JP2695067B2 - 人物の顔のデータの抽出方法及び露光量決定方法 - Google Patents
人物の顔のデータの抽出方法及び露光量決定方法Info
- Publication number
- JP2695067B2 JP2695067B2 JP11874491A JP11874491A JP2695067B2 JP 2695067 B2 JP2695067 B2 JP 2695067B2 JP 11874491 A JP11874491 A JP 11874491A JP 11874491 A JP11874491 A JP 11874491A JP 2695067 B2 JP2695067 B2 JP 2695067B2
- Authority
- JP
- Japan
- Prior art keywords
- divided
- face
- color
- data
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Exposure In Printing And Copying (AREA)
Description
法及び露光量決定方法に係り、より詳しくは、カラー原
画像をカラー複写材料または黒白複写材料に複写すると
きに使用する、人物の顔の濃度データを抽出する方法及
びこの方法を利用した露光量決定方法に関する。
真を観賞するときに最も注目される部位は、人物の顔で
あり、品質の良い写真を作成するためには人物の顔の色
を適正な色に焼付ける必要がある。
領域をライトペンで指定して人物の顔の濃度データを抽
出し、この抽出した濃度データに基づいて顔の色が適正
に焼付けられるように露光量を決定している。このよう
な技術としては、特開昭62−115430号公報、特
開昭62−115431号公報、特開昭62−1154
32号公報、特開昭62−189456号公報、特開昭
62−189457号公報、特開昭63−138340
号公報、特開昭63−178222号公報に記載のもの
がある。
毎にオペレータがライトペンで顔領域を指定しなければ
ならないため、焼付作業に時間がかかる、という問題が
ある。また、オペレータが目視して顔領域を指定しなけ
ればならないため、無人化が困難である。
特開昭52−156625号公報、特開昭53−123
30号公報、特開昭53−145620号公報、特開昭
53−145621号公報、特開昭53−145622
号公報には、肌色データを抽出することによって人物の
顔のデータを抽出する以下の方法が記載されている。す
なわち、カラー原画像を多数の測光点に分割すると共に
各測光点をR(赤)、G(緑)、B(青)の3色に分解
して測光し、測光データから計算した各測光点の色が肌
色範囲内か否か判断する。そして、肌色範囲と判断され
た測光点のクラスタ(群)を顔の濃度データとする。し
かしながら、この方法では肌色範囲内の色を顔の濃度デ
ータと仮定しているため、地面、木の幹、洋服等の肌色
または肌色に近似した色をした顔以外の部位も顔の濃度
データとして抽出されてしまう。また、同一被写体を同
一条件で撮影した場合であってもフィルム種によって撮
影画像の色味が異るため、フィルム種が異ると顔の濃度
データを自動的に抽出できないことがある。更に、被写
体を照明する光源の色が異ると撮影画像の色味が異る
(例えば、蛍光灯を光源として撮影した画像は緑味にな
る)ため、光源色が異ると顔の濃度データを自動的に抽
出できないことがある。
問題点を解決するためには、光源色補正を行ってから肌
色範囲の測光データを抽出すればよい。光源としては、
太陽光、蛍光灯、タングステン光に大別できるが、太陽
光は季節、時間帯によって色味が異り、また季節や時間
帯が同じでも直接光か間接光かによって色味が異る。ま
た、蛍光灯等の人工光は製品の多種多様化に伴い様々な
色味がある。従って、光源の各々について光源種を特定
して光源補正を行うのは困難である。また、仮に光源補
正が完全に行えたとしても地面や木の幹等の肌色または
肌色に近似した部位を抽出しないようにすることはでき
ず、更にフィルム種が異ったときに対処することができ
ない。
れたもので、ネガフィルム等のカラー原画像から人物の
顔のデータのみを高い確度で自動的に抽出することがで
きる人物の顔のデータ抽出方法及びこの方法を利用した
露光量決定方法を提供することを目的とする。
に請求項1の発明は、カラー原画像を多数画素に分割し
て各画素を赤光、緑光及び青光の3色に分解して測光
し、測光により得られたデータに基づいて色相値のヒス
トグラムを求め、求めたヒストグラムを山毎に分割し、
カラー原画像の各画素が分割された山のどれに属するか
を判断して画素を分割された山に対応する群に分けると
共に、各々の群毎にカラー原画像を分割し、分割された
各領域の輪郭及び内部構造の少なくとも1つを判断して
人物の顔か否かを判断し、人物の顔と判断された領域の
データを抽出する。
多数画素に分割して各画素を赤光、緑光及び青光の3色
に分解して測光し、測光により得られたデータに基づい
て色相値及び彩度値についての2次元ヒストグラムを求
め、求めた2次元ヒストグラムを山毎に分割し、カラー
原画像の各画素が分割された山のどれに属するかを判断
して画素を分割された山に対応する群に分けると共に、
各々の群毎にカラー原画像を分割し、分割された各領域
の輪郭及び内部構造の少なくとも1つを判断して人物の
顔か否か判断し、人物の顔と判断された領域のデータを
抽出する。
て抽出された人物の顔の濃度データに基づいて複写材料
への露光量を決定する。
に分割して各画素を赤光、緑光及び青光の3色に分解し
て測光し、測光により得られたデータに基づいて色相値
のヒストグラムを求める。次に、求められたヒストグラ
ムをヒストグラムの谷または山の裾を境にして山毎に分
割する。これによって、各山の色相値範囲が定められ
る。次に、各画素の色相値がどの色相値範囲に属するか
を判断することにより、各画素が分割された山のどれに
属するかを判断し、多数画素を分割された山に対応する
群(クラスタ)に分ける。続いて、カラー原画像を分割
された群に対応する領域に分ける。このとき、同じ群に
含まれる画素が異る領域に分けられる場合もあるが、異
る群に含まれる画素が同じ領域に含まれることはない。
これによって、カラー原画像は、ヒストグラムによって
分けられた色相値範囲内の色相値を持つ画素を含む領域
毎に分けられることになる。従って、カラー原画像上の
1つの領域内には、色相値が所定範囲内の画素が含まれ
ることになり、人物の顔の輪郭と他の部位の輪郭、人物
の顔の内部構造と他の部位の内部構造とは明らかに異る
から、各領域の輪郭及び内部構造の少なくとも1つを判
断すれば人物の顔か否かを判断することができ、人物の
顔と判断された領域のデータを抽出することにより人物
の顔のデータを抽出することができる。
ィルム現像差等があると、カラー原画像の色味は画面全
体で均一に変化するが、このように色味が変化してもヒ
ストグラム上の位置が変わるだけで画像の各画素によっ
て作られる群は保存されるからカラー原画像の分割領域
は色味が変化しても変化しない。従って、本発明では、
フィルム種や光源種の変化、経時変化、フィルム現像差
等によってカラー原画像の色味や色範囲が変化しても人
物の顔の濃度データを抽出することができる。
の部位の色相と同一または近似している場合、色相値の
みのヒストグラムに基づいてカラー原画像を分割する
と、人物の顔と他の部位とを区別し難いことがある。そ
こで請求項2の発明では色相値に加えて更に彩度値を導
入し、色相値及び彩度値の2次元ヒストグラムを求め、
この2次元ヒストグラムを山毎に分割して上記と同様に
してカラー原画像を分割し、分割された領域の輪郭及び
内部構造の少なくとも1つを判断して人物の顔のデータ
を抽出する。
るため、人物の顔と色相が同一または近似した部位(例
えば、地面、木等)が混在していても人物の顔のデータ
を抽出することができる。すなわち、人物の顔の色相
は、地面、木等の肌色部分と近似しているが、ほとんど
の場合彩度が異るため、色相値及び彩度値の2次元ヒス
トグラムに基づいて人物の顔のデータを抽出するように
すれば、顔、地面、木等が混在する画像からも人物の顔
のデータを抽出することができる。
説明する。本実施例は、オートプリンタに本発明を適用
したものである。図1に示されるように、本実施例のオ
ートプリンタは、カラーネガフィルム10を搬送する搬
送ローラ12を備えている。搬送ローラ12によって搬
送されるカラーネガフィルム10の下方には、光源1
4、調光フイルタ等の色補正フィルタ16および拡散ボ
ックス18が順に配列されている。また、ネガフィルム
10の上方には、ネガフィルム10を透過した光線を2
方向に分配する分配用プリズム20が配置されている。
分配用プリズム20によって分配された一方の光路上に
は、投影光学系22、ブラックシャッタ23及びカラー
ペーパー(印画紙)24が順に配列され、他方の光路上
には投影光学系26及びCCDイメージセンサ28が順
に配列されている。このCCDイメージセンサ28は、
ネガフィルム10の1画面(1コマ)全体を多数の画素
(例えば256×256画素)に分割して各画素をR
(赤)、G(緑)、及びB(青)の3色に分解して測光
する。CCDイメージセンサ28は、CCDイメージセ
ンサ出力を増幅する増幅器30及びアナログ−デジタル
(A/D)変換器32を介してCCDイメージセンサの
感度補正用の3×3マトリックス回路34に接続されて
いる。3×3マトリックス回路34は、以下で説明する
ルーチンのプログラムを記憶したマイクロコンピュータ
で構成された顔抽出回路36を介して適正露光量計算回
路40に接続されると共に、1画面全体の平均濃度を演
算する平均濃度演算回路38を介して適正露光量計算回
路40に接続されている。そして、適正露光量計算回路
40は、色補正フイルタを駆動するドライバ42を介し
て色補正フィルタ16に接続されている。
から照射された光線は、色補正フィルタ16、拡散ボッ
クス18及びカラーネガフィルム10を透過し、分配用
プリズム20によって分配され、投影光学系26を介し
てCCDイメージセンサ28に受光される。なお、この
ときブラックシャツタ23は閉じられている。この受光
によってCCDイメージセンサ28は、1画面全体を多
数の画素に分割して各画素をR、G、B3色に分解して
測光し、測光データ信号を出力する。測光データ信号は
増幅器30で増幅された後A/D変換器32でデジタル
信号に変換され、3×3マトリックス回路34でイメー
ジセンサの感度補正が行われ、顔抽出回路36と平均濃
度演算回路38に入力される。この平均濃度演算回路3
8では、1画面全体の平均濃度を演算する。顔抽出回路
36では、以下で説明するように1画面中の人物の顔の
部位を推定し、顔と推定された部位のR、G、B3色測
光データを出力する。露光量演算回路40は、顔抽出回
路36から出力された3色測光データと平均濃度演算回
路38で求められた平均濃度とを用いて露光量を演算
し、ドライバ42を介して色補正フイルタ16を制御す
ると共にブラックシャッタ23を開閉して焼付けを行
う。なお、平均濃度演算回路38で求めた平均濃度を用
いるとき、平均濃度に対する露光補正量を求めることが
できる。露光補正量を求めない場合、必ずしも平均濃度
演算回路38を必要とせず、直接顔抽出回路36から出
力された3色測光データより露光量を求めてもよい。
を示すものであり、ステップ100において入力された
3色測光データのノイズ除去、すなわちスムージングを
行う。次のステップ102では下記の(1)〜(3)式
によってR、G、B3色測光データをH(色相値)、L
(明度値)、S(彩度値)に変換する。
各々最小値が0、最大値が1になるように規格された3
色測光データ、min( )は( )内の数値の最小
値、r’、g’、b’はr’=R/L、g’=G/L、
b’=B/Lを表す。またH’は次の(4)式で与えら
れ、Pi(iは、R、G、Bのうちの1つ)は図3のP
である。
うに、各々直交する色相値軸、彩度値軸及び画素数軸か
ら成る座標系を用いて色相値及び彩度値についての2次
元ヒストグラムを求め、次のステップ106において後
述するように、求めた2次元ヒストグラムを山毎に分割
する、すなわち2次元ヒストグラムのクラスタリングを
行う。次のステップ108ではクラスタリングされた2
次元ヒストグラムの山に基づいて多数の画素のクラスタ
リングを行い、このクラスタリングに基づいて画面を分
割し、分割された領域から人物の顔の候補となる領域を
抽出する。次のステップ110では、顔の候補として抽
出された領域から顔の領域を推定し、顔として推定され
た領域のR、G、B3色測光データを出力する。そし
て、ステップ112において全コマの焼付けが終了した
か否か判断し、焼付終了と判断されたときにこのルーチ
ンを終了する。
を説明する。図5はステップ106の詳細を示すもの
で、ステップ120において色相値及び彩度値について
の2次元ヒストグラムから評価すべき領域を切り出す。
図4では説明を簡単にするため1コマを評価領域とし
た。ステップ122では評価領域があるか否か判断す
る。ステップ120で評価領域が切り出せなかったと
き、すなわち全ての領域の評価が終了したときには評価
領域がないため、このルーチンを終了する。評価領域が
ある場合には、ステップ124において山切り出し用ヒ
ストグラムを作成するためのX、Y軸の決定を行う。す
なわち、評価領域を画素数軸と平行な軸を中心に回転さ
せ、ヒストグラムの山を横から見たときに多峰性を優先
しかつ山が最も尖鋭となる位置を求め、この位置を基準
にX、Y軸を決定する。処理時間の短縮が必要な場合
は、精度が多少劣化するが、X、Y軸としてヒストグラ
ムの分散が最大となる軸を用いてもよい。図4(1)の
例では、1〜4の符号を付した4つの山を横から見たと
きに多峰性を優先し山が最も尖鋭になる位置は3つの山
が見える位置であるので見る方向と直交する方向にX軸
を定め、このX軸と直交する方向にY軸を定めている。
ラムをX、Y軸に投影させて各々1次元ヒストグラムを
作成する。図4(1)の例では、X軸と直交する方向か
ら見ると1、2の符号を付した山が重なって見えるため
X軸についての1次元ヒストグラムには、符号3を付し
た山、符号1、2を付した山、符号4を付した山の3つ
の山が現れ、Y軸と直交する方向から見ると1〜4の符
号を付した山が重なって見えるためY軸についての1次
元ヒストグラムには1つの山が現れている。次のステッ
プ128では、次の(5)式によってヒストグラムを評
価関数H(a)に変換しこの評価関数に基づいてX軸に
ついてのヒストグラムから山の切り出しを行う。
量)がaのときの画素数、xは特徴量aからの変位であ
る。
求め、評価関数H(a)の平均値T以下の範囲(谷、裾
部の存在範囲)を求める。次に、この範囲内のヒストグ
ラムが最小の位置をヒストグラムの谷または裾部とす
る。そして、求められた谷または裾部でヒストグラムを
切り出す。
ると、実線SIで表わされたヒストグラムから評価関数
H(a)を求めると図の破線で示すようになる。この評
価関数H(a)が負の部分に関しての平均値T以下の範
囲は特徴量がv0〜v1、v2〜v3の範囲である。こ
の範囲内のヒストグラムの度数が最小の位置は、範囲v
0〜v1ではav0=v0、範囲v2〜v3ではav1
であり、av0が裾部として、av2が谷として各々求
められ、この位置でヒストグラムの切り出しを行う。
グラムの山の切り出しと同様の方法でY軸についてのヒ
ストグラムの山の切り出しを行う。次のステップ132
では、2次元ヒストグラム上で上記のように切り出され
たX軸、Y軸についての1次元ヒストグラムの山が重な
る領域を求め、色相値及び彩度値についての2次元ヒス
トグラムから山の切り出しを行う。図4(1)の領域E
1は上記のようにして切り出した山の一例を示すもので
ある。
ラムから切り出された山が単峰か否か判断し、単峰でな
い場合は2次元ヒストグラムから切り出された山が単峰
になるまでステップ124〜ステップ134を繰り返
す。図4(3)の領域E2は、上記のようにして切り出
された単峰の山の一例を示すものである。
峰の山を識別するためのラベルを付ける処理(ラベリン
グ)を行い、ステップ138ではラベリングされた山を
マスクしてステップ120へ戻る。そして、上記のステ
ップを繰り返して色相値及び彩度値についての2次元ヒ
ストグラムの全領域を単峰の山に分割する。
もので、ステップ140では、上記のようにして分割さ
れた単峰の山のX軸方向の範囲XR(図4(3))及び
Y軸方向の範囲YR(図4(3))を単峰の山毎に各々
求め、原画像の各画素について色相値及び彩度値がこれ
らの範囲に属しているかを判断して画素のクラスタリン
グを行うと共に、範囲XR、YRで囲まれた範囲に属し
ている画素を集め、集めた画素が原画像上で1つの領域
となるように原画像を分割する。また、分割された領域
にナンバリングする。図4(2)は、原画像を分割した
例を示すもので符号1〜4を付した各領域の画素は、図
4(1)の、符号1〜4を付した単峰の山に含まれる画
素に対応している。図4(1)で同じ単峰の山に属して
いる画素が図4(2)では異る領域に分割されている
が、これは図4(1)では単峰の山の色相値範囲及び彩
度値範囲を持つ画素であるが、図4(2)では領域が分
かれているからである。
の面積を判断することにより微小領域を除去し、ナンバ
リングをし直す。次のステップ144では、領域の境界
画素をすべて削除してひと皮分取り除く収縮処理と、収
縮処理とは逆に境界画素を背景画素方向へ増殖させてひ
と皮分太らせる膨張処理とを行って大領域と繁がってい
る小領域を大領域から分離する。次のステップ146で
はステップ142と同様に微小領域を除去してリナンバ
リングを行い、ステップ148で弱い結合をしている領
域同士を分離するために、上記と同様の収縮、膨張処理
を行い、ステップ150において上記と同様に微小領域
の除去とリナンバリングを行う。
で、ステップ162においてステップ108、すなわち
図7のルーチンで抽出された領域の中から1つの領域を
注目領域として選択し、注目領域の水平フィレ径および
垂直フィレ径が所定値になるように注目領域の拡大縮小
処理を行って注目領域のサイズの規格化を行うと共に、
次の(6)式に従って濃度値または輝度値の規格化を行
う。
輝度値) d :規格化前濃度値(または輝度値) dr :規格化後濃度値(または輝度値) ステップ164では、予め記憶された複数種(本実施例
では10種類)の標準的な顔画像(正面から見た顔画
像、横から見た顔画像(左右)、下向き顔画像、上向き
顔画像等)に対する注目領域の相関係数rを次の(7)
式によって演算し、この相関係数を特徴量とする。この
標準的な顔画像は、顔の輪郭のみのデータであっても、
顔の輪郭のデータに顔の内部構造(眼、鼻、口等)デー
タを加えたデータであってもよい。
長さ(ここでは、フィレ径の長さは同じとした)、f
(x、y)は注目領域、g(x、y)は標準的な顔画像
を表す。
量を変量とした線形判別分析により注目領域が人物の顔
であるか否かを判断し、顔であると判断された領域の
R、G、B測光データを適正露光量計算回路40に出力
する。ステップ168では抽出された全領域について顔
か否かの判定が終了したか否か判断し、終了していない
ときにはステップ162〜ステップ168を繰り返す。
に用いる特徴量として相関係数を使用したが、以下で説
明する重心回りの正規化されたセントラル・モーメント
から導出される不変量、自己相関関数または幾何学的不
変量を用いてもよい。
りのセントラル・モーメントμpqを
ラル・モーメントは次のようになる。
セントラル・モーメントから次の七つの不変量ψi,(i
=1,2,……,7)が導出される。
れる。
わされる。
6で上記のように抽出された顔領域のR、G、B測光デ
ータと平均濃度演算回路38で演算された1コマの画面
平均濃度Di (i=R、G、Bのうちのいずれか)とを
用いて以下の式に従って適正露光量Ei を演算し、ドラ
イバ42に出力する。ドライバ42は適正露光量Ei か
ら露光コントロール値を演算して調光フイルタ16を制
御する。
類とプリントサイズから決まる引伸倍率に応じて予め設
定されている。
ロープ係数でアンダー露光用とオーバー露光用とがあ
り、プリントすべきコマの平均濃度が標準ネガ濃度値に
対してアンダーかオーバーかを判定してアンダー露光用
またはオーバー露光用のいずれかが選択される。
ランス値であり、カラーペーパーの種類に応じて決定さ
れている。
ズバランス値であり、焼付レンズの種類に応じて決定さ
れてる。
性能の変化に対する補正値(マスターバランス値)。
れるネガバランス(カラーバランス)値。
顔領域平均濃度である。
ィルム検定装置によって求められた補正値とし、カラー
補正量K2 を次のように顔領域平均濃度を用いて表して
もよい。
ラー補正量K2 をフィルム検定装置によって求められた
補正量とし、(8)式のプリントコマの平均濃度Di を
顔領域の平均濃度FDi 置きかえて露出量を求めてもよ
い。
用いて判断しているため、色相が類似している顔、地
面、木等が混在する画像からも顔のデータを抽出するこ
とができる。
とは別体の露光量決定装置に本発明を適用した変形例を
示すものである。なお、図9において図1と対応する部
分には同一符号を付して説明を省略する。また、平均濃
度演算回路38は必ずしも必要ではないが、これに代え
て画面全体のLATDを検出する積算透過濃度検出回路
を用いてもよい。
出回路361 、362 ・・・36nで構成し、並列処理
により露光量を演算するものである。顔抽出回路36
1 、362 ・・・36nは図11のタイムチャートに従
って画像を読込み、露光量を演算し、その結果を出力す
る。図11においてt1 は1コマの画像読込み時間、t
2 は1コマの露光量演算時間、t3 は1コマの露光量演
算結果転送時間であり、t2 >>t1 、t3 である。顔
抽出回路361 はt1 時間で1コマの画像を読込み、t
2 時間で露光量を演算し、t3 時間で演算結果を転送す
る。顔抽出回路361 による1コマの画像読込みが終了
すると同時にフィルムが1コマ分送られ顔抽出回路36
2 による1コマの画像読込みが開始され、顔抽出回路3
61 の露光量演算と顔抽出回路362 の画像読込みとが
並列して行われ、以下同様に顔抽出回路363 、364
・・・36nによって並列処理される。
Tpは、 Tp=m(t1 +t2 +t3 )+(n−1)t1 である。一方、並列処理を行わない場合の処理時間Ts
はTs=m・n(t1 +t2 +t3 )である。従って、
にも適用できる。本発明は写真焼付装置の露光量決定以
外に、ディジタルカラープリンタの露光量決定、複写機
の複写条件決定、カメラの露出量決定、CRT画面の表
示条件決定、磁気画像データからハードコピーを作成す
るときの光量決定にも適用することができる。
相値のヒストグラムに基づいて分割された領域の輪郭及
び内部構造の少なくとも1つを判断して人物の顔か否か
を判断しているため、フィルム種や光源種の変化、フィ
ルム特性の経時変化、フィルム現像差等によってカラー
原画像の色味や色範囲が変化しても精度よく人物の顔の
データを抽出することができる、という効果が得られ
る。
ラムに基づいて分割された領域の輪郭及び内部構造の少
なくとも1つを判断して人物の顔か否かを判断している
ため、人物の顔と色相が同一または近似した部位が混在
していても人物の顔のデータを抽出することができる、
という効果が得られる。
ある。
る。
ムを示す線図である。 (2)は原画像を分割した状態を示す線図である。 (3)は2次元ヒストグラムから単峰の山を切り出した
状態を示す線図である。
る。
る。
る。
る。
光量演算装置の概略図である。
る。
Claims (3)
- 【請求項1】 カラー原画像を多数画素に分割して各画
素を赤光、緑光及び青光の3色に分解して測光し、 測光により得られたデータに基づいて色相値のヒストグ
ラムを求め、 求めたヒストグラムを山毎に分割し、 カラー原画像の各画素が分割された山のどれに属するか
を判断して画素を分割された山に対応する群に分けると
共に、各々の群毎にカラー原画像を分割し、 分割された各領域の輪郭及び内部構造の少なくとも1つ
を判断して人物の顔か否か判断し、人物の顔と判断され
た領域のデータを抽出する、 人物の顔のデータ抽出方法。 - 【請求項2】 カラー原画像を多数画素に分割して各画
素を赤光、緑光及び青光の3色に分解して測光し、 測光により得られたデータに基づいて色相値及び彩度値
についての2次元ヒストグラムを求め、 求めた2次元ヒストグラムを山毎に分割し、 カラー原画像の各画素が分割された山のどれに属するか
を判断して画素を分割された山に対応する群に分けると
共に、各々の群毎にカラー原画像を分割し、 分割された各領域の輪郭及び内部構造の少なくとも1つ
を判断して人物の顔か否か判断し、人物の顔と判断され
た領域のデータを抽出する、 人物の顔のデータ抽出方法。 - 【請求項3】 請求項1または2によって抽出された人
物の顔のデータに基づいて複写材料への露光量を決定す
る露光量決定方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11874491A JP2695067B2 (ja) | 1991-05-23 | 1991-05-23 | 人物の顔のデータの抽出方法及び露光量決定方法 |
US07/886,400 US5278921A (en) | 1991-05-23 | 1992-05-21 | Method of determining exposure |
DE69221665T DE69221665T2 (de) | 1991-05-23 | 1992-05-21 | Verfahren zur Ermittlung einer Belichtung |
EP92108626A EP0514909B1 (en) | 1991-05-23 | 1992-05-21 | Method of determining exposure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11874491A JP2695067B2 (ja) | 1991-05-23 | 1991-05-23 | 人物の顔のデータの抽出方法及び露光量決定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04346333A JPH04346333A (ja) | 1992-12-02 |
JP2695067B2 true JP2695067B2 (ja) | 1997-12-24 |
Family
ID=14743988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11874491A Expired - Lifetime JP2695067B2 (ja) | 1991-05-23 | 1991-05-23 | 人物の顔のデータの抽出方法及び露光量決定方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2695067B2 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3461626B2 (ja) | 1995-07-28 | 2003-10-27 | シャープ株式会社 | 特定画像領域抽出方法及び特定画像領域抽出装置 |
JP3490559B2 (ja) * | 1995-11-14 | 2004-01-26 | 富士写真フイルム株式会社 | 画像の主要部判定方法及び複写条件決定方法 |
JP3645384B2 (ja) * | 1996-12-26 | 2005-05-11 | 富士写真フイルム株式会社 | 複写装置及び複写条件決定方法 |
US6445819B1 (en) | 1998-09-10 | 2002-09-03 | Fuji Photo Film Co., Ltd. | Image processing method, image processing device, and recording medium |
US7106887B2 (en) | 2000-04-13 | 2006-09-12 | Fuji Photo Film Co., Ltd. | Image processing method using conditions corresponding to an identified person |
EP2757767B1 (en) | 2000-10-20 | 2019-08-07 | Samsung Electronics Co., Ltd | Image processing system and ordering system |
KR20030040680A (ko) * | 2001-11-15 | 2003-05-23 | 삼성에스디에스 주식회사 | 얼굴 검출 방법 및 그 장치 |
KR100461030B1 (ko) * | 2002-10-31 | 2004-12-14 | 한국과학기술연구원 | 칼라 얼굴 영상에서 안경을 제거하기 위한 영상 처리 방법 |
CN100538742C (zh) * | 2004-03-17 | 2009-09-09 | 松下电器产业株式会社 | 食品材料烹调操作识别系统及食品材料烹调操作识别方法 |
JP4574459B2 (ja) * | 2005-06-09 | 2010-11-04 | キヤノン株式会社 | 撮影装置及びその制御方法及びプログラム及び記憶媒体 |
KR100680278B1 (ko) * | 2005-12-28 | 2007-02-07 | 고려대학교 산학협력단 | 입술모양 추출방법 및 그 장치 |
JP4732299B2 (ja) | 2006-10-25 | 2011-07-27 | 富士フイルム株式会社 | 特定被写体像の検出方法およびデジタルカメラ |
US8179363B2 (en) * | 2007-12-26 | 2012-05-15 | Sharp Laboratories Of America, Inc. | Methods and systems for display source light management with histogram manipulation |
JP5258531B2 (ja) | 2008-12-09 | 2013-08-07 | キヤノン株式会社 | 撮像装置、ズーム制御方法 |
JP6148431B2 (ja) | 2010-12-28 | 2017-06-14 | キヤノン株式会社 | 撮像装置およびその制御方法 |
JP2012150552A (ja) * | 2011-01-17 | 2012-08-09 | Horiuchi Denki Seisakusho:Kk | 物体認識処理装置及び物体認識処理方法 |
-
1991
- 1991-05-23 JP JP11874491A patent/JP2695067B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04346333A (ja) | 1992-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5497431A (en) | Method of extracting characteristic image data and color data conversion device for image processing apparatus | |
EP0514909B1 (en) | Method of determining exposure | |
JP2695067B2 (ja) | 人物の顔のデータの抽出方法及び露光量決定方法 | |
EP0514933B1 (en) | Method of extracting feature image data | |
JPH09171220A (ja) | 露光量決定方法 | |
EP0601363B1 (en) | Method of determining amount of exposure | |
JP2638691B2 (ja) | 露光量決定方法 | |
JP3733873B2 (ja) | 写真画像処理装置、方法及び写真処理装置 | |
JP2848749B2 (ja) | 特徴画像データの抽出方法 | |
JP3516786B2 (ja) | 顔領域抽出方法及び複写条件決定方法 | |
JP2638693B2 (ja) | 特徴画像データの抽出方法 | |
JPH10268447A (ja) | 画像処理装置及び写真焼付装置 | |
JP2638702B2 (ja) | 特徴画像データの抽出方法 | |
US7119923B1 (en) | Apparatus and method for image processing | |
JP2638701B2 (ja) | 特徴画像データの抽出方法 | |
JP2638692B2 (ja) | 人物の顔のデータの抽出方法及び露光量決定方法 | |
JP2848750B2 (ja) | 露光量決定方法 | |
US20040114189A1 (en) | Image correction device and image correction program storage medium | |
JPH09281605A (ja) | 画像記録装置 | |
JP2763221B2 (ja) | 人物の顔のデータの抽出方法 | |
JP2642262B2 (ja) | 露光量決定方法 | |
JP2923401B2 (ja) | 露光量決定方法 | |
JPH11339030A (ja) | 画像処理方法および画像処理装置 | |
JP2695074B2 (ja) | 測光画像データ収集方法及び露光量決定方法 | |
JPH06186652A (ja) | 露光量決定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070912 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20080912 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20080912 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20090912 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20090912 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100912 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20100912 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20110912 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 14 |