polymer electrolytes are decomposed from around 4V.

したがって、現在知られている有機系電解液を使用す
るには、電池電圧の上限値を4V付近に限定することが、
電解液の分解を防ぐ上で望ましい。
Therefore, to use the currently known organic electrolyte, it is necessary to limit the upper limit of the battery voltage to around 4V,
It is desirable to prevent decomposition of the electrolyte.

そこで、本発明者らは、LiCoO2を正極活物質として用
いたリチウム二次電池を4V以下の電圧範囲で充放電させ
たところ、利用できる充放電容量が小さいことが判明し
た。
Then, the present inventors charged and discharged a lithium secondary battery using LiCoO 2 as a positive electrode active material in a voltage range of 4 V or less, and found that the available charge / discharge capacity was small.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、高エネルギー密度電池として期待されてい
るLiCoO2を正極活物質に用いたリチウム二次電池が、電
解液の分解を防止する観点から4V以下の電圧範囲で充放
電させた場合、利用できる充放電容量が小さいという問
題点を解決し、電解液の分解を防止できる電圧範囲での
充放電においても大きな充放電容量を得ることができる
リチウム二次電池を提供することを目的とする。
The present invention is used when a lithium secondary battery using LiCoO 2 which is expected as a high energy density battery as a positive electrode active material is charged and discharged in a voltage range of 4 V or less from the viewpoint of preventing decomposition of an electrolyte solution. It is an object of the present invention to provide a lithium secondary battery that solves the problem that the charge / discharge capacity that can be obtained is small and that can obtain a large charge / discharge capacity even in a charge / discharge voltage range in which decomposition of an electrolytic solution can be prevented.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、LiCoO2にNiを固溶させることにより、開路
電圧を低下させて、4V以下の電圧範囲の充放電でも大き
な充放電容量が得られるようにしたものである。
The present invention reduces the open circuit voltage by dissolving Ni in LiCoO 2 so that a large charge / discharge capacity can be obtained even in a charge / discharge voltage range of 4 V or less.

すなわち、本発明は、正極活物質として、式(I) Li(Co1-yNiy)O2 (I) (式中、yは0.75<y≦0.9である)で示される状態に
共沈法により合成されたリチウム(コバルト−ニッケ
ル)酸化物から充電によりリチウムの一部を抜いた式
(II) Lix(Co1-yNiy)O2 (II) (式中、xは0<x<1で、yは0.75<y≦0.9であ
る)で示されるリチウム(コバルト−ニッケル)酸化物
を用いたことを特徴とするリチウム二次電池に関する。
That is, according to the present invention, as the positive electrode active material, coprecipitated into a state represented by the formula (I) Li (Co 1-y Ni y ) O 2 (I) (where y is 0.75 <y ≦ 0.9). Formula (II) Li x (Co 1-y Ni y ) O 2 (II) wherein lithium is partially removed by charging from lithium (cobalt-nickel) oxide synthesized by the method, wherein x is 0 < The present invention relates to a lithium secondary battery using a lithium (cobalt-nickel) oxide represented by x <1 and y is 0.75 <y ≦ 0.9.

上記のような式(II)で示されるリチウム(コバルト
−ニッケル)酸化物を用いることにより、開路電圧が低
下し、4V以下の電圧範囲で大きな充放電容量が得られる
ようになる理由はつぎのように考えられる。
The reason why the use of the lithium (cobalt-nickel) oxide represented by the above formula (II) lowers the open circuit voltage and enables a large charge / discharge capacity to be obtained in a voltage range of 4 V or less is as follows. Can be considered.

LixCoO2を正極活物質に用いたリチウム二次電池の開
路電圧は4.6〜3.9Vの範囲である。つまり、xが0〜1
の間で変化するに伴って開路電圧が4.6〜3.9Vの範囲で
変動する。そして、4V以下の電圧範囲に入るLi量の範囲
は0.7≦x≦1しかない。しかも、xが1に近づく範囲
では分極が大きく利用できないため、実際に利用可能な
範囲はさらに狭くなる。したがって、Liが非常に狭い範
囲でしか変化できず、充放電に利用できる範囲が非常に
狭いため、得られる充放電容量が小さくなる。
The open circuit voltage of a lithium secondary battery using Li x CoO 2 as a positive electrode active material is in the range of 4.6 to 3.9V. That is, x is 0 to 1
The open circuit voltage fluctuates in the range of 4.6 to 3.9 V with the change in the range. The range of the amount of Li falling within the voltage range of 4 V or less is only 0.7 ≦ x ≦ 1. Moreover, since the polarization cannot be used greatly in the range where x approaches 1, the actually usable range is further narrowed. Therefore, Li can be changed only in a very narrow range, and the range available for charge and discharge is very narrow, so that the obtained charge and discharge capacity is small.

これに対し、Lix(Co1-yNiy)O2を正極活物質に用い
たリチウム二次電池では、開路電圧が4V強〜3.5Vの範囲
である(前記と同様にxが0〜1の間で変化するに伴っ
て開路電圧が4V強〜3.5Vの範囲で変動する)。そして、
4V以下の電圧範囲に入るxの領域(つまり、Li量の範
囲)は、Niの固溶量(つまり、y値)により異なるが、
y=0.8の場合、0.45≦x≦1の範囲となり、LixCoO2
場合よりxの変化し得る範囲が広くなる。したがって、
4V以下の電圧範囲で充放電できる範囲が広くなって、得
られる充放電容量が大きくなる。
On the other hand, in the lithium secondary battery using Li x (Co 1-y Ni y ) O 2 as the positive electrode active material, the open circuit voltage is in the range of slightly more than 4 V to 3.5 V (x is 0 to 0 as in the above case). The open-circuit voltage fluctuates in the range of slightly more than 4V to 3.5V as it changes between 1). And
The region of x that falls within the voltage range of 4 V or less (that is, the range of the amount of Li) differs depending on the amount of solid solution of Ni (that is, the y value).
When y = 0.8, the range is 0.45 ≦ x ≦ 1, and the range where x can be changed is wider than in the case of Li x CoO 2 . Therefore,
The range that can be charged and discharged in a voltage range of 4 V or less is widened, and the obtained charge and discharge capacity is increased.

本発明において、正極活物質として用いるリチウム
(コバルト−ニッケル)酸化物を示す式(II)のLix(C
o1-yNiy)O2において、yを0.75<y≦0.9の範囲にする
のは、yが0.9を超えると(つまり、Niの固溶量が多く
なると)、分極が大きくなって、充放電容量が低下する
からであり、また、yが小さくなりすぎると(つまり、
Niの固溶量が少なくなると)、Niの固溶量が少ないた
め、開路電圧の低下が少なくなり、4V以下の電圧範囲で
xの変化できる範囲が狭くなって、得られる充放電容量
が小さくなるからである。
In the present invention, Li x (C) of the formula (II) indicating lithium (cobalt-nickel) oxide used as a positive electrode active material is used.
o 1-y Ni y ) In O 2 , the reason why y is in the range of 0.75 <y ≦ 0.9 is that when y exceeds 0.9 (that is, when the amount of solid solution of Ni increases), the polarization increases, This is because the charge / discharge capacity decreases, and if y becomes too small (that is,
The lower the solid solution amount of Ni), the smaller the solid solution amount of Ni, the lower the open circuit voltage is reduced, and the range in which x can be changed in the voltage range of 4 V or less is narrowed, and the obtained charge / discharge capacity is small. Because it becomes.

本発明において正極活物質として用いる上記式(II)
で示されるリチウム(コバルト−ニッケル)酸化物は、
式(I)で示されるリチウム(コバルト−ニッケル)酸
化物を共沈法によって合成することに基づいて得られ
る。すなわち、共沈法による場合は、式(I)や式(I
I)中のyが0.75<y≦0.9という高い値の場合でも、充
放電容量の大きいリチウム(コバルト−ニッケル)酸化
物が得られるが、混合法による場合は、yが0.75<y≦
0.9程度に高くなると、充放電容量の大きいリチウム
(コバルト−ニッケル)酸化物が得られなくなる。
The above formula (II) used as a positive electrode active material in the present invention
The lithium (cobalt-nickel) oxide represented by
It is obtained based on synthesizing a lithium (cobalt-nickel) oxide represented by the formula (I) by a coprecipitation method. That is, when the coprecipitation method is used, the formula (I) or the formula (I
Even when y in I) is a high value of 0.75 <y ≦ 0.9, a lithium (cobalt-nickel) oxide having a large charge / discharge capacity can be obtained.
When it is increased to about 0.9, a lithium (cobalt-nickel) oxide having a large charge / discharge capacity cannot be obtained.

本発明において、上記リチウム(コバルト−ニッケ
ル)酸化物を得る共沈法とは、Co(コバルト)とNi(ニ
ッケル)をCoイオンおよびNiイオンを含む水溶液中から
炭酸塩として共沈させて均一な混合物とする工程を経て
リチウム(コバルト−ニッケル)酸化物を合成する方法
を意味している。
In the present invention, the co-precipitation method for obtaining lithium (cobalt-nickel) oxide refers to a method in which Co (cobalt) and Ni (nickel) are co-precipitated as a carbonate from an aqueous solution containing Co ions and Ni ions to obtain a uniform precipitate. It means a method of synthesizing lithium (cobalt-nickel) oxide through a process of forming a mixture.

本発明の電池において、負極にはリチウムまたはリチ
ウム合金が用いられるが、そのような用途に用いられる
リチウム合金としては、例えばリチウム−アルミニウム
合金、リチウム−錫合金、リチウム−亜鉛合金、リチウ
ム−鉛合金、リチウム−ビスマス合金、リチウム−ケイ
素合金、リチウム−アンチモン合金、リチウム−マグネ
シウム合金、リチウム−インジウム合金、リチウム−ガ
リウム合金、リチウム−ゲルマニウム合金、リチウム−
ガリウム−インジウム合金などがあげられる。また、そ
れらのリチウム合金にさらに他の金属を少量添加したも
のも負極に用いることができる。
In the battery of the present invention, lithium or a lithium alloy is used for the negative electrode. Examples of the lithium alloy used for such a purpose include a lithium-aluminum alloy, a lithium-tin alloy, a lithium-zinc alloy, and a lithium-lead alloy. , Lithium-bismuth alloy, lithium-silicon alloy, lithium-antimony alloy, lithium-magnesium alloy, lithium-indium alloy, lithium-gallium alloy, lithium-germanium alloy, lithium-
Gallium-indium alloy and the like can be mentioned. Further, those obtained by adding a small amount of another metal to these lithium alloys can also be used for the negative electrode.

電解液もこの種の電池に通常用いられるものを特に制
約を受けることなくそのまま使用することができる。電
解液を例示すると、例えば1,2−ジメトキシエタン、エ
チレンカーボネート、プロピレンカーボネート、γ−ブ
チロラクトン、テトラヒドロフラン、1,3−ジオキソラ
ン、4−メチル−1,3−ジオキソランなどの有機溶媒の
単独または2種以上の混合溶媒に、例えばLiClO4、LiPF
6、LiAsF6、LiSbF6、LiBF4、LiB(C6H5などの電解
質の1種または2種以上を溶解させることによって調製
したものがあげられる。
As the electrolytic solution, those commonly used for this type of battery can be used without any particular limitation. Examples of the electrolyte include, for example, organic solvents such as 1,2-dimethoxyethane, ethylene carbonate, propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan, and 4-methyl-1,3-dioxolan, alone or in combination. In the above mixed solvent, for example, LiClO 4 , LiPF
6 , one prepared by dissolving one or more of electrolytes such as LiAsF 6 , LiSbF 6 , LiBF 4 and LiB (C 6 H 5 ) 4 .

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明す
る。
Next, the present invention will be described in more detail with reference to examples.

実施例1 Li(Co1-yNiy)O2を合成した。yは0.8である。これ
を式(I)にしたがって表示するとLi(Co0.2Ni0.8)O2
である。
Example 1 Li (Co 1-y Ni y ) O 2 was synthesized. y is 0.8. When this is expressed according to the formula (I), Li (Co 0.2 Ni 0.8 ) O 2
It is.

合成は以下に示すように行われた。まず、Co(コバル
ト)とNi(ニッケル)をCoイオンおよびNiイオンを含む
水溶液中から炭酸塩(通常の条件下では、塩基性炭酸塩
になる)として共沈させて均一な混合物とした。この共
沈法については後で詳しく説明する。上記のようにして
得られた沈殿物を水洗後、アルゴン中140℃で乾燥した
のち、Li2CO3と混合し、空気中(N2/O2=80/20)、920
℃で3時間加熱して反応させ、エア・クエンチ(加熱し
た試料を常温の大気中に取り出して急冷する方法)する
ことによってLi(Co0.2Ni0.8)O2を得た。
The synthesis was performed as shown below. First, Co (cobalt) and Ni (nickel) were coprecipitated from an aqueous solution containing Co ions and Ni ions as a carbonate (under ordinary conditions, a basic carbonate) to form a uniform mixture. This coprecipitation method will be described later in detail. The precipitate obtained as above is washed with water, dried at 140 ° C. in argon, mixed with Li 2 CO 3, and dried in air (N 2 / O 2 = 80/20), 920
The reaction was carried out by heating at a temperature of 3 ° C. for 3 hours, and Li (Co 0.2 Ni 0.8 ) O 2 was obtained by air quenching (a method of taking out the heated sample into a room temperature atmosphere and rapidly cooling it).

上記CoとNiのCoイオンおよびNiイオンを含む水溶液中
からの共沈は以下のように行った。
The co-precipitation of Co and Ni from an aqueous solution containing Co ions and Ni ions was performed as follows.

NiとCoとの割合がモル比で80:20〔Ni/Co=80/20(モ
ル比)〕になるようにNiCl2・6H2OとCoCl2・6H2Oとを炭
酸ガスを飽和した純水に溶解し、この溶液にNaHCO3水溶
液を加え、放置して共沈させた。
NiCl 2 .6H 2 O and CoCl 2 .6H 2 O were saturated with carbon dioxide gas such that the molar ratio of Ni and Co was 80:20 [Ni / Co = 80/20 (molar ratio)]. The solution was dissolved in pure water, and an aqueous solution of NaHCO 3 was added to the solution, and allowed to stand for coprecipitation.

上記のようにして合成されたLi(Co0.2Ni0.8)O2を用
い、これに電子伝導助剤としてりん片状黒鉛を10重量%
の割合で加え、結着剤としてポリテトラフルオロエチレ
ンを5重量%の割合で加えて混合したのち、3t/cm2で加
圧成形して、直径9mm、厚さ約0.3mmの円板状の成形体を
作製した。得られた成形体を正極として用い第1図に示
す電池(モデルセル)を作製した。
Li (Co 0.2 Ni 0.8 ) O 2 synthesized as described above was used, and flaky graphite was added as an electron conduction aid in an amount of 10% by weight.
After adding and mixing 5% by weight of polytetrafluoroethylene as a binder, press molding at 3t / cm 2 is performed to form a disc having a diameter of 9mm and a thickness of about 0.3mm. A molded body was produced. Using the obtained molded body as a positive electrode, a battery (model cell) shown in FIG. 1 was produced.

第1図において、A部は上記電池の要部のみを拡大し
て示すものであり、図中、1は負極、この負極1はLi
0.1V2O5粉末に10重量%のりん片状黒鉛と5重量%のポ
リテトラフルオロエチレンとを加えて混合したのち、加
圧成形して作製して直径16mm、厚さ約2mmの円板状の成
形体からなるものである。そして、負極活物質として使
用されたLi0.1V2O5はヘキサン中でV2O5にn−ブチルリ
チウム(n−C4H9Li)を反応させて合成したものであ
る。2は正極で、この正極2は前記のようにして合成さ
れたLi(Co0.2Ni0.8)O2から充電によりリチウムの一部
を抜いたLix(Co0.2Ni0.8)O2(ただし、式中のxは0
<x<1である)を正極活物質とし、りん片状黒鉛とポ
リテトラフルオロエチレンを添加した加圧成形体からな
るものである。
In FIG. 1, part A is an enlarged view of only a main part of the battery. In the figure, reference numeral 1 denotes a negative electrode, and this negative electrode 1 denotes Li
0.1 V 2 O 5 powder is mixed with 10% by weight of flaky graphite and 5% by weight of polytetrafluoroethylene, mixed and then pressed to produce a disk having a diameter of 16 mm and a thickness of about 2 mm. It is made of a shaped body. Li 0.1 V 2 O 5 used as the negative electrode active material was synthesized by reacting V 2 O 5 with n-butyllithium (nC 4 H 9 Li) in hexane. Reference numeral 2 denotes a positive electrode. This positive electrode 2 is Li x (Co 0.2 Ni 0.8 ) O 2 obtained by extracting a part of lithium from Li (Co 0.2 Ni 0.8 ) O 2 synthesized as described above, provided that the formula X inside is 0
<X <1) is used as a positive electrode active material, and is a pressure-formed body to which flaky graphite and polytetrafluoroethylene are added.

3はプロピレンカーボネートと1,2−ジメトキシエタ
ンとの容量比2:1の混合溶媒にLiBF4を1mol/l溶解してな
る電解液で、4はポリプロピレン不織布からなるセパレ
ータである。5はLi0.1V2O5を活物質とする加圧成形体
からなるリフェレンス極であり、6はポリプロピレン製
の容器で、7は白金のリード線をスポット溶接した白金
エキスパンド網からなる集電体である。
3 propylene carbonate and 1,2-dimethoxyethane and volume ratio of 2: electrolyte obtained by dissolving 1 mol / l of LiBF 4 in a mixed solvent of 1, 4 is a separator made of polypropylene nonwoven. Reference numeral 5 denotes a reference electrode made of a press-molded body using Li 0.1 V 2 O 5 as an active material. Reference numeral 6 denotes a polypropylene container. Reference numeral 7 denotes a current collector formed of a platinum expanded net formed by spot welding platinum lead wires. It is.

そして、この電池の正極の理論電気量は充放電領域を
Lix(Co1-yNiy)O2(0<x<1)として15mAh未満、負
極の理論電気量は充放電領域をLixV2O5(0<x≦1)
として70mAhであり、負極の電気量の方が正極の電気量
より過剰となるように設定されている。
The theoretical amount of electricity of the positive electrode of this battery
Li x (Co 1-y Ni y ) O 2 (0 <x <1), less than 15 mAh, and the theoretical charge of the negative electrode is Li x V 2 O 5 (0 <x ≦ 1)
Is set to be 70 mAh, and the amount of electricity of the negative electrode is larger than the amount of electricity of the positive electrode.

実施例2 Li(Co1-yNiy)O2のyの値を0.9に共沈法により合成
し、このLi(Co0.1Ni0.9)O2から充電によりリチウムの
一部を抜いたLix(Co0.1Ni0.9)O2(ただし、式中のx
は0<x<1である)を正極活物質として用いたほかは
実施例1と同様にして電池を作製した。
Example 2 Li (Co 1-y Ni y ) O 2 was synthesized by a coprecipitation method with the value of y set to 0.9, and Li x obtained by extracting a part of lithium from this Li (Co 0.1 Ni 0.9 ) O 2 by charging. (Co 0.1 Ni 0.9 ) O 2 (where x in the formula is
Is <0 <x <1) as in Example 1 except that a positive electrode active material was used.

比較例1 Li(Co1-yNiy)O2のyの値を0、つまりLiCoO2を合成
し、このLiCoO2から充電によりリチウムの一部を抜いて
LixCoO2(ただし、式中のxは0<x<1である)を正
極活物質として用いたほかは実施例1と同様にして電池
を作製した。
Comparative Example 1 The value of y of Li (Co 1-y Ni y ) O 2 was set to 0, that is, LiCoO 2 was synthesized, and part of lithium was extracted from the LiCoO 2 by charging.
A battery was fabricated in the same manner as in Example 1, except that Li x CoO 2 (where x in the formula was 0 <x <1) was used as the positive electrode active material.

比較例2 Li(Co1-yNiy)O2のyの値を0.4に共沈法により合成
し、このLi(Co0.6Ni0.4)O2から充電によりリチウムの
一部を抜いてLix(Co0.6Ni0.4)O2(ただし、式中のx
は0<x<1である)を正極活物質として用いたほかは
実施例1と同様にして電池を作製した。
Comparative Example 2 Li (Co 1-y Ni y ) O 2 was synthesized by coprecipitation with the value of y being 0.4, and a part of lithium was extracted from Li (Co 0.6 Ni 0.4 ) O 2 by charging to obtain Li x. (Co 0.6 Ni 0.4 ) O 2 (where x in the formula is
Is <0 <x <1) as in Example 1 except that a positive electrode active material was used.

比較例3 Li(Co1-yNiy)O2のyの値を1.0のもの、すなわちLiN
iO2を合成し、このLiNiO2から充電によりリチウムの一
部を抜いてLixNiO2(ただし、式中のxは0<x<1で
ある)を正極活物質として用いたほかは実施例1と同様
にして電池を作製した。
Comparative Example 3 Li (Co 1-y Ni y ) O 2 having a y value of 1.0, ie, LiN
Example 1 except that iO 2 was synthesized and a part of lithium was extracted from LiNiO 2 by charging to use Li x NiO 2 (where x in the formula is 0 <x <1) as a positive electrode active material. A battery was produced in the same manner as in Example 1.

つぎに、上記実施例1〜2の電池および比較例1〜3
の電池の充放電を行った。充放電は、充電電流、放電電
流とも0.636mA(正極の単位断面積あたり1.0mA/cm2)で
リファレンス極に対して+0.6V〜−0.2Vの間の電圧範囲
で行った。リファレンス極のLi0.1V2O5がLiに対して3.4
Vの電圧を持つことから、この電圧範囲はLiを負極にし
た場合、4.0V〜3.2Vの範囲となる。
Next, the batteries of Examples 1 and 2 and Comparative Examples 1 to 3
Was charged and discharged. The charge and discharge were performed at a charge current and a discharge current of 0.636 mA (1.0 mA / cm 2 per unit sectional area of the positive electrode) in a voltage range of +0.6 V to −0.2 V with respect to the reference electrode. Li 0.1 V 2 O 5 of reference pole is 3.4 against Li
Since it has a voltage of V, this voltage range is in a range of 4.0 V to 3.2 V when Li is used as a negative electrode.

第1表に上記実施例1〜2の電池および比較例1〜3
の電池の上記電圧範囲での充放電容量を示す。ただし、
この充放電容量は、充放電が安定し容量がほぼ一定値と
なる3サイクル目の値である。この3サイクル目では充
電容量と放電容量がほぼ等しい値になる。なお、第1図
においては、Ni量の変化に伴う充放電容量の変化を明ら
かにするために、Ni量(つまり、yの値)の順に配列し
て表示している。したがって、表示順序は前記した実施
例や比較例の記載順序とは異なる順序になっている。
Table 1 shows the batteries of Examples 1 and 2 and Comparative Examples 1 to 3.
Shows the charge / discharge capacity of the battery in the above voltage range. However,
This charge / discharge capacity is a value in the third cycle at which the charge / discharge is stabilized and the capacity becomes a substantially constant value. In the third cycle, the charge capacity and the discharge capacity have substantially the same value. In FIG. 1, in order to clarify the change in the charge / discharge capacity due to the change in the Ni amount, they are arranged and displayed in the order of the Ni amount (that is, the value of y). Therefore, the display order is different from the description order of the above-described embodiments and comparative examples.

第1表に示すように、Niを固溶させた正極活物質を用
いた実施例1〜2の電池は、Niを固溶させていないLiCo
O2を正極活物質として用いた比較例1の電池に比べて、
4.0〜3.2Vの電圧範囲での充放電容量が大きい。これはN
iの固溶化により、開路電圧が低下して、4V以下の電圧
範囲でxの変化する領域〔つまり、リチウムイオン(Li
+)の出入りできる領域〕が増えたことによるものであ
る。しかし、Niの固溶量(つまり、y値)が多くなりす
ぎると、Ni量の増加に伴って充放電容量が低下してい
る。これはNi量が増加しすぎると分極が増加して、容量
が低下するためであると考えられる。
As shown in Table 1, the batteries of Examples 1 and 2 using the positive electrode active material in which Ni was dissolved in solid solution were LiCo in which Ni was not dissolved.
Compared to the battery of Comparative Example 1 using O 2 as the positive electrode active material,
Large charge / discharge capacity in the voltage range of 4.0 to 3.2V. This is N
As a result of solid solution of i, the open circuit voltage is reduced, and x changes within a voltage range of 4 V or less [that is, lithium ion (Li
+ ) Can be entered and exited]. However, when the solid solution amount of Ni (that is, the y value) is too large, the charge / discharge capacity decreases with an increase in the Ni amount. This is considered to be because if the amount of Ni is excessively increased, the polarization is increased and the capacity is decreased.

なお、上記実施例では、充放電サイクル時の容量を調
べるのに、モデルセルによる試験を行ったが、これは実
装電池では負極など正極活物質以外の電池構成部材の影
響が現れ、正極活物質の相違による充放電サイクル容量
の差異が正確に現れにくくなるからである。また、負極
にリチウムを用いずに、LixV2O5を用いているが、これ
はリチウムの場合、酸素や水分と反応しやすく、表面が
Li2OやLiOHなどに変化し、このリチウム表面に形成され
るLi2O被膜やLiOH被膜などによって電池特性が影響を受
けやすいが、LixV2O5の場合はそのような影響を受ける
ことが少なく、正極活物質の相違による電池特性の差異
が正確に把握できるからである。
In the above example, a test using a model cell was performed to check the capacity during the charge / discharge cycle. However, in a mounted battery, the influence of battery components other than the positive electrode active material such as the negative electrode appears, This is because it becomes difficult for a difference in charge / discharge cycle capacity due to the difference to appear accurately. In addition, Li x V 2 O 5 is used instead of lithium for the negative electrode. In the case of lithium, it easily reacts with oxygen and moisture, and the surface is
It changes to Li 2 O and LiOH, etc., and the battery characteristics are easily affected by the Li 2 O film and LiOH film formed on this lithium surface, but in the case of Li x V 2 O 5 it is affected This is because the difference in battery characteristics due to the difference in the positive electrode active material can be accurately grasped.

そして、本発明では、正極活物質として用いるリチウ
ム(コバルト−ニッケル)酸化物をLix(Co1-yNiy)O2
と表現したが、遷移金属部分(CoNiの部分)が上記式に
おける化学量論比より若干ずれる(±5%の範囲で)こ
とがある。また、酸素も、酸素欠陥などによってずれる
ことがあるが、それらが電池特性に影響を及ぼすことが
ほとんどないので、それらも本発明の範疇に含まれる。
In the present invention, the lithium (cobalt-nickel) oxide used as the positive electrode active material is Li x (Co 1-y Ni y ) O 2
However, the transition metal portion (CoNi portion) sometimes deviates slightly from the stoichiometric ratio in the above formula (within a range of ± 5%). Further, oxygen may be shifted due to oxygen deficiency or the like, but since they hardly affect battery characteristics, they are also included in the category of the present invention.

また、実施例では、電解液としてプロピレンカーボネ
ートと1,2−ジメトキシエタンとの混合溶媒にLiBF4を溶
解したものを用いたが、それに代えて、他の電解液、例
えばプロピレンカーボネートにLiBF4を溶解した電解液
を用いてもよい。
Further, in the examples, a solution obtained by dissolving LiBF 4 in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used as the electrolytic solution, but instead, another electrolytic solution, for example, LiBF 4 was used in propylene carbonate. A dissolved electrolytic solution may be used.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では、LiCoO2に特定量の
Niを固溶させた式(I) Li(Co1-yNiy)O2 (I) (式中、yは0.75<y≦0.9である)で示される状態に
共沈法により合成されたリチウム(コバルト−ニッケ
ル)酸化物から充電によりリチウムの一部を抜いた式
(II) Lix(Co1-yNiy)O2 (II) (式中、xは0<x<1で、yは0.75<y≦0.9ある)
で示されるリチウム(コバルト−ニッケル)酸化物を正
極活物質として用いることにより、LiCoO2を正極活物質
として用いる場合に比べて、電解液の安定性が確保でき
る4V以下の電圧範囲で充放電容量を向上させることがで
きた。
As described above, in the present invention, a specific amount of LiCoO 2
Ni was dissolved in a solid solution. Formula (I) Li (Co 1-y Ni y ) O 2 (I) (where y is 0.75 <y ≦ 0.9) and was synthesized by a coprecipitation method. Formula (II) Li x (Co 1-y Ni y ) O 2 (II) wherein lithium is partially removed by charging from lithium (cobalt-nickel) oxide (where x is 0 <x <1, y is 0.75 <y ≦ 0.9)
Using lithium (cobalt-nickel) oxide as a positive electrode active material, the charge / discharge capacity in a voltage range of 4 V or less that can ensure the stability of the electrolyte solution, compared to using LiCoO 2 as the positive electrode active material Could be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係るリチウム二次電池の一例を示す断
面図である。 1……負極、2……正極
FIG. 1 is a sectional view showing an example of a lithium secondary battery according to the present invention. 1 ... negative electrode, 2 ... positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真辺 俊勝 大阪府茨木市丑寅1丁目1番88号 日立 マクセル株式会社内 (56)参考文献 特開 昭63−299056(JP,A) 特開 昭62−256371(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshikatsu Mabe 1-1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell, Ltd. (56) References JP-A-63-299056 (JP, A) JP-A-62 −256371 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム二次電池において、式(I) Li(Co1-yNiy)O2 (I) (式中、yは0.75<y≦0.9である)で示される状態に
共沈法により合成されたリチウム(コバルト−ニッケ
ル)酸化物から充電によりリチウムの一部を抜いた式
(II) Lix(Co1-yNiy)O2 (II) (式中、xは0<x<1で、yは0.75<y≦0.9であ
る)で示されるリチウム(コバルト−ニッケル)酸化物
を正極活物質として用いたことを特徴とするリチウム二
次電池。
In a lithium secondary battery, coprecipitated into a state represented by the formula (I) Li (Co 1-y Ni y ) O 2 (I) (where y is 0.75 <y ≦ 0.9). Formula (II) Li x (Co 1-y Ni y ) O 2 (II) wherein lithium is partially removed by charging from lithium (cobalt-nickel) oxide synthesized by the method, wherein x is 0 < A lithium secondary battery using a lithium (cobalt-nickel) oxide represented by the formula x <1 and y is 0.75 <y ≦ 0.9) as a positive electrode active material.
JP63124393A 1988-05-20 1988-05-20 Lithium secondary battery Expired - Lifetime JP2699176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63124393A JP2699176B2 (en) 1988-05-20 1988-05-20 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63124393A JP2699176B2 (en) 1988-05-20 1988-05-20 Lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7352577A Division JP2770154B2 (en) 1995-12-29 1995-12-29 Manufacturing method of lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH01294364A JPH01294364A (en) 1989-11-28
JP2699176B2 true JP2699176B2 (en) 1998-01-19

Family

ID=14884314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63124393A Expired - Lifetime JP2699176B2 (en) 1988-05-20 1988-05-20 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2699176B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US20130142944A1 (en) * 2008-10-07 2013-06-06 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US9960424B2 (en) 2008-12-11 2018-05-01 Zenlabs Energy, Inc. Positive electrode materials for high discharge capacity lithium ion batteries

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264201A (en) * 1990-07-23 1993-11-23 Her Majesty The Queen In Right Of The Province Of British Columbia Lithiated nickel dioxide and secondary cells prepared therefrom
TWI279019B (en) * 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
JPWO2007083457A1 (en) * 2006-01-20 2009-06-11 日鉱金属株式会社 Lithium nickel manganese cobalt composite oxide and lithium secondary battery
CN101495666B (en) 2006-07-27 2012-09-26 Jx日矿日石金属株式会社 Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery
CN102007626B (en) 2008-04-17 2014-10-15 日矿金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for rechargeable battery, and lithium ion battery
EP2365565A4 (en) 2008-12-05 2013-07-03 Jx Nippon Mining & Metals Corp Positive electrode active material for lithium ion battery, positive electrode for secondary battery using the positive electrode active material, and lithium ion secondary battery using the secondary battery positive electrode
KR101437886B1 (en) 2012-10-05 2014-09-05 한국과학기술연구원 Nanocomposite cathod active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785413B2 (en) * 1986-04-30 1995-09-13 ソニー株式会社 Organic electrolyte primary battery
JPS63299056A (en) * 1987-05-29 1988-12-06 Sony Corp Organic electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8685565B2 (en) 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US20130142944A1 (en) * 2008-10-07 2013-06-06 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US9960424B2 (en) 2008-12-11 2018-05-01 Zenlabs Energy, Inc. Positive electrode materials for high discharge capacity lithium ion batteries

Also Published As

Publication number Publication date
JPH01294364A (en) 1989-11-28

Similar Documents

Publication Publication Date Title
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
EP0743692B1 (en) A material for use in the positive electrodes of lithium batteries, its manufacture, and lithium batteries incorporating this material
EP0752728B1 (en) Negative electrode material for use in lithium secondary batteries, its manufacture, and lithium secondary batteries incorporating this material
JP2000502831A (en) Electrode materials for lithium interlayer electrochemical cells
JPH1167209A (en) Lithium secondary battery
JPH11513181A (en) Rechargeable lithium battery electrode
JPH11507171A (en) Positive electrode material for rechargeable electrochemical cell and method of making the same
JP2699176B2 (en) Lithium secondary battery
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2000243455A (en) Lithium secondary battery
JP2511667B2 (en) Lithium secondary battery
JP3670878B2 (en) Lithium secondary battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP3670879B2 (en) Lithium secondary battery
JP2000277108A (en) Lithium secondary battery
JPH0935714A (en) Lithium secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JP2526093B2 (en) Lithium secondary battery
JP2770154B2 (en) Manufacturing method of lithium secondary battery
JP3615416B2 (en) Lithium secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2000215895A (en) Nonaqueous secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JP2933645B2 (en) Manufacturing method of lithium secondary battery
JP2000106187A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11