JP2697530B2 - Ignition control device for internal combustion engine with valve stop mechanism - Google Patents
Ignition control device for internal combustion engine with valve stop mechanismInfo
- Publication number
- JP2697530B2 JP2697530B2 JP29027192A JP29027192A JP2697530B2 JP 2697530 B2 JP2697530 B2 JP 2697530B2 JP 29027192 A JP29027192 A JP 29027192A JP 29027192 A JP29027192 A JP 29027192A JP 2697530 B2 JP2697530 B2 JP 2697530B2
- Authority
- JP
- Japan
- Prior art keywords
- ignition timing
- cylinder
- engine
- speed
- ignition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Valve Device For Special Equipments (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、適時に内燃機関の設定
された休筒気筒の吸排気弁を停止させて休筒気筒を停止
させ、それ以外の常時運転気筒を駆動させて、休筒運転
モードでの運転を行える内燃機関に装着され、特に、機
関の運転条件に応じて目標点火時期を求め同目標点火時
期に点火処理を行なう弁停止機構付き内燃機関の点火制
御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylinder-stopping system in which an intake / exhaust valve of a cylinder-stop cylinder which is set for an internal combustion engine is stopped in a timely manner to stop the cylinder-stop cylinder, and the other always-operating cylinders are driven. The present invention relates to an ignition control device for an internal combustion engine equipped with a valve stop mechanism that is mounted on an internal combustion engine that can operate in an operation mode and that determines a target ignition timing according to operating conditions of the engine and performs an ignition process at the target ignition timing.
【0002】[0002]
【従来の技術】火花点火機関においては点火時期を運転
条件に応じて最適に制御するための電子制御化が進んで
きている。その制御の方法は、上死点(TDC)前の特
定のクランク位置を示す基準信号と、クランク角信号
(1°又は2°の単位で発生するパルス)を受けて、そ
の時の運転条件に応じた点火時期、イグニッションコイ
ルへの通電時間をクランク角で表したドエル角を求め、
イグニッションコイルへの電流をスイッチングトランジ
スタ(パワートランジスタ)でオン、オフするものであ
る。ここで、点火時期は各気筒の発生する出力を増減左
右するため、定常時はノックの発生が無い範囲で出来る
だけ進角され、完爆を達成している。このような点火時
期の基本的な制御では、内燃機関の定常運転時において
運転条件、例えば、エンジン回転数、負荷、負荷の変化
量、冷却水温等に応じて基準進角量を補正した進角値で
点火を行ない、負荷の変化量が一定値を上回るような過
渡期には固定進角値を用いる等の点火時期制御を行なっ
ている。2. Description of the Related Art In a spark ignition engine, electronic control for optimally controlling the ignition timing according to operating conditions has been advanced. The control method is based on a reference signal indicating a specific crank position before TDC and a crank angle signal (pulse generated in units of 1 ° or 2 °), and according to the operating conditions at that time. The dwell angle, which represents the ignition timing and the energization time to the ignition coil by the crank angle,
The current to the ignition coil is turned on and off by a switching transistor (power transistor). Here, since the ignition timing changes the output generated by each cylinder, it is advanced as much as possible within a range where knock does not occur in a steady state, and a complete explosion is achieved. In such basic control of the ignition timing, the advance angle corrected for the reference advance amount according to the operating conditions, for example, the engine speed, the load, the change amount of the load, the cooling water temperature, etc., during the steady operation of the internal combustion engine. The ignition timing is controlled by using a fixed advance value during a transition period in which the amount of change in the load exceeds a certain value.
【0003】ところで、内燃機関の運転中において、適
時に出力低減や低燃費化を図るべく、一部の休筒気筒へ
の吸気及び燃料の供給を停止させ、休筒運転を行うこと
の出来る弁停止機構を備えた内燃機関が知られている。
この種内燃機関の弁停止機構を制御する運転モード切り
換え制御手段は各種運転情報に基づき設定運転域に入る
とその運転域内では、休筒気筒の吸排気弁の開閉作動を
停止させると共に休筒気筒への燃料供給を停止させ、設
定運転域を離脱すると、休筒気筒の吸排気弁の開閉作動
を正常状態に戻し、休筒気筒への燃料供給を再開させて
いる。この種の弁停止機構付き内燃機関では、エンジン
のアイドル運転時において、アイドル回転数を設定値に
保持すべく目標回転数と実回転数の回転偏差を排除でき
る進角量を算出し、同進角量を取り込んだ目標点火時期
に点火駆動手段を駆動させてアイドル回転数の安定化を
図っている。By the way, during operation of the internal combustion engine, in order to timely reduce output and reduce fuel consumption, intake and fuel supply to some of the closed cylinders are stopped, and a valve capable of performing the closed cylinder operation. An internal combustion engine provided with a stop mechanism is known.
The operation mode switching control means for controlling the valve stop mechanism of this kind of internal combustion engine stops the opening / closing operation of the intake / exhaust valves of the cylinders in the cylinder stop and the cylinders in the cylinder stop within the operation range when the engine enters the set operation range based on various operation information. When the supply of fuel to the cylinder is stopped and the set operating range is left, the opening / closing operation of the intake / exhaust valve of the cylinder closed cylinder is returned to a normal state, and the fuel supply to the cylinder closed cylinder is restarted. In an internal combustion engine with a valve stop mechanism of this type, during an idling operation of the engine, an advance amount that can eliminate a rotational deviation between the target rotational speed and the actual rotational speed in order to maintain the idle rotational speed at a set value is calculated. The idling speed is stabilized by driving the ignition drive means at the target ignition timing that captures the angular amount.
【0004】[0004]
【発明が解決しようとする課題】ところが、弁停止機構
付き内燃機関では、図10に示すように、アイドル運転
時における点火時期の変化量に対するエンジン回転数N
eの変化割合が全筒モードと休筒モードで異なる。特
に、休筒モードでは全筒モードにおける場合より点火時
期の変化に対するエンジン回転数の変化量が小さく、進
角側領域e1ではエンジン回転数の変化量が頭打ちとな
る。これを言い替えると、回転偏差ΔNeに対する点火
時期補正量Δθが全筒モード時より休筒モード時の方が
十分に大きて良いことと成る。However, in an internal combustion engine with a valve stop mechanism, as shown in FIG. 10, the engine speed N with respect to the change in ignition timing during idling operation.
The rate of change of e differs between the full cylinder mode and the closed cylinder mode. In particular, the change in the engine speed with respect to the change in the ignition timing is smaller in the cylinder-stop mode than in the all-cylinder mode, and the change in the engine speed reaches a plateau in the advance-side region e1. In other words, the ignition timing correction amount Δθ with respect to the rotation deviation ΔNe may be sufficiently larger in the closed cylinder mode than in the all cylinder mode.
【0005】処が、従来はこの弁停止機構付き内燃機関
のアイドル運転時においてアイドル回転数のバラツキを
補正する処理では、運転モードに関係無く、単に、一定
の点火時期補正ゲインKinj(=Δθ/ΔNe)を用
い、偏差回転数当たりの点火時期補正量Δθを算出して
いた。このため、アイドル運転時において、全筒モード
時と比べて休筒モード時には単位回転偏差当たりの点火
時期補正量の絶対値が小さすぎて、十分な回転ずれの補
正が出来ず、結果として、点火時期調整によるアイドル
回転数のバラツキを応答性良く修正出来ず、問題と成っ
ていた。本発明の目的はアイドル回転数を点火時期補正
によって応答性良く安定化させることのできる弁停止機
構付き内燃機関の点火制御装置を提供することにある。However, conventionally, in the process of correcting the variation of the idling speed during the idling operation of the internal combustion engine with the valve stop mechanism, a fixed ignition timing correction gain Kinj (= Δθ / ΔNe) is used to calculate the ignition timing correction amount Δθ per deviation rotational speed. For this reason, during idle operation, the absolute value of the ignition timing correction amount per unit rotation deviation is too small in the cylinder-stop mode compared to the all-cylinder mode, and it is not possible to sufficiently correct the rotational deviation. Variations in idle speed due to timing adjustment could not be corrected with good responsiveness, which was a problem. SUMMARY OF THE INVENTION An object of the present invention is to provide an ignition control device for an internal combustion engine with a valve stop mechanism that can stabilize the idle speed with good responsiveness by correcting the ignition timing.
【0006】[0006]
【課題を解決するための手段】上述の目的を達成するた
めに、本発明は内燃機関の動弁系に装着される弁停止機
構を切り換え制御して選択的に全筒モードあるいは休筒
モードで各気筒を駆動する運転モード切り換え制御手段
と、上記エンジンの負荷信号と上記エンジンのエンジン
回転数信号に応じた基本点火時期を算出する基本点火時
期算出手段と、上記エンジン回転数を平滑化した平滑化
済回転数と実エンジン回転数の差分である偏差回転数を
算出する偏差回転数算出手段と、上記エンジンのアイド
ル運転時において上記運転モード情報を取り込み、上記
偏差回転数に応じた点火時期補正量を全筒モード時より
休筒モード時に大きく設定すると共に休筒モード時の進
角側点火時期補正量を遅角側点火時期補正量よりも絶対
値において大きく設定する点火時期補正量算出手段と、
上記基本点火時期を上記各運転モードに応じた点火時期
補正量で補正して目標点火時期を算出する点火時期算出
手段と、上記目標点火時期に上記内燃機関の各気筒の点
火駆動手段を駆動する点火制御手段とを有したことを特
徴とする。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention switches and controls a valve stop mechanism mounted on a valve train of an internal combustion engine to selectively operate in a full cylinder mode or a closed cylinder mode. Operating mode switching control means for driving each cylinder; basic ignition timing calculating means for calculating basic ignition timing according to the load signal of the engine and the engine speed signal of the engine; and smoothing for smoothing the engine speed. Deviation rotation speed calculating means for calculating a deviation rotation speed which is a difference between the converted rotation speed and the actual engine rotation speed, and fetching the operation mode information during idling operation of the engine and correcting ignition timing according to the deviation rotation speed The amount is set larger in the cylinder-stop mode than in the all-cylinder mode, and the advance-side ignition timing correction amount in the cylinder-stop mode is larger in absolute value than the retard-side ignition timing correction amount. A constant ignition timing correction amount calculating means,
Ignition timing calculation means for correcting the basic ignition timing with an ignition timing correction amount corresponding to each operation mode to calculate a target ignition timing, and driving ignition drive means for each cylinder of the internal combustion engine to the target ignition timing. And ignition control means.
【0007】[0007]
【作用】点火時期補正量算出手段が全筒モード及び休筒
モードに応じた各運転モード情報を取り込み、偏差回転
数に応じた点火時期補正量を全筒モード時より休筒モー
ド時に大きく設定すると共に休筒モード時の進角側点火
時期補正量を遅角側点火時期補正量よりも絶対値におい
て大きく設定し、点火時期算出手段が基本点火時期を各
運転モードに応じた点火時期補正量で補正して目標点火
時期を算出し、点火制御手段が目標点火時期に内燃機関
の各気筒の点火駆動手段を駆動するので、偏差回転数を
打ち消すのに必要な点火時期補正量が各運転モード毎に
適確な値として求められ、特に、休筒時の進角側補正量
を大きくして適確な点火時期の補正を行なえる。The ignition timing correction amount calculating means fetches each operation mode information corresponding to the all cylinder mode and the cylinder deactivation mode, and sets the ignition timing correction amount corresponding to the deviation rotation speed to be larger in the cylinder deactivation mode than in the full cylinder mode. At the same time, the advance-side ignition timing correction amount in the cylinder-stop mode is set larger in absolute value than the retard-side ignition timing correction amount, and the ignition timing calculation means sets the basic ignition timing to the ignition timing correction amount corresponding to each operation mode. Since the target ignition timing is calculated by the correction, and the ignition control means drives the ignition drive means of each cylinder of the internal combustion engine to the target ignition timing, the ignition timing correction amount necessary to cancel the deviation rotation speed is set for each operation mode. In particular, it is possible to perform an accurate ignition timing correction by increasing the advance-side correction amount during cylinder deactivation.
【0008】[0008]
【実施例】図1に示したエンジンの点火時期制御装置
は、作動モード切り換え機構付きの直列4気筒エンジン
(以後単にエンジンEと記す)に装着される。このエン
ジンEの吸気通路1は吸気分岐管6と、それに連結され
るサージタンク9及び同タンクと一体の吸気管7と、図
示しないエアクリーナによって構成されている。吸気管
7はその内部にスロットル弁2を枢支し、このスロット
ル弁2の軸201は吸気通路1の外部でスロットルレバ
ー3に連結されている。このスロットルレバー3にはア
クセルペダル(図示せず)に連動するスロットルレバー
3を介してスロットル弁2を第1図中反時計回りの方向
へ回動させるように連結されており、スロットル弁2は
これを閉方向に付勢する戻しばね(図示せず)により、
アクセルケーブルの引張力を弱めると閉じてゆくように
なっている。なお、スロットル弁2には同弁の開度情報
を出力するスロットル開度センサ8が装着されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The engine ignition timing control device shown in FIG. 1 is mounted on an in-line four-cylinder engine (hereinafter simply referred to as engine E) having an operation mode switching mechanism. The intake passage 1 of the engine E includes an intake branch pipe 6, a surge tank 9 connected thereto, an intake pipe 7 integrated with the tank, and an air cleaner (not shown). The intake pipe 7 pivotally supports the throttle valve 2 therein, and the shaft 201 of the throttle valve 2 is connected to the throttle lever 3 outside the intake passage 1. The throttle lever 3 is connected to the throttle lever 3 via a throttle lever 3 linked to an accelerator pedal (not shown) so as to rotate the throttle valve 2 in a counterclockwise direction in FIG. By a return spring (not shown) for urging this in the closing direction,
When the pulling force of the accelerator cable is reduced, it closes. The throttle valve 2 is provided with a throttle opening sensor 8 for outputting information on the opening of the throttle valve.
【0009】他方、スロットル弁2を迂回する吸気バイ
パス路101にはアイドル制御用のアイドル回転数制御
(ISC)バルブ4が装備され、同バルブ4はバネ40
1によって閉弁付勢され、ステッパモータ5によって駆
動される。なお、符号16はアイドル時の暖機補正を冷
却水温に応じて自動的に行うファーストアイドルエアバ
ルブを示す。更に、吸気路1には吸気温度Ta情報を出
力する吸気温センサ14が設けられ、エンジンの暖機温
度としての冷却水温を検出する水温センサ11が設けら
れ、エンジン回転数を点火パルスで検出するエンジン回
転センサ12が設けられ、バッテリー電圧VBを検出す
るバッテリーセンサ20が設けられ、ノック情報を出力
するノックセンサ21が設けられている。更に又、サー
ジタンク9には吸気管圧Pb情報を出力する負圧センサ
10が装着されている。On the other hand, an idle speed control (ISC) valve 4 for idle control is provided on an intake bypass 101 which bypasses the throttle valve 2, and the valve 4 is provided with a spring 40.
1 and is driven by a stepper motor 5. Reference numeral 16 denotes a first idle air valve that automatically performs warm-up correction during idling according to the cooling water temperature. Further, the intake passage 1 is provided with an intake air temperature sensor 14 for outputting information on the intake air temperature Ta, a water temperature sensor 11 for detecting a cooling water temperature as a warm-up temperature of the engine, and detects the engine speed by an ignition pulse. An engine rotation sensor 12 is provided, a battery sensor 20 for detecting a battery voltage VB is provided, and a knock sensor 21 for outputting knock information is provided. Further, the surge tank 9 is provided with a negative pressure sensor 10 for outputting information on the intake pipe pressure Pb.
【0010】エンジンEのシリンダヘッド13には各気
筒に連通可能な吸気路及び排気路がそれぞれ形成され、
各流路は図示しない吸気弁及び排気弁によって開閉され
る。図1の動弁系は弁停止機構を備え、この弁停止機構
は図示しない給排気弁を図示しない低速カムと高速カム
で選択的に駆動して低速モードM−1と高速モードM−
2での運転が出来、しかも適時に常時運転気筒としての
第2気筒(♯2)及び第3気筒(♯3)以外の休筒気筒
としての第1気筒(♯1)と第4気筒(♯4)の各吸排
弁を停止させて休筒モードM−3での運転を可能として
いる。即ち、この動弁系の弁停止機構は図示しない各ロ
ッカアームに所定時に吸排弁の低速カムの作動を停止可
能な油圧式の低速切り換え機構K1と、所定時に吸排弁
の高速カムの作動を停止可能な油圧式の高速切り換え機
構K2とで構成される。ここでの各切り換え機構K1,
K2は図示しないロッカアームとロッカ軸の係合離脱を
図示しない係合ピンを油圧シリンダによって切り換え移
動させ、高低カムとロッカアームの係合離脱を選択的に
行えるという周知の構成を採る。In the cylinder head 13 of the engine E, an intake passage and an exhaust passage which can communicate with each cylinder are formed, respectively.
Each channel is opened and closed by an intake valve and an exhaust valve (not shown). The valve train shown in FIG. 1 includes a valve stop mechanism. The valve stop mechanism selectively drives a supply / exhaust valve (not shown) with a low speed cam and a high speed cam (not shown) to operate in a low speed mode M-1 and a high speed mode M-.
The first cylinder (# 1) and the fourth cylinder (# 1) as the cylinders other than the second cylinder (# 2) and the third cylinder (# 3) as the always operating cylinders can be operated in a timely manner. 4) The respective intake / exhaust valves are stopped to enable operation in the cylinder-stop mode M-3. That is, the valve stop mechanism of this valve train can be operated by a hydraulic low-speed switching mechanism K1 capable of stopping the operation of the low-speed cam of the suction and discharge valve at a predetermined time on each rocker arm (not shown), and stopping the operation of the high-speed cam of the suction and discharge valve at a predetermined time. And a simple hydraulic high-speed switching mechanism K2. Here, each switching mechanism K1,
K2 adopts a well-known configuration in which the engagement / disengagement of the rocker arm (not shown) and the rocker shaft is switched by moving an engagement pin (not shown) by a hydraulic cylinder, and the engagement / disengagement of the elevation cam and the rocker arm can be selectively performed.
【0011】なお、低速切り換え機構K1には油圧回路
22より第1電磁弁26を介して圧油が供給され、高速
切り換え機構K2には油圧回路30より第2電磁弁31
を介して圧油が供給さる。ここで、低速カムによる低速
モードM−1の運転は3方弁である第1電磁弁26と第
2電磁弁31が共にオフで達成され、高速カムによる高
速モードM−2の運転は第1電磁弁26と第2電磁弁3
1が共にオンで達成され、休筒モードM−3の運転は第
1電磁弁26がオン、第2電磁弁31がオフで達成され
る。これら両電磁弁26,31は、後述のエンジンコン
トロールユニット(ECU)15によって駆動制御され
る。更に、図1のシリンダヘッド13には各気筒に燃料
を噴射するインジェクタ17が装着され、各インジェク
タは燃圧調整手段18によって定圧調整された燃料を燃
料供給源19より受け、その噴射駆動制御は、ECU1
5によって成される。The low-speed switching mechanism K1 is supplied with pressure oil from the hydraulic circuit 22 via a first electromagnetic valve 26, and the high-speed switching mechanism K2 is supplied from the hydraulic circuit 30 with a second electromagnetic valve 31.
The pressure oil is supplied via. Here, the operation in the low-speed mode M-1 by the low-speed cam is achieved by turning off both the first solenoid valve 26 and the second electromagnetic valve 31 which are three-way valves, and the operation in the high-speed mode M-2 by the high-speed cam is performed in the first mode. Solenoid valve 26 and second solenoid valve 3
1 are turned on, and the operation in the cylinder-stop mode M-3 is achieved when the first solenoid valve 26 is turned on and the second solenoid valve 31 is turned off. The drive of these solenoid valves 26 and 31 is controlled by an engine control unit (ECU) 15 described later. Further, an injector 17 for injecting fuel into each cylinder is mounted on the cylinder head 13 in FIG. 1, and each injector receives the fuel whose pressure has been adjusted by the fuel pressure adjusting means 18 from a fuel supply source 19. ECU1
5 is performed.
【0012】更に、図1のシリンダヘッド13には各気
筒毎に点火プラグ23が装着され、特に、常時運転気筒
♯2,♯3の両プラグ23は共に結線されて単一の点火
駆動回路内のイグナイタ24に接続され、休筒気筒♯
1,♯4の両プラグ23は共に結線されてイグナイタ2
5に接続される。ここで、点火プラグ23及び点火駆動
回路が点火駆動手段を構成する。更に、点火駆動回路は
ECU15内の一対のタイミング制御回路36(図2に
は一方のみを示した)及び一対のイグナイタ24,25
側の開閉駆動回路241,251で構成される。これら
各開閉駆動回路241,251には開閉時期及び通電時
間を制御する各パワートランジスタ38,38が接続さ
れ、各パワートランジスタ38,38に各イグニッショ
ンコイル37,37が接続される。Further, an ignition plug 23 is mounted on the cylinder head 13 of FIG. 1 for each cylinder. In particular, both plugs 23 of the constantly operating cylinders # 2 and # 3 are connected together to form a single ignition drive circuit. Connected to the igniter 24 of the cylinder
Both the plugs 1 and # 4 are connected together and the igniter 2
5 is connected. Here, the ignition plug 23 and the ignition drive circuit constitute ignition drive means. Further, the ignition drive circuit includes a pair of timing control circuits 36 (only one is shown in FIG. 2) in the ECU 15 and a pair of igniters 24 and 25.
Open / close drive circuits 241, 251. Each of the open / close drive circuits 241 and 251 is connected to each power transistor 38 for controlling the open / close timing and the energizing time, and each of the power transistors 38 and 38 is connected to each ignition coil 37.
【0013】タイミング制御回路36は休筒気筒♯1,
♯4グループと常時運転気筒♯2,♯3グループとにそ
れぞれ設けられ、共にクランク角センサ34の基準信号
(クランク角でθco)と単位クランク角センサ33の
クランク角信号(1°又は2°(Δθc)の単位のパル
ス)によって駆動するもので、図2には休筒気筒♯1,
♯4グループのものを示し、常時運転気筒♯2,♯3の
ものを略した。ここで、基準信号θcoはワンショット
回路Bに出力され、定常運転時において、ワンショット
回路Bは上死点前θco(例えば75°)の基準信号
(オフーオン)によりトリガされ、クランク角信号(1
°又は2°の単位のパルス)を決められた数(点火時期
θco−θadvに相当するディレイタイムt1)だけ
数えた後に通電開始信号を出力するように構成される
(図3参照)。この場合、目標点火時期θadvは後述
する図8のフローチャートのステップp12で求められ
たものである。ワンショット回路Aはその通電開始信号
によりトリガされ、ドエル角(図6のドエル角マップで
求める)θdに相当するクランク角信号を決められた数
だけ数え点火信号を出力するよう構成される。The timing control circuit 36 controls the closed cylinder # 1,
The # 4 group and the always-operated cylinders # 2 and # 3 are provided respectively for the reference signal (θco in crank angle) of the crank angle sensor 34 and the crank angle signal (1 ° or 2 ° (1 ° or 2 °) of the unit crank angle sensor 33). Δθc), and FIG.
The figures for the # 4 group are shown, and those for the constantly operating cylinders # 2 and # 3 are omitted. Here, the reference signal θco is output to the one-shot circuit B. During a steady operation, the one-shot circuit B is triggered by a reference signal (off-on) of θco (for example, 75 °) before the top dead center, and the crank angle signal (1
An energization start signal is output after counting a predetermined number of pulses (in units of ° or 2 °) (delay time t1 corresponding to the ignition timing θco−θadv) (see FIG. 3). In this case, the target ignition timing θadv is obtained in step p12 of the flowchart of FIG. The one-shot circuit A is triggered by the energization start signal, and counts a predetermined number of crank angle signals corresponding to the dwell angle (determined by the dwell angle map in FIG. 6) θd and outputs an ignition signal.
【0014】フリップフロップF・Fはワンショット回
路Bからの通電開始信号によりセットされて、ワンショ
ット回路Aからの点火信号によりリセットされる。更
に、開閉駆動回路251はフリップフロップF・Fによ
るセット時にセット時間だけパワートランジスタ38を
オンさせて、イグニッションコイル37への電流を流さ
せる。イグニッションコイル37はパワートランジスタ
38がオフした時に二次側に高圧電流を生じさせ、この
電流が休筒気筒♯1,♯4の両点火プラグ23に伝えら
れ、休筒気筒グループの点火が行なわれる。同様に、常
時運転気筒♯2,♯3のタイミング制御回路(図示せ
ず)も構成され、開閉駆動回路241及びパワートラン
ジスタ38の駆動に応じて目標点火時期θadvにイグ
ニッションコイル37の二次側高圧電流が常時運転気筒
♯2,♯3の点火プラグ23に供給され、常時運転気筒
のグループ点火が行なわれる。なお、休筒気筒♯1,♯
4のグループ点火時期及び常時運転気筒♯2,♯3のグ
ループ点火はほぼクランク角180°の間隔を保ってグ
ループ毎に交互に行われている。The flip-flops FF are set by an energization start signal from the one-shot circuit B and reset by an ignition signal from the one-shot circuit A. Further, the opening / closing drive circuit 251 turns on the power transistor 38 for the set time when the flip-flop FF is set, and causes the current to flow to the ignition coil 37. When the power transistor 38 is turned off, the ignition coil 37 generates a high-voltage current on the secondary side, and this current is transmitted to both the spark plugs 23 of the cylinders # 1 and # 4, thereby igniting the cylinder group. . Similarly, a timing control circuit (not shown) for the constantly operating cylinders # 2 and # 3 is also configured, and the secondary side high voltage of the ignition coil 37 is set to the target ignition timing θadv according to the driving of the open / close drive circuit 241 and the power transistor 38. The current is supplied to the spark plugs 23 of the constantly operating cylinders # 2 and # 3, and the group ignition of the constantly operating cylinders is performed. It should be noted that the cylinders in the closed cylinders # 1, # 1
The group ignition timing of No. 4 and the group ignition of the constantly operating cylinders # 2 and # 3 are alternately performed for each group while maintaining an interval of approximately 180 ° crank angle.
【0015】エンジンコントロールユニット(ECU)
15はマイクロコンピュータによってその要部が形成さ
れ、エンジンEの運転情報に応じて後述のメインルーチ
を実行すると共に周知の燃料噴射量制御、等の周知の制
御処理に加え、点火時期算出ルーチン及び点火制御ルー
チンでの各制御を行う。ここでのECU15は、水温セ
ンサ11とスロットル開度センサ8と吸気温センサ14
とバッテリーセンサ20とノックセンサ21とより冷却
水温Twとスロットル開度θsと吸気温度Taとバッテ
リー電圧VBとノック信号Knとを検出し所定のデータ
記憶エリアにストアする。更に、ECU15は偏差回転
数算出手段としてエンジン回転数を平滑化した平滑化済
回転数Ne1nと実エンジン回転数Nenの差分である
偏差回転数ΔNeを算出し、点火時期補正量算出手段と
して、エンジンのアイドル運転時において運転モード信
号(M−1,M−2,M−3)を取り込み、偏差回転数
ΔNeに応じた点火時期補正量Δθを全筒モード時より
休筒モード時に大きく設定すると共に休筒モード時の進
角側点火時期補正量を遅角側点火時期補正量よりも絶対
値において大きく設定し、基本点火時期算出手段として
エンジンの負荷信号である吸気管負圧Pbとエンジン回
転数Neに応じた基本点火時期θbを算出し、基本点火
時期θbを各運転モードに応じた点火時期補正量Δθで
補正して目標点火時期θadvを算出する点火時期算出
手段と、点火制御手段として目標点火時期θadvに内
燃機関の各気筒の点火駆動手段としての点火プラグ23
及び点火駆動回路(タイミング制御回路36及び各イグ
ナイタ24,25)を駆動するという機能を有する。Engine control unit (ECU)
Reference numeral 15 denotes a main part formed by a microcomputer, which executes a main routine, which will be described later, according to operation information of the engine E, performs well-known control processing such as well-known fuel injection amount control, and performs an ignition timing calculation routine and ignition control. Perform each control in the routine. The ECU 15 includes a water temperature sensor 11, a throttle opening sensor 8, and an intake air temperature sensor 14.
The cooling water temperature Tw, the throttle opening degree θs, the intake air temperature Ta, the battery voltage VB, and the knock signal Kn are detected by the battery sensor 20 and the knock sensor 21 and stored in a predetermined data storage area. Further, the ECU 15 calculates a deviation rotation speed ΔNe, which is a difference between the smoothed rotation speed Ne1n obtained by smoothing the engine rotation speed and the actual engine rotation speed Nen, as a deviation rotation speed calculation means. During idle operation of the engine, the operation mode signals (M-1, M-2, M-3) are taken in, and the ignition timing correction amount Δθ corresponding to the deviation rotation speed ΔNe is set to be larger in the closed cylinder mode than in the full cylinder mode, and The advance-side ignition timing correction amount in the cylinder-stop mode is set to be larger in absolute value than the retard-side ignition timing correction amount, and the intake pipe negative pressure Pb, which is an engine load signal, and the engine speed are used as basic ignition timing calculation means. Ne, the basic ignition timing θb is calculated, and the basic ignition timing θb is corrected by the ignition timing correction amount Δθ corresponding to each operation mode to calculate the target ignition timing θadv. Means out, the spark plug 23 as an ignition driving means for each cylinder of the internal combustion engine to the target ignition timing θadv as the ignition control means
And a function of driving an ignition drive circuit (timing control circuit 36 and igniters 24 and 25).
【0016】ここで本発明の一実施例としての弁停止機
構付き内燃機関の点火制御装置を図7乃至図9の制御プ
ログラムに沿って説明する。ECU15は図示しないメ
インスイッチのキーオンによりメインルーチンでの制御
に入る。ここではまず、各機能のチェック、初期値セッ
ト等の初期機能セットがなされ、続いて、エンジンの各
種運転情報を読み取り、その上でステップs2に進む。
そして、エンジン回転数Nと吸気管負圧Pbより運転域
を算出する図示しない運転域マップより燃料カットゾー
ンを判定し、燃料カット域ではステップs4に進み、空
燃比フィードバックFBFLGをクリアし、燃料カット
FCFLGを1としてリターンする。Here, an ignition control device for an internal combustion engine with a valve stop mechanism according to one embodiment of the present invention will be described with reference to control programs shown in FIGS. The ECU 15 starts the control in the main routine by turning on a main switch (not shown). Here, first, each function is checked, an initial function set such as an initial value set is performed, and then, various operation information of the engine is read, and then the process proceeds to step s2.
Then, a fuel cut zone is determined from an operating range map (not shown) that calculates an operating range from the engine speed N and the intake pipe negative pressure Pb. In the fuel cut range, the process proceeds to step s4, where the air-fuel ratio feedback FBFLG is cleared, and the fuel cut is determined. FCFLG is set to 1 and the process returns.
【0017】他方、ステップs2で燃料カット域でない
としてステップs3に達すると燃料カットFCFLGを
クリアし、続いて空燃比フィードバック条件を満たして
いるか否かを判定し、パワー運転域のような過渡運転域
の時点や暖機完了前の時点ではステップs7において、
現運転情報(Pb,Ne)に応じた空燃比補正係数KM
APや、冷却水温Twに応じた暖機増量補正係数Kaを
適宜の暖機増量補正係数算出マップより算出し、これら
の値をアドレスKAFの記憶エリアにストアし、ステッ
プs10に進む。ステップs6より空燃比フィードバッ
ク条件を満たしていると現運転情報(Pb,Ne)に応
じた目標空燃比を算出し、同空燃比を達成できる燃料量
補正係数KFBを算出する。ステップs9ではアドレスK
AFの記憶エリアに燃料量補正係数KFBをストアし、ス
テップs10に達する。ここでは、その他の燃料噴射パ
ルス幅補正係数KDTや、燃料噴射弁のデッドタイムの
補正値TDを運転条件に応じて設定し、更に、目標点火
時期θadv算出に用いる各補正係数を算出する。ここ
で補正値として算出されるのは、水温低下に応じて進角
させる水温補正値θwt、スロットル弁開度θsを微分
しその微分値Δθs相当の加速リタード−θacc、吸
気温低下に応じて進角させる吸気温補正値θat、ノッ
ク信号Knの増加に応じてノックリタード−θk値があ
り、更にバッテリー電圧VBの低下に応じて通電時間を
増加させるバッテリー補正値tbや点火通電時間相当の
ドエル角θdがエンジン回転数Neに応じて増加するよ
うに、図6のドエル角算出マップによって算出される。On the other hand, if it is determined in step s2 that the fuel cut is not in the fuel cut range and the process reaches step s3, the fuel cut FCFLG is cleared, and it is determined whether the air-fuel ratio feedback condition is satisfied. At the time of or before the completion of warm-up, at step s7,
Air-fuel ratio correction coefficient KM according to current operation information (Pb, Ne)
The warm-up increase correction coefficient Ka corresponding to the AP and the cooling water temperature Tw is calculated from an appropriate warm-up increase correction coefficient calculation map, these values are stored in the storage area of the address KAF, and the process proceeds to step s10. If the air-fuel ratio feedback condition is satisfied from step s6, a target air-fuel ratio is calculated according to the current operation information (Pb, Ne), and a fuel amount correction coefficient KFB that can achieve the air-fuel ratio is calculated. In step s9, the address K
Store the fuel amount correction coefficient K FB in the storage area of the AF, it reaches step s10. Here, the other fuel injection pulse width correction coefficient KDT and the correction value TD of the dead time of the fuel injection valve are set in accordance with the operating conditions, and further, each correction coefficient used for calculating the target ignition timing θadv is calculated. Here, the correction value is calculated as a water temperature correction value θwt to be advanced in accordance with a decrease in the water temperature, an acceleration retard −θacc corresponding to the differential value Δθs corresponding to the differential value Δθs, and the advance in accordance with a decrease in the intake air temperature. There is an intake air temperature correction value θat to be turned, a knock retardation −θk value according to an increase in the knock signal Kn, a battery correction value tb for increasing the energization time according to a decrease in the battery voltage VB, and a dwell angle corresponding to the ignition energization time. The dwell angle calculation map in FIG. 6 is calculated so that θd increases in accordance with the engine speed Ne.
【0018】更に、ステップs11に達すると、周知の
気筒作動切り換え処理を実行する。例えば、現作動モー
ドを低高電磁弁26,31のオンオフ状態より検出し、
エンジン運転情報、特にエンジン回転数Ne,軸トルク
(Pb,Neより別ルーチンで算出しておく)Teより
図5に示すような休筒運転域A1にあるか否かを各閾値
Ne2、に基づき休筒モードを設定し、更に、休筒条件
不成立ではエンジン回転数NeがNe1(図5参照)よ
り小さいと低速モードを、そうでないと高速モードをそ
れぞれ設定する。そして、休筒モードでは第1電磁弁2
6のみをオンさせ第1、第4気筒♯1,♯4の休筒切り
換え処理を成し、低速モードM−1では両電磁弁26,
31をオフさせ、全筒を低速モードで駆動し、高速モー
ドM−2では両電磁弁26,31をオンさせて全筒を高
速モードで駆動させる。なお、休筒運転モードに入ると
その指令を休筒フラグICFLGの切り換えによって行
う。この後、燃料供給制御処理等のその他のメインルー
チンでの制御を行なってリターンする。Further, upon reaching step s11, a well-known cylinder operation switching process is executed. For example, the current operation mode is detected from the on / off state of the low / high solenoid valves 26, 31.
Based on the engine operation information, in particular, the engine speed Ne and the shaft torque (calculated by another routine from Pb and Ne) Te, it is determined based on each threshold Ne2 whether or not the engine is in the cylinder deactivated operation range A1 as shown in FIG. The cylinder-stop mode is set, and if the cylinder-stop condition is not satisfied, the low-speed mode is set if the engine speed Ne is smaller than Ne1 (see FIG. 5), and the high-speed mode is set otherwise. In the cylinder-stop mode, the first solenoid valve 2
6 is turned on to perform a cylinder switching process for the first and fourth cylinders # 1 and # 4. In the low-speed mode M-1, both solenoid valves 26 and
In the high-speed mode M-2, both solenoid valves 26 and 31 are turned on to drive all cylinders in the high-speed mode. When the cylinder-stop operation mode is entered, the command is issued by switching the cylinder-stop flag ICFLG. Thereafter, control is performed in other main routines such as a fuel supply control process, and the routine returns.
【0019】ここでメインルーチンの途中で行なう燃料
供給制御は、たとえば、吸入空気量に基づく基本燃料パ
ルス幅を算出し、これに空燃比その他の補正係数を掛け
てインジェクタ駆動時間を決定し、休筒時(後述のイン
ジェクタ停止指令)には休筒気筒♯1,♯4を除く常時
運転気筒♯2,♯3のみのインジェクタ17を駆動さ
せ、全気筒運転時には全気筒のインジェクタ17を駆動
するという周知のインジェクタ駆動制御処理をおこな
う。このようなメインルーチンの実行途中において図8
の点火時期算出ルーチンや図9の点火制御が実行され
る。Here, the fuel supply control performed in the middle of the main routine is performed, for example, by calculating a basic fuel pulse width based on the intake air amount, multiplying the basic fuel pulse width by an air-fuel ratio and other correction coefficients to determine an injector driving time, and During cylinder operation (injection stop command to be described later), the injectors 17 of only the always-operated cylinders # 2 and # 3 except the cylinders # 1 and # 4 are driven, and the injectors 17 of all cylinders are driven during all-cylinder operation. A well-known injector drive control process is performed. During the execution of such a main routine, FIG.
And the ignition control of FIG. 9 is executed.
【0020】即ち、図8の点火時期算出ルーチンは、各
気筒が上死点前75°(75°BTDC)に達する毎
(クランク角180°)にオフよりオンに基準信号θc
oが変化するのに基づき実行される。ここでのステップ
p1では負圧センサ10及びエンジン回転センサ12の
各検出信号に基づき吸気管負圧Pbとエンジン回転数N
eとが算出され、更に、予め設定されている基本点火時
期算出マップで現在の吸気管負圧Pbとエンジン回転数
Neとに相当する基本点火時期θbが算出される。 こ
の後、ステップp3に進み、ここではエンジン回転数N
enが設定値であるアイドル判定値Neaより低いか否
か判断され、高いとステップp4に達して非アイドル時
の補正ゲインKinjを設定値(例えばここではゼロ)
にセットし、ステップp11に進む。That is, in the ignition timing calculation routine of FIG. 8, each time each cylinder reaches 75 ° (75 ° BTDC) before top dead center (crank angle 180 °), the reference signal θc is switched from OFF to ON.
It is executed based on the change of o. In step p1, the intake pipe negative pressure Pb and the engine speed N are determined based on the detection signals of the negative pressure sensor 10 and the engine speed sensor 12.
is calculated, and further, a basic ignition timing θb corresponding to the current intake pipe negative pressure Pb and the engine speed Ne is calculated from a preset basic ignition timing calculation map. Thereafter, the process proceeds to step p3 where the engine speed N
It is determined whether or not en is lower than an idle determination value Nea which is a set value. If it is higher, step p4 is reached and the non-idle correction gain Kinj is set to a set value (for example, zero in this case).
And proceeds to step p11.
【0021】他方、ステップp3でアイドル時にあると
してステップp5に達すると、まず、前回までの平滑化
済回転数Ne1(n-1)に今回のエンジン回転数Nenを
所定の取り込み比率αで取り込んで新たに今回の平滑化
済回転数Ne1nを算出し、続いて平滑化済回転数Ne
1nと今回エンジン回転数Nenの差分である偏差回転
数ΔNeを(2)式に沿って算出する(図4参照)。 Ne1n=Ne1(n-1)×α+(1−α)×Nen・・・・・・(1) ΔNe=Ne1n−Nen・・・・・・(2) この後、ステップp6に進み、ここでは休筒モードM−
1か否か判断し、非休筒時である低速、高速モード時
(M−1,M−2)時にはステップp8に進んで、全筒
時補正ゲインKinja(設定値)を選択し、ステップ
p11に進む。On the other hand, if it is determined that the engine is idling at step p3 and the process reaches step p5, first, the current engine speed Nen is taken into the smoothed speed Ne1 (n-1) up to the previous time at a predetermined take-in ratio α. The current smoothed rotation speed Ne1n is newly calculated, and subsequently, the smoothed rotation speed Ne1n is calculated.
The difference rotational speed ΔNe, which is the difference between 1n and the current engine rotational speed Nen, is calculated according to equation (2) (see FIG. 4). Ne1n = Ne1 (n-1) .times..alpha. + (1-.alpha.). Times.Nen (1) .DELTA.Ne = Ne1n-Nen (2) Thereafter, the process proceeds to step p6. Cylinder rest mode M-
It is determined whether it is 1 or not, and in the low speed and high speed modes (M-1 and M-2) when the cylinder is not closed, the process proceeds to Step p8, where the correction gain Kinja (set value) for all cylinders is selected, and Step p11 is performed. Proceed to.
【0022】他方、ステップp6で休筒時と判断される
と、ステップp7に達する。ここでは現在の回転偏差Δ
Neの正負を判断し、回転偏差ΔNeが正では回転低下
(図4に実線で示したB域)であるとしてステップp1
0に進んで進角側補正ゲインKinjbを選択し、回転
偏差ΔNeが負では回転上昇(図4に二点鎖線で示した
R域)であるとしてステップp9に進んで遅角側補正ゲ
インKinjrを選択し、それぞれステップp11に進
む。なお、ここでの全筒時補正ゲインKinjaや進角
側補正ゲインKinjb及び遅角側補正ゲインKinj
rは各エンジンの駆動データに応じて設定されるもの
で、例えば、図10のアイドル回転時の点火時期−エン
ジン回転数特性線図に基づき、適宜設定される。ここで
は特に全筒時補正ゲインKinja(=Δθa/ΔN
e)より休筒時の進角側補正ゲインKinjb(=Δθ
b/ΔNe)及び遅角側補正ゲイン−Kinjrの絶対
値が十分に大きく設定される。その上で、休筒時には進
角側補正ゲインKinjb(=Δθb/ΔNe)を遅角
側補正ゲインKinjrよりも絶対値において大きく設
定する。On the other hand, if it is determined in step p6 that the cylinder is to be closed, the process reaches step p7. Here, the current rotational deviation Δ
It is determined whether Ne is positive or negative. If the rotation deviation ΔNe is positive, it is determined that the rotation has decreased (the region B indicated by the solid line in FIG. 4), and step p1 is performed.
Then, the program proceeds to step p9 to select the advance-side correction gain Kinjb. If the rotation deviation ΔNe is negative, it is determined that the rotation is increasing (R region indicated by a two-dot chain line in FIG. 4). And proceed to step p11. Here, the all-cylinder correction gain Kinja, the advance correction gain Kinjb, and the retard correction gain Kinj
r is set in accordance with the drive data of each engine, and is set as appropriate based on, for example, an ignition timing-engine speed characteristic diagram at the time of idling in FIG. Here, in particular, the correction gain Kinja at the time of all cylinders (= Δθa / ΔN)
e), the advanced angle correction gain Kinjb (= Δθ
b / ΔNe) and the absolute value of the retard correction gain −Kinjr are set to be sufficiently large. In addition, when the cylinder is closed, the advance correction gain Kinjb (= Δθb / ΔNe) is set to be larger in absolute value than the retard correction gain Kinjr.
【0023】これによって、アイドル運転時のエンジン
回転数のずれ修正において、全筒時に比べて休筒時にお
ける回転偏差に対する点火時期の補正幅を比較的大きく
して進角側あるいは遅角側に修正し、点火時期補正によ
るアイドル回転数の補正の応答性の低下を防止し、休筒
時のアイドル回転数のバラツキ補正を応答性良く補正す
る。特に、休筒時の進角側補正幅を遅角側補正幅より大
きく設定しておき、アイドル回転低下時に応答性良くア
イドル回転を引き上げ、エンスト防止を図っている。In this manner, in correcting the deviation of the engine speed during idling operation, the width of correction of the ignition timing with respect to the rotational deviation at the time of cylinder deactivation is made relatively large as compared with the case of all cylinders, and is corrected to be advanced or retarded. In addition, the responsiveness of the correction of the idle speed due to the ignition timing correction is prevented from being lowered, and the variation correction of the idle speed at the time of cylinder deactivation is corrected with good responsiveness. In particular, the advance angle side correction width at the time of cylinder rest is set to be larger than the retard angle side correction width, and the idle rotation is raised with good responsiveness when the idle rotation decreases, thereby preventing engine stall.
【0024】ステップp11では現在の補正ゲインKi
njとして今回選択された補正ゲインKinja,Ki
njb,Kinjrを取り込み、このKinjに回転偏
差ΔNeを乗算して、点火時期補正量Δθを算出し、ス
テップp12に進む。そしてステップp12において、
基本点火時期θb、水温補正値θwt、加速リタード−
θacc、吸気温低下に応じて進角させる吸気温補正値
θat、点火時期補正量Δθを取り込み、その上で、目
標点火時期θadvの算出を下記(3)式で実行する。 θadv=θb+θwt+θat+Kinj×ΔNe−θacc・・・(3) この後、ステップp13ではノック信号Knの増加に応
じてノックリタード−θk値だけ目標点火時期θadv
を遅角処理し、ステップp14では前回平滑化済回転数
Ne1(n-1)の記憶エリアを現平滑化済回転数Ne1n
で書替え、メインルーチンにリターンする。なお、ノッ
クリタードマップは予め設定しておく。図9の点火制御
ルーチンは、メインルーチンの途中で上死点前75°
(75°BTDC)に達する毎(クランク角180°)
にオフよりオンに基準信号θcoが変化するのに基づき
メインルーチンに割込みをかけて実行される。ここでの
ステップq1では所定のデータが取り込まれ、ステップ
q2では最新の目標点火時期θadv及び最新のドエル
角θdを各タイミング制御回路36にセットし、メイン
ルーチンにリターンする。In step p11, the current correction gain Ki
The correction gain Kinja, Ki selected this time as nj
njb and Kinjr are fetched, and Kinj is multiplied by the rotation deviation ΔNe to calculate an ignition timing correction amount Δθ, and the routine proceeds to step p12. Then, in step p12,
Basic ignition timing θb, water temperature correction value θwt, acceleration retard
The intake temperature correction value θat, which is advanced according to the intake air temperature decrease, and the ignition timing correction amount Δθ are taken in, and the calculation of the target ignition timing θadv is executed by the following equation (3). .theta.adv = .theta.b + .theta.wt + .theta.at + Kinj.times.Ne-.theta.acc (3) Thereafter, in step p13, the target ignition timing .theta.adv by the knock retard -.theta.k value in accordance with the increase of the knock signal Kn.
Is retarded, and in step p14, the storage area of the previous smoothed rotation speed Ne1 (n-1) is stored in the current smoothed rotation speed Ne1n.
And return to the main routine. Note that the knock retard map is set in advance. The ignition control routine of FIG. 9 is performed at 75 ° before the top dead center in the middle of the main routine.
(75 ° BTDC) (Crank angle 180 °)
The main routine is interrupted and executed based on the change of the reference signal θco from off to on. In step q1, predetermined data is fetched. In step q2, the latest target ignition timing θadv and the latest dwell angle θd are set in each timing control circuit 36, and the process returns to the main routine.
【0025】ここでは常時運転気筒♯2,♯3のグルー
プ点火及び休筒気筒♯1,♯4のグループ点火がイグナ
イタ24,25の駆動によっておこなわれ、クランク角
180°経過毎に各イグナイタが駆動すると各グループ
の一方が圧縮上死点近傍で、他方が排気上死点近傍で点
火処理が交互に成される。Here, the group ignition of the constantly operating cylinders # 2 and # 3 and the group ignition of the cylinders # 1 and # 4 are performed by driving the igniters 24 and 25, and each igniter is driven every time the crank angle elapses 180 °. Then, the ignition process is alternately performed with one of the groups near the compression top dead center and the other near the exhaust top dead center.
【0026】[0026]
【発明の効果】以上のように、この発明はアイドル運転
時において、アイドル回転数の偏差を修正する際に、全
筒モード時と比べて休筒モード時には単位回転偏差当た
りの点火時期補正量の絶対値を大きく設定でき、これに
よって、従来のような休筒時の点火時期補正量不足によ
るアイドル回転数のバラツキ補正時の応答性の低さを補
うことができ、特に、休筒時の進角側補正幅を遅角側補
正幅より大きく設定したので、アイドル回転低下時に応
答性良くアイドル回転を引き上げ、エンスト防止を図
れ、この点でも応答性良くアイドル回転を安定化させる
ことができる。As described above, according to the present invention, when correcting the deviation of the idling speed during the idling operation, the ignition timing correction amount per unit rotation deviation in the cylinder deactivated mode is smaller than that in the all cylinder mode. The absolute value can be set to a large value, which makes it possible to compensate for the low responsiveness at the time of correcting the variation in the idling speed due to the insufficient amount of correction of the ignition timing at the time of cylinder deactivation as in the conventional case. Since the angle-side correction width is set to be larger than the retard-side correction width, the idle rotation can be raised with good responsiveness when the idling speed decreases, and engine stall can be prevented. In this regard, the idle speed can be stabilized with good responsiveness.
【図1】本発明の一実施例としての内燃機関の点火制御
装置の全体構成図である。FIG. 1 is an overall configuration diagram of an ignition control device for an internal combustion engine as one embodiment of the present invention.
【図2】図1の点火時期制御装置内の点火駆動回路のブ
ロック図である。FIG. 2 is a block diagram of an ignition drive circuit in the ignition timing control device of FIG. 1;
【図3】図1の点火時期制御装置内の点火駆動回路の経
時的作動を表す線図である。FIG. 3 is a diagram showing a temporal operation of an ignition drive circuit in the ignition timing control device of FIG. 1;
【図4】図1の点火時期制御装置の行なうアイドル回転
数のバラツキとその際の点火時期の補正量の変化を経時
的に表す線図である。FIG. 4 is a graph showing the variation of the idle speed performed by the ignition timing control device of FIG. 1 and the change of the correction amount of the ignition timing at that time with time.
【図5】図1の点火時期制御装置が装着された内燃機関
の運転域算出マップの特性線図である。FIG. 5 is a characteristic diagram of an operating range calculation map of an internal combustion engine equipped with the ignition timing control device of FIG. 1;
【図6】図1の点火時期制御装置が用いるドエル角算視
マップの特性線図である。FIG. 6 is a characteristic diagram of a dwell angle calculation map used by the ignition timing control device of FIG. 1;
【図7】図1の点火時期制御装置が行なうメインルーチ
ンのフローチャートである。FIG. 7 is a flowchart of a main routine performed by the ignition timing control device of FIG. 1;
【図8】図1の点火時期制御装置が行なう点火時期算出
ルーチンのフローチャートである。FIG. 8 is a flowchart of an ignition timing calculation routine performed by the ignition timing control device of FIG. 1;
【図9】図1の点火時期制御装置が行なう点火制御ルー
チンのフローチャートである。FIG. 9 is a flowchart of an ignition control routine performed by the ignition timing control device of FIG. 1;
【図10】内燃機関のアイドル時における点火時期−エ
ンジン回転数の特性線図である。FIG. 10 is a characteristic diagram of ignition timing-engine speed during idling of the internal combustion engine.
2 スロットル弁 8 スロットル開度センサ 10 吸気管負圧センサ 12 エンジン回転センサ 15 ECU 17 インジェクタ 23 点火プラグ 24 イグナイタ 25 イグナイタ 33 単位クランク角センサ 34 クランク角センサ 36 タイミング制御回路 θadv 目標点火時期 E エンジン Reference Signs List 2 throttle valve 8 throttle opening sensor 10 intake pipe negative pressure sensor 12 engine rotation sensor 15 ECU 17 injector 23 spark plug 24 igniter 25 igniter 33 unit crank angle sensor 34 crank angle sensor 36 timing control circuit θadv target ignition timing E engine
Claims (1)
を切り換え制御して選択的に全筒モードあるいは休筒モ
ードで各気筒を駆動する運転モード切り換え制御手段
と、上記エンジンの負荷信号と上記エンジンのエンジン
回転数信号に応じた基本点火時期を算出する基本点火時
期算出手段と、上記エンジン回転数を平滑化した平滑化
済回転数と実エンジン回転数の差分である偏差回転数を
算出する偏差回転数算出手段と、上記エンジンのアイド
ル運転時において上記運転モード情報を取り込み、上記
偏差回転数に応じた点火時期補正量を全筒モード時より
休筒モード時に大きく設定すると共に休筒モード時の進
角側点火時期補正量を遅角側点火時期補正量よりも絶対
値において大きく設定する点火時期補正量算出手段と、
上記基本点火時期を上記各運転モードに応じた点火時期
補正量で補正して目標点火時期を算出する点火時期算出
手段と、上記目標点火時期に上記内燃機関の各気筒の点
火駆動手段を駆動する点火制御手段とを有したことを特
徴とする弁停止機構付き内燃機関の点火制御装置。An operation mode switching control means for switching and controlling a valve stop mechanism mounted on a valve train of an internal combustion engine to selectively drive each cylinder in an all-cylinder mode or a closed-cylinder mode, and a load on the engine. A basic ignition timing calculating means for calculating a basic ignition timing according to the signal and an engine speed signal of the engine; and a deviation speed which is a difference between a smoothed speed obtained by smoothing the engine speed and an actual engine speed. A rotational speed calculating means for calculating the engine speed, fetching the operation mode information during the idling operation of the engine, and setting the ignition timing correction amount corresponding to the rotational speed difference to be larger in the cylinder-stop mode than in the full-cylinder mode. Ignition timing correction amount calculation means for setting the advance side ignition timing correction amount in the cylinder mode to be larger in absolute value than the retard side ignition timing correction amount,
Ignition timing calculation means for correcting the basic ignition timing with an ignition timing correction amount corresponding to each operation mode to calculate a target ignition timing, and driving ignition drive means for each cylinder of the internal combustion engine to the target ignition timing. An ignition control device for an internal combustion engine with a valve stop mechanism, comprising: ignition control means.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29027192A JP2697530B2 (en) | 1992-10-28 | 1992-10-28 | Ignition control device for internal combustion engine with valve stop mechanism |
PCT/JP1993/001386 WO1994008134A1 (en) | 1992-09-29 | 1993-09-29 | Controlling device for multi-cylinder internal combustion engine |
KR1019940701730A KR0137314B1 (en) | 1992-09-29 | 1993-09-29 | Controlling apparatus of multi-cylinder internal combustion |
US08/244,291 US5542389A (en) | 1992-09-29 | 1993-09-29 | Control system for multi-cylinder internal combustion engine |
EP93921082A EP0615066B1 (en) | 1992-09-29 | 1993-09-29 | Controlling device for multi-cylinder internal combustion engine |
DE69317253T DE69317253T2 (en) | 1992-09-29 | 1993-09-29 | CONTROL DEVICE FOR A MULTI-CYLINDER INTERNAL INTERNAL COMBUSTION ENGINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29027192A JP2697530B2 (en) | 1992-10-28 | 1992-10-28 | Ignition control device for internal combustion engine with valve stop mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06137244A JPH06137244A (en) | 1994-05-17 |
JP2697530B2 true JP2697530B2 (en) | 1998-01-14 |
Family
ID=17753978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29027192A Expired - Lifetime JP2697530B2 (en) | 1992-09-29 | 1992-10-28 | Ignition control device for internal combustion engine with valve stop mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2697530B2 (en) |
-
1992
- 1992-10-28 JP JP29027192A patent/JP2697530B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06137244A (en) | 1994-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2697458B2 (en) | Engine ignition timing control device | |
US6779508B2 (en) | Control system of internal combustion engine | |
US6907871B2 (en) | Ignition timing control system and method for variable-cylinder internal combustion engine as well as engine control unit | |
US7886712B2 (en) | Method and device for operating an internal combustion engine | |
JP2755018B2 (en) | Air intake amount calculation device for engine with intake and exhaust valve stop mechanism | |
JPH1068347A (en) | Control device for cylinder fuel injection spark ignition type internal combustion engine | |
JP4140242B2 (en) | Control device for internal combustion engine | |
JP3186589B2 (en) | Ignition timing control system for in-cylinder injection spark ignition internal combustion engine | |
US5542389A (en) | Control system for multi-cylinder internal combustion engine | |
JP3346806B2 (en) | Knock noise avoidance device for engine with variable valve drive mechanism | |
US4718016A (en) | Method of and system for controlling idling speed in electronically controlled engine | |
JP2697530B2 (en) | Ignition control device for internal combustion engine with valve stop mechanism | |
JP2697531B2 (en) | Ignition control device for internal combustion engine with valve stop mechanism | |
JPH09310627A (en) | Torque reduction control device for automatic transmission | |
JP2782651B2 (en) | Engine control device | |
JP4035996B2 (en) | Control device for internal combustion engine | |
JP3726445B2 (en) | Control device for internal combustion engine | |
JPH0972225A (en) | Continuously variable valve timing controller | |
JPH1089157A (en) | Exhaust gas reflux quantity control device for engine | |
JP2003120374A (en) | Control method for internal combustion engine | |
US20020117147A1 (en) | Ignition timing control apparatus for internal combustion engine | |
JPH0450446A (en) | Idling engine speed control method for internal combustion engine | |
JP3953633B2 (en) | Control device for internal combustion engine | |
JPS61247837A (en) | Air-fuel ratio controller for internal-combustion engine | |
JPH0663466B2 (en) | Internal combustion engine speed control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970819 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 16 |