[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2694349B2 - Micro displacement measurement device - Google Patents

Micro displacement measurement device

Info

Publication number
JP2694349B2
JP2694349B2 JP24772288A JP24772288A JP2694349B2 JP 2694349 B2 JP2694349 B2 JP 2694349B2 JP 24772288 A JP24772288 A JP 24772288A JP 24772288 A JP24772288 A JP 24772288A JP 2694349 B2 JP2694349 B2 JP 2694349B2
Authority
JP
Japan
Prior art keywords
measured
light
displacement
measuring
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24772288A
Other languages
Japanese (ja)
Other versions
JPH0295201A (en
Inventor
哲也 猪目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24772288A priority Critical patent/JP2694349B2/en
Publication of JPH0295201A publication Critical patent/JPH0295201A/en
Application granted granted Critical
Publication of JP2694349B2 publication Critical patent/JP2694349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被測定物の微小変位量を光学的に検出する微
小変位量測定装置である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is a micro-displacement measuring device for optically detecting a micro-displacement of an object to be measured.

〔従来の技術〕[Conventional technology]

測定精度が数μm以下の光による非接触変位測定方法
には、大きく分けて4種類の測定方法がある。第1は光
の出射口から被測定物に光を放射させ、被測定物から反
射してくる光の強度を、光の出射口から被測定物までの
距離との相関関係を利用して変位量を求める方法であ
る。第2は光の出射口から光を被測定物に放射させ、出
射口と被測定物を結ぶ直線と一定の角度をなす位置に設
置された検知器によって、被測定物面から反射又は散乱
されて検知器に入射する光の角度を測定することによっ
て被測定物の変位量を測定する方法である。第3はレー
ザ等のコヒーレント光を被測定物に放射し、被測定物か
ら反射した光を参照光と干渉させ、変位量を干渉光の測
定により検知する方法である。第4は、被測定物に光を
あて、被測定物をカメラや顕微鏡等の検出器でとらえ、
画像処理、像拡大等の電気的あるいは光学的な処理を行
った後、形状寸法を測定する方法である。
There are roughly four types of measuring methods for non-contact displacement measuring methods using light whose measuring accuracy is several μm or less. First, the light is emitted from the light output port to the DUT, and the intensity of the light reflected from the DUT is displaced by utilizing the correlation with the distance from the light output port to the DUT. It is a method of finding the quantity. Second, the light is emitted from the light emission port to the object to be measured, and is reflected or scattered from the surface of the object to be measured by a detector installed at a position forming a certain angle with a straight line connecting the light emission port and the object to be measured. Is a method of measuring the amount of displacement of the object to be measured by measuring the angle of light incident on the detector. A third method is to radiate coherent light from a laser or the like to the object to be measured, cause the light reflected from the object to be measured to interfere with the reference light, and detect the amount of displacement by measuring the interference light. Fourth, illuminate the object to be measured and capture the object with a detector such as a camera or a microscope.
This is a method of measuring the shape and dimension after performing electrical or optical processing such as image processing and image enlargement.

上述の方法は、被測定物の形状及び測定箇所、寸法精
度に応じて使い分けられる。特に、円板及び円筒の中心
に直径1mm以下の細孔を有するものにおいて、外径に対
する内径の偏心量を測定する場合、従来は第4の測定方
法が使用されてきた。その具体的測定方法は、次の通り
である。すなわち固定したV溝治具のV部に被測定物の
円周部が乗るようにし、被測定物を回転させ、孔部に透
過光又は端面部に光をあて、被測定物が細孔を中心に1
回転した時の内径エッヂ部の変位量を測定する。この
時、エッヂ部と明確に規定するために画像処理を行い孔
部と被測定物を白黒に区分し、その境界の変位を測定す
る。画像処理されて表示された境界と実際の境界は透過
光及び反射光の強度や被測定物の形状に応じて変化する
ため被測定物に類似した基準物で境界をあらかじめ設定
しなければならない。
The above-mentioned method is used properly according to the shape and measurement location of the object to be measured and the dimensional accuracy. In particular, in the case where the disk and the cylinder have pores with a diameter of 1 mm or less in the center, the fourth measuring method has been conventionally used to measure the eccentricity of the inner diameter with respect to the outer diameter. The specific measuring method is as follows. That is, the circumference of the measured object is placed on the V portion of the fixed V-groove jig, the measured object is rotated, and the transmitted light or the end face is irradiated with the hole, so that the measured object forms a pore. 1 in the center
Measure the displacement of the inner diameter edge part when rotating. At this time, image processing is performed to clearly define the edge portion, the hole portion and the object to be measured are divided into black and white, and the displacement of the boundary is measured. Since the boundary displayed after image processing and the actual boundary change depending on the intensity of transmitted light and reflected light and the shape of the object to be measured, the boundary must be set in advance with a reference object similar to the object to be measured.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

円板及び円筒体の中心部に直径φ1.0mm以下の細孔を
有するような被測定体に対して、外径に対する内径の偏
心量を1μm以下の測定精度で測定する際、上述した第
4の方法では被測定体の表面部分しか測定できず、エッ
ヂ境界を高倍率に拡大して観察する際に境界部の精度判
定には被測定体に類似した基準物を用いる必要がある。
When measuring the eccentricity of the inner diameter with respect to the outer diameter with a measurement accuracy of 1 μm or less for the object to be measured having a fine hole with a diameter φ1.0 mm or less in the center of the disk and cylinder, With the method described above, only the surface portion of the object to be measured can be measured, and when observing the edge of the edge at a high magnification, it is necessary to use a reference material similar to the object to be measured for the accuracy of the edge.

〔問題点を解決するための手段〕[Means for solving the problem]

測定用端子として、長さ方向の軸と45゜の角度をなす
面を先端に有し、外径が被測定物内径より小さい外径を
有する光ファイバを使用する。そこで被測定物はVブロ
ック上にのせられ、Vブロック上で回転される。45゜斜
端面を有する光ファイバ端子は、被測定物細孔部に挿入
され、45゜斜端面の他端より入射したレーザ光等のコヒ
ーレント光が光ファイバを通過し、45゜斜端面で反射さ
れ、ファイバ側面より、一部はフレネル反射により光源
側へもどり他は、被測定物の細孔内面に射出され、反射
孔を再びファイバ内に入いり45゜端面で反射されて光源
側へもどるようになし、光ファイバ側面で反射した光
と、被測定物細孔内面で反射された光は、ファイバ内で
干渉を起こす。干渉の強度は、ファイバ側面と被測定物
細孔内面との変位量によって変化するため光源側へもど
ってきた干渉光を取り出し、その強度を測定することに
よって変位量を測定する。被測定物がVブロック上を1
回転した時にみられる変位量から偏心量を測定するよう
に構成したもので、本発明は細孔内部の偏心量が測定で
き、かつ上記基準物を用いることなく微小変位量を測定
する装置を提供する。
As the measuring terminal, an optical fiber having a surface having an angle of 45 ° with the longitudinal axis at the tip and an outer diameter smaller than the inner diameter of the object to be measured is used. Then, the object to be measured is placed on the V block and rotated on the V block. An optical fiber terminal with a 45 ° beveled end face is inserted into the pore of the DUT, and coherent light such as laser light incident from the other end of the 45 ° beveled face passes through the optical fiber and is reflected by the 45 ° beveled face. From the side surface of the fiber, part of it returns to the light source side by Fresnel reflection, and the other part is emitted to the inner surface of the pore of the DUT, enters the reflection hole into the fiber again, is reflected at the 45 ° end surface, and returns to the light source side. The light reflected on the side surface of the optical fiber and the light reflected on the inner surface of the pore of the object to be measured cause interference in the fiber. The intensity of the interference changes depending on the amount of displacement between the side surface of the fiber and the inner surface of the pore of the object to be measured. Therefore, the amount of displacement is measured by taking out the interference light returning to the light source side and measuring the intensity thereof. The object to be measured is on the V block 1
The present invention provides a device for measuring the amount of eccentricity from the amount of displacement observed when rotating, and the present invention provides a device for measuring the amount of eccentricity inside the pores, and for measuring a minute amount of displacement without using the reference material. To do.

〔実施例〕〔Example〕

以下、本発明の実施例を具体的に説明する。 Hereinafter, examples of the present invention will be specifically described.

本発明装置の測定光系路を第1図に示す。被測定物
(1)は、例えば内径φ0.126mm,外径φ2.500mm、長さ1
2mmの寸法を有するアルミナセラミックで内径、外径と
ともに境面加工されており、Vブロック(2)の上にの
せられ測定時にはVブロックに接したまま回転されるよ
うになっている。被測定物(1)の内径に45゜の斜端面
(3)を有する外径φ0.100mm、コア径10μmの光ファ
イバ(4)が挿入してある。また光源(9)は1.3μm
の波長を有する半導体レーザを使用し、光源(9)から
発した光はレンズ系(7)によって集光され光ファイバ
(4)内に効率よく伝装される。アイソレータ(6)は
光源(9)の光パワー及び波長の揺らぎを防止するため
光源(9)への戻り光を除去する。一方、45゜斜端面
(3)で反射された干渉光は、光分岐器(5)で分岐さ
れた後レンズ系(8)を通して受光素子(フォトダイオ
ード)(10)に送られ、光強度が測定される。45゜斜端
面(3)の部分の光路を第2図においてさらに拡大して
示し、光ファイバ(4)を通過してきた光(13)は45゜
斜端面(3)で反射され、ファイバ側面で一部反射光
(14)となり再び45゜斜端面(3)で反射され、光ファ
イバ(4)の側面を通過した光はファイバ側面から距離
dだけはなれた所に位置する被測定物(1)の内面1aで
反射された反射光(15)はファイバ側面より再び光ファ
イバ(4)内に入射し、45゜端面(3)で反射され、反
射光(14)と干渉し、干渉光(16)となって光源側へ戻
っていく。この干渉光(16)の光強度は変位量を第3図
の様な関係があるため反射光(16)6の光強度の変化を
測定することによって変位量を測定される。0.3μm以
下の変位量を測定する場合は干渉光(16)の光強度と変
位量が直線関係を示す領域で測定することにより±0.05
μmの測定精度で測定で可能となる。また、0.3μmを
越える変位量がある場合は被測定体を1回転した時の干
渉縞の数をη、使用波長をλとすると変位量ΔdはΔd
=η・λ/4となり±0.1μmの測定精度で測定可能であ
る。なお、上記においては、被測定物として中心部に細
孔を有し、該細孔の内径の変位量を計測する例をあげた
が、これに限らず上記45゜斜端面近傍に円形断面をもっ
た被測定物を配置して回転させることにより、被測定物
外径の変位量をも高精度に測定することができる。
The measuring optical system path of the device of the present invention is shown in FIG. The DUT (1) has, for example, an inner diameter of 0.126 mm, an outer diameter of 2.500 mm, and a length of 1.
The inner surface and the outer surface of the alumina ceramic having a dimension of 2 mm are machined together with the inner surface and the outer surface thereof, and they are placed on the V block (2) and rotated while being in contact with the V block during measurement. An optical fiber (4) having an outer diameter of φ0.100 mm and a core diameter of 10 μm, which has an inclined end face (3) of 45 °, is inserted into the inner diameter of the object to be measured (1). The light source (9) is 1.3 μm
The light emitted from the light source (9) is collected by the lens system (7) and efficiently transmitted into the optical fiber (4) by using the semiconductor laser having the wavelength of. The isolator (6) removes the return light to the light source (9) in order to prevent fluctuations in the optical power and wavelength of the light source (9). On the other hand, the interference light reflected by the 45 ° oblique end face (3) is sent to the light receiving element (photodiode) (10) through the lens system (8) after being branched by the optical branching device (5), and the light intensity is increased. To be measured. The optical path of the 45 ° beveled surface (3) is shown in a larger scale in Fig. 2. The light (13) that has passed through the optical fiber (4) is reflected at the 45 ° beveled surface (3) and is reflected on the side surface of the fiber. The partially reflected light (14) is reflected again by the 45 ° slant end face (3), and the light that has passed through the side surface of the optical fiber (4) is located at a distance d from the side surface of the fiber under test (1). The reflected light (15) reflected by the inner surface 1a of the laser enters the optical fiber (4) again from the side surface of the fiber, is reflected by the 45 ° end face (3), interferes with the reflected light (14), and interferes with the interference light (16). ) And return to the light source side. Since the light intensity of the interference light (16) has a displacement amount as shown in FIG. 3, the displacement amount can be measured by measuring the change in the light intensity of the reflected light (16) 6. When measuring displacement of 0.3 μm or less, ± 0.05 is obtained by measuring in the region where the light intensity of the interference light (16) and displacement are linear.
It becomes possible to measure with the measurement accuracy of μm. If there is a displacement of more than 0.3 μm, the displacement Δd is Δd, where η is the number of interference fringes per rotation of the DUT and λ is the wavelength used.
= Η · λ / 4 and can be measured with a measurement accuracy of ± 0.1 μm. In the above description, an example is given in which the object to be measured has a pore in the center and the amount of displacement of the inner diameter of the pore is measured, but the invention is not limited to this, and a circular cross section near the 45 ° beveled surface is used. By arranging and rotating the object to be measured, the amount of displacement of the outer diameter of the object to be measured can be measured with high accuracy.

〔発明の効果〕〔The invention's effect〕

このように測定対象が円板や円筒体など中心部に細孔
を有する被測定物にあって、外径に対する内径の偏心量
を測定する場合、本発明装置による効果は下記の通りで
ある。
In this way, when the object to be measured is an object to be measured, such as a disc or a cylinder having a small hole in the center, and the amount of eccentricity of the inner diameter with respect to the outer diameter is measured, the effects of the device of the present invention are as follows.

第1に、被測定物の中心部に有する細孔の内径寸法は
挿入するファイバ外径に応じて最低寸法値が限定され
る。そのためファイバ外径はエッチング等により理論的
にはコア径付近まで小さくできるが、ファイバ外径が小
さくなるとファイバの曲りや振動等により精密測定が困
難であるが、ファイバ外径50μm、ファイバ突出し量l
が5mmの場合、防振機構を付加することによって問題な
く測定できる。したがって、外径50μmのファイバを内
面に接触させることなく測定できる内径を有する被測定
物を測定することができる。
First, the inner diameter of the pores in the center of the object to be measured is limited to the minimum dimension depending on the outer diameter of the fiber to be inserted. Therefore, the outer diameter of the fiber can be theoretically reduced to the vicinity of the core diameter by etching or the like. However, when the outer diameter of the fiber becomes small, precise measurement is difficult due to bending and vibration of the fiber.
When is 5 mm, it can be measured without problems by adding a vibration isolation mechanism. Therefore, it is possible to measure an object to be measured having an inner diameter that can be measured without bringing a fiber having an outer diameter of 50 μm into contact with the inner surface.

第2に光の干渉を利用することから、使用する光の波
長を小さくし、しかも、λ/4以下の微小変位測定ほど測
定精度が向上し、通常0.1μm以下の測定精度で偏心量
を測定することができる。
Secondly, because the interference of light is used, the wavelength of the light used is reduced, and the measurement accuracy improves as the micro displacement measurement of λ / 4 or less is measured, and the eccentricity is usually measured with the measurement accuracy of 0.1 μm or less. can do.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明実施例に係る微小変位量測定装置の概略
構成図を示し、第2図は第1図に示した装置に光ファイ
バ4の45゜斜端面近傍の光路を示す図、第3図は干渉光
の光強度と変位量の関係を示すグラフ図である。 1……被測定物、10……受光素子 2……Vブロック、11……クラッド 3……45゜斜端面、12……コア 4……光ファイバ、13……通過光 5……光分岐器、14……反射光 6……アイソレータ、15……反射光 7……レンズ系、16……干渉光 8……レンズ系、17……ファイバ支持体 9……光源
FIG. 1 is a schematic configuration diagram of a small displacement amount measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing an optical path in the vicinity of a 45 ° slant end face of an optical fiber 4 in the apparatus shown in FIG. FIG. 3 is a graph showing the relationship between the light intensity of the interference light and the displacement amount. 1 ... DUT, 10 ... Light receiving element, 2 ... V block, 11 ... Clad, 3 ... 45 ° bevel, 12 ... Core, 4 ... Optical fiber, 13 ... Passed light, 5 ... Optical branch Container, 14 ...... Reflected light 6 ...... Isolator, 15 ...... Reflected light 7 ...... Lens system, 16 ...... Interference light 8 ...... Lens system, 17 ...... Fiber support 9 ...... Light source

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光ファイバの一端に45゜斜端面を形成し、
他端には光源よりコヒーレント光を送り込むように成
し、上記45゜斜端面を被測定表面に配置せしめ、かつ上
記光ファイバに設けた光分岐器を介して受光素子によ
り、被測定物表面、光ファイバ側面からの反射光による
干渉光強度を検出し、もって被測定物の変位量を計測す
るように構成したことを特徴とする微小変位量測定装
置。
1. A 45 ° beveled surface is formed at one end of an optical fiber,
The other end is made to send coherent light from a light source, the 45 ° slanted end face is arranged on the surface to be measured, and the surface of the object to be measured is detected by a light receiving element via an optical branching device provided in the optical fiber. A micro-displacement measuring device characterized by being configured to detect the intensity of interference light due to reflected light from the side surface of an optical fiber and to measure the amount of displacement of the object to be measured.
JP24772288A 1988-09-30 1988-09-30 Micro displacement measurement device Expired - Fee Related JP2694349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24772288A JP2694349B2 (en) 1988-09-30 1988-09-30 Micro displacement measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24772288A JP2694349B2 (en) 1988-09-30 1988-09-30 Micro displacement measurement device

Publications (2)

Publication Number Publication Date
JPH0295201A JPH0295201A (en) 1990-04-06
JP2694349B2 true JP2694349B2 (en) 1997-12-24

Family

ID=17167702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24772288A Expired - Fee Related JP2694349B2 (en) 1988-09-30 1988-09-30 Micro displacement measurement device

Country Status (1)

Country Link
JP (1) JP2694349B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264034B2 (en) * 2000-06-21 2013-08-14 ヨー ウント エルンスト リンク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Cutting tool for cutting a workpiece provided with a tool part and a shank, and an apparatus for machining a workpiece provided with a receiving part for cutting tool
DE10354730B4 (en) * 2003-11-22 2006-10-26 Forschungszentrum Karlsruhe Gmbh Optical sensor head and its use
US20150300811A1 (en) * 2014-04-21 2015-10-22 Samsung Electro-Mechanics Co., Ltd. Apparatus for measuring inner diameter

Also Published As

Publication number Publication date
JPH0295201A (en) 1990-04-06

Similar Documents

Publication Publication Date Title
JP2593938B2 (en) Apparatus for optically inspecting the inner wall of a pipe.
EP1571414B1 (en) Apparatus and method for surface contour measurement
JPS5965708A (en) Sonde for automatic surface inspection
JPH0153401B2 (en)
JP2004513363A (en) Especially for plasma resonance sensors for biosensor technology
US7121922B2 (en) Method and apparatus for polishing a workpiece surface
US4009965A (en) Method and apparatus for determining object dimension and other characteristics using diffraction waves
JP2694349B2 (en) Micro displacement measurement device
JP2533514B2 (en) Depth / thickness measuring device
US9581556B1 (en) Laser probe for use in an inspection system
US7054095B2 (en) Displacement detection apparatus, and magnetic recording apparatus and encoder using the displacement detection apparatus
JPS5960344A (en) Method and device for automatically inspecting surface by coherent laser luminous flux
US20060232790A1 (en) Confocal measurement method and apparatus in a paper machine
JPS6334963B2 (en)
JP2672718B2 (en) Refractive index measuring method and apparatus
JP2592254B2 (en) Measuring device for displacement and displacement speed
Brown et al. Industrial applications of an optical profilometer
JPH01304339A (en) Instrument for measuring angle of refraction
EP0050144A1 (en) Process for measuring motion- and surface characterizing physical parameters of a moving body.
JPS6199806A (en) Measuring instrument for depth of groove
JPS62200211A (en) Method for measuring angle of end surface of optical fiber
JPH044966Y2 (en)
SU1456777A1 (en) Method of checking surface roughness
JPH07167634A (en) Probe for measurement and displacement gage with the probe
KR20050043164A (en) Oct(optical coherence tomography) system using a ccd(charge coupled device) camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees