JP2686465B2 - Heat treatment equipment - Google Patents
Heat treatment equipmentInfo
- Publication number
- JP2686465B2 JP2686465B2 JP63148694A JP14869488A JP2686465B2 JP 2686465 B2 JP2686465 B2 JP 2686465B2 JP 63148694 A JP63148694 A JP 63148694A JP 14869488 A JP14869488 A JP 14869488A JP 2686465 B2 JP2686465 B2 JP 2686465B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- reaction
- insulating cover
- exhaust
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は熱処理装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a heat treatment apparatus.
(従来の技術) 被処理体例えば半導体ウエハの製造においては、酸化
処理、拡散処理CVD(化学気相成長)処理等の熱処理が
行なわれる。例えば半導体ウエハに薄膜を形成する減圧
CVD装置では、円筒形石英反応管を真空排気し、例えばS
i基板を500−900℃の温度で均一に保ち、反応ガス例え
ばSiH4とO2、SiH2ClとN2O或いはSi(OC2H5)4を反応さ
せ、Si酸化膜をSi基板上に形成するものである。従来の
減圧CVD装置は特開昭61−249826号公報に開示されてい
る様に、Si基板上にCVD反応によりSi酸化膜を形成する
とき、反応管内を流れ高温になった反応ガスとSi基板が
反応して、Si基板上にSi酸化膜を形成するが、未反応ガ
スはSi基板反応部より低温で排気側に近い反応管内壁に
反応生成物であるSiO2等が付着する。特に処理ガスを排
気する反応管の金属製排気部では気密保持用シール材を
冷却するため温度が低く、この近傍にかなりの量の反応
生成物SiO2等が付着する。このため、特に反応管の金属
製排気部に付着した反応生成物は膜厚の増加と共に、剥
離浮遊し、反応管内のパーティクル汚染源となってい
る。この反応生成物の反応管金属部への付着を防ぐ技術
が、上記特開昭61−294826号公報に開示されている。(Prior Art) In manufacturing an object to be processed, for example, a semiconductor wafer, a heat treatment such as an oxidation process, a diffusion process CVD (chemical vapor deposition) process, or the like is performed. For example, decompression to form a thin film on a semiconductor wafer
In the CVD device, the cylindrical quartz reaction tube is evacuated and, for example, S
The i substrate is kept uniform at a temperature of 500-900 ° C., and reaction gases such as SiH 4 and O 2 , SiH 2 Cl and N 2 O or Si (OC 2 H 5 ) 4 are reacted to form a Si oxide film on the Si substrate. To form. As disclosed in Japanese Patent Laid-Open No. 61-249826, a conventional low pressure CVD apparatus, when forming a Si oxide film on a Si substrate by a CVD reaction, flows through a reaction tube and the reaction gas becomes hot and the Si substrate. React with each other to form a Si oxide film on the Si substrate, but the unreacted gas has a reaction product such as SiO 2 attached to the inner wall of the reaction tube near the exhaust side at a lower temperature than the reaction section of the Si substrate. In particular, in the metal exhaust part of the reaction tube for exhausting the processing gas, the temperature is low because the sealing material for maintaining the airtightness is cooled, and a considerable amount of reaction products such as SiO 2 adhere to this vicinity. Therefore, in particular, the reaction product attached to the metal exhaust portion of the reaction tube is separated and floated as the film thickness increases, and becomes a source of particle contamination in the reaction tube. A technique for preventing the reaction product from adhering to the metal part of the reaction tube is disclosed in Japanese Patent Laid-Open No. 294826/1986.
(発明が解決しようとする課題) しかしながら上記従来技術では、反応管内壁の冷却部
が露出しないように、反応管冷却部と被処理基板との間
に石英製の保護カバーを配して反応生成物の冷却部への
付着を防いでいるが、以下のような問題点が有る。反応
室を形成している石英管と金属製排気部との気密接合を
得るため、接合部にはO−リング等のシール材料が使わ
れている。しかしこのシール材は現在500−900℃の高温
に耐えるものは無く、200℃程度の温度に耐えられる物
が一般的である。このため上記金属製排気部は水冷等に
よる冷却が成されている。従って、金属製排気部、特に
排気口近くの内壁及び排気装置側の真空配管との接続部
は、温度が下がっている。そして保護カバーは熱伝導の
悪い石英等で作られているため、ヒータに近い側は温度
も比較的高いが遠い側は熱伝導による熱の移動はほとん
ど無く、保護カバーのヒータから遠い排気装置側の細い
円筒部分に向け温度勾配ができ温度が低くなり、この部
分に反応生成物が付着し易くなる。従って、この部分で
付着した反応生成物が剥離浮遊し、反応管内に入り込
み、パーティクル汚染源となる問題があった。また上記
排気口及び排気装置への真空配管との接続部に付着した
反応生成物は、排気性能等に悪影響を及ぼすため、一定
期間毎に清掃除去する必要がある。これら付着物を清掃
除去する場合、反応生成物の一部は反応管内方に入り込
み反応管内の汚染をきたし、これを回復させるために多
くの時間と手間を必要とする問題があった。(Problems to be Solved by the Invention) However, in the above-described conventional technique, a quartz protective cover is provided between the reaction tube cooling part and the substrate to be processed so that the cooling part on the inner wall of the reaction tube is not exposed. Although it prevents adhesion of the product to the cooling part, it has the following problems. A sealing material such as an O-ring is used for the joint in order to obtain an airtight joint between the quartz tube forming the reaction chamber and the metal exhaust portion. However, there is currently no sealant that can withstand a high temperature of 500-900 ° C, and generally a sealant that can withstand a temperature of approximately 200 ° C. Therefore, the metal exhaust portion is cooled by water cooling or the like. Therefore, the temperature of the metal exhaust part, especially the inner wall near the exhaust port and the connection part with the vacuum pipe on the exhaust device side, is lowered. Since the protective cover is made of quartz, which has poor heat conduction, the temperature near the heater is relatively high, but there is almost no heat transfer due to heat conduction on the far side, and the exhaust device side far from the heater of the protective cover. A temperature gradient is formed toward the thin cylindrical part of the, and the temperature becomes low, and the reaction product easily adheres to this part. Therefore, there is a problem that the reaction product attached at this portion is separated and floated, enters the reaction tube, and becomes a particle contamination source. Further, the reaction product attached to the exhaust port and the connection portion of the exhaust device with the vacuum pipe has an adverse effect on the exhaust performance and the like, and therefore needs to be cleaned and removed at regular intervals. When these adhered substances are removed by cleaning, a part of the reaction product enters the inside of the reaction tube to cause contamination in the reaction tube, and it takes a lot of time and labor to recover the contamination.
この発明は上記点に対処して成されたもので、金属製
の筒状部への反応生成物の付着を抑え、パーティクルの
発生を抑えた熱処理装置を提供しようとするものであ
る。The present invention has been made in consideration of the above points, and an object of the present invention is to provide a heat treatment apparatus that suppresses the adhesion of reaction products to a metal tubular portion and suppresses the generation of particles.
(課題を解決するための手段) 本発明は、加熱部に囲まれた反応管と、この反応管の
端部に設けられ、排気管が接続されると共に、冷却機構
が設けられた金属製の筒状部とを備え、前記反応管内に
処理ガスを導入して被処理体の熱処理を行う熱処理装置
において、 前記排気管の一部に着脱自在に設けられた中継用配管
と、 前記筒状部の内面及び前記中継用配管に至るまでの排
気管の内面を間隙を介して覆うように設けられた熱良導
体よりなる保温カバーと、を備え、 前記反応管内のガスを保温カバーを介して排気し、前
記中継用配管で反応生成物を析出させることを特徴とす
る熱処理装置を得るものである。(Means for Solving the Problem) The present invention relates to a reaction tube surrounded by a heating section, and a metal tube provided at an end of the reaction tube, connected to an exhaust tube, and provided with a cooling mechanism. A heat treatment apparatus comprising: a tubular part, for introducing a processing gas into the reaction tube to perform a heat treatment of an object to be processed, a relay pipe detachably provided in a part of the exhaust pipe, and the tubular part. And a heat insulating cover made of a good heat conductor provided so as to cover the inner surface of the exhaust pipe up to the relay pipe through a gap, and the gas in the reaction tube is exhausted through the heat insulating cover. A heat treatment apparatus is characterized in that a reaction product is deposited in the relay pipe.
(作 用) 本発明によれば、金属製の筒状部及び中継用配管に至
るまでの排気管の内面を覆うように熱良導体よりなる保
温カバーを設け、反応管内のガスを保温カバーを介して
気体状態で中継用配管まで導き、ここで反応生成物を析
出させているので、前記筒状部への反応生成物の付着が
低減できると共に、中継用配管は着脱自在に設けられて
いるので、付着した反応生成物の取り出し、清掃除去を
容易にし、パーティクルを抑えることができる。(Operation) According to the present invention, a heat insulating cover made of a good heat conductor is provided so as to cover the inner surface of the exhaust pipe up to the metal tubular portion and the relay pipe, and the gas in the reaction tube is passed through the heat insulating cover. Since it is led to the relay pipe in a gas state and the reaction product is deposited here, the adhesion of the reaction product to the tubular portion can be reduced and the relay pipe is detachably provided. In addition, it is possible to easily remove and clean the attached reaction product, and to suppress particles.
(実施例) 以下本発明熱処理装置を減圧CVD装置に適用した一実
施例につき図面を参照して説明する。第1図の様に減圧
CVDを行なう反応容器は円筒状石英チューブ(1)とこ
のチューブ(1)の両端に、真空封じを兼ねて、反応ガ
スを導入する例えばステンレス製3/8インチ径のガス導
入管(2)を備えた、ステンレス製の筒状部である円筒
状フロントフランジ(3)が設けられている。このフロ
ントフランジ(3)の一端は石英チューブ(1)の一方
の端部にシーリング材例えばO−リング(4)を介して
気密に接続されている。(Example) An example in which the heat treatment apparatus of the present invention is applied to a low pressure CVD apparatus will be described below with reference to the drawings. Decompression as shown in Fig. 1
The reaction vessel for performing the CVD is a cylindrical quartz tube (1) and a gas inlet pipe (2) of 3/8 inch diameter made of stainless steel, for example, which is used as a vacuum seal and introduces a reaction gas at both ends of the tube (1). There is provided a cylindrical front flange (3), which is a stainless steel tubular part. One end of the front flange (3) is hermetically connected to one end of the quartz tube (1) via a sealing material such as an O-ring (4).
また上記フロントフランジ(3)の他端側には、円盤
状でステンレス製のフロントフランジドア(5)がO−
リングで気密に保持され開閉自在に設けられている。上
記O−リング(4)の使用温度限界は200℃程度のた
め、フロントフランジ(3)のO−リング(4)周辺は
例えば水冷による冷却機構(6)がそれぞれ設けられ15
0℃程に冷却され、O−リング(4)の熱による劣化を
防いでいる。そして石英チューブ(1)の他方の端部に
はステンレス製の筒状部である円筒状リャフランジ
(7)の一端側にO−リング(4)を介して気密が保持
されるように接続されている。On the other end side of the front flange (3), a disc-shaped stainless steel front flange door (5) is O-.
It is held airtight by a ring and is openable and closable. Since the operating temperature limit of the O-ring (4) is about 200 ° C., a cooling mechanism (6) such as water cooling is provided around the O-ring (4) of the front flange (3).
It is cooled to about 0 ° C to prevent deterioration of the O-ring (4) due to heat. The other end of the quartz tube (1) is connected to one end side of a cylindrical flange (7), which is a stainless steel tubular part, via an O-ring (4) so that airtightness is maintained. There is.
また、上記リャフランジ(7)の他端側には、ステン
レス製の円盤状で中央に開口が設けられ、この開口に長
さ30〜70mm、内径約30〜50mmの排気用円筒体(8)を接
合したリャフランジドア(9)がO−リング(4)を介
し、気密に保持され、そして取りはずし可能な如く設け
られている。そして上記フロントフランジ(3)と同様
にリャフランジ(7)のO−リング(4)周辺は水冷に
よる冷却機構(6)がそれぞれ設けられ、O−リング
(4)の加熱による劣化を防いでいる。また上記リャフ
ランジドア(9)の排気用円筒体(8)の軸心は上記石
英チューブ(1)の軸心とほぼ同一となる様に設けられ
ている。そしてこのような排気内円筒体(8)の遊端に
は、金属例えば、ステンレスやプロセスガスに反応しな
い熱良導体から成り、着脱自在に長さ50〜100mm、内径
約50mmの中継用配管(10)が接続されている。この中継
用配管(10)の他端には気密を保ち、ある程度自由に配
置できるベロース(11)が接続され、図示しないメカニ
カルブースターポンプやロータリーポンプ等から成る排
気装置(12)に接続されている。また上述した反応容器
内には、この実施例の特徴とする比較的低温部である上
記したO−リング冷却部に排ガスが付着するのを防止す
る如く熱良導体が次のように設けられる。例えば、リャ
フランジ(7)の内壁表面を、この表面に熱的に絶縁例
えば接触せずに覆うが如く、熱良導体例えばステンレス
製筒状保温カバー(13)が配設されている。この保温カ
バー(13)は石英チューブ(1)の内径にほぼ等しいか
又は、少し小径の外径を有した熱良導体から成り、例え
ばステンレスやプロセスガスに反応しない表面処理を施
した金属材料で作られ、大小2つの円筒体が熱的に等温
となる如く接合され、大径の円筒体(14)が石英チュー
ブ側に、小径の円筒体(15)が排気装置(12)側へ配置
され一体物として接続構成されている。Further, on the other end side of the flange (7), an opening is provided in the center in the form of a disc made of stainless steel, and an exhaust cylinder (8) having a length of 30 to 70 mm and an inner diameter of about 30 to 50 mm is provided in the opening. A joined flange flange door (9) is hermetically held and removably mounted via an O-ring (4). Similar to the front flange (3), a cooling mechanism (6) by water cooling is provided around the O-ring (4) of the flange (7) to prevent deterioration of the O-ring (4) due to heating. The axis of the exhaust cylinder (8) of the flange door (9) is provided to be substantially the same as the axis of the quartz tube (1). At the free end of such an exhaust cylinder (8) is made of a metal such as stainless steel or a good heat conductor that does not react with the process gas, and has a length of 50 to 100 mm and an inner diameter of about 50 mm, which is a relay pipe (10). ) Is connected. A bellows (11) that is airtight and can be freely arranged is connected to the other end of the relay pipe (10), and is connected to an exhaust device (12) including a mechanical booster pump, a rotary pump, or the like (not shown). . Further, in the above-mentioned reaction container, a good thermal conductor is provided as follows so as to prevent the exhaust gas from adhering to the above-mentioned O-ring cooling part which is the comparatively low temperature part which is the characteristic of this embodiment. For example, a cylindrical heat insulation cover (13) made of a good conductor such as stainless steel is provided so as to cover the inner wall surface of the flange (7) without thermally insulating it, for example, without contacting it. The heat-insulating cover (13) is made of a good thermal conductor having an outer diameter that is approximately equal to or slightly smaller than the inner diameter of the quartz tube (1), and is made of, for example, stainless steel or a surface-treated metal material that does not react with process gas. The two large and small cylinders are joined so as to be thermally isothermal, and the large diameter cylinder (14) is arranged on the quartz tube side and the small diameter cylinder (15) is arranged on the exhaust device (12) side to be integrated. Connected as an object.
この小径の円筒体(15)は前記排気用円筒体(8)の
外径より僅かに小径に形成され、前記排気用円筒体
(8)の内壁面に実質的に接触せず、小径の円筒体(1
5)の長さは排気ガスの付着を防止する領域迄形成す
る。この実施例では排気用円筒体(8)の長さより少し
長く、上記中継用配管(10)に少しかかる程度例えば中
継配管(10)長の1/3〜1/2程度の長さに構成されてい
る。また上記保温カバー(13)の軸心は上記リャフラン
ジドア(9)と同様、石英チューブ(1)の軸心とほぼ
合致する如く、図示しない複数の点接触手段により配設
されている。勿論必要に応じて軸心をずらしてもよい。
また上記石英チューブ(1)の外周にはこの石英チュー
ブ(1)を囲繞する如く、円筒状抵抗加熱ヒーター(1
6)が同軸的に設けられている。上記した保温カバー(1
3)は上記ヒーター(16)による被処理体を加熱するた
めの熱、特に輻射熱を有効に受け易くする構造、即ち石
英チューブ(1)とほぼ同軸上に配設されている。また
保温カバー(13)は熱良導体により構成されているた
め、ヒーター(16)に近い側の保温カバー(14)で吸収
した熱を熱伝導により、保温カバー(13)の形成領域全
体に熱伝導し、保温カバー(13)内での場所による温度
勾配が少なくほぼ均一に保温が可能な構成になってい
る。The small-diameter cylinder (15) is formed to have a diameter slightly smaller than the outer diameter of the exhaust cylinder (8), does not substantially contact the inner wall surface of the exhaust cylinder (8), and has a small diameter. Body (1
The length of 5) is formed up to the area where exhaust gas is prevented from adhering. In this embodiment, the length is slightly longer than the length of the exhaust cylinder (8) and is set to a length that is a little over the relay pipe (10), for example, about 1/3 to 1/2 of the length of the relay pipe (10). ing. Further, the heat insulating cover (13) is provided with a plurality of point contact means (not shown) so that the shaft center of the heat insulating cover (13) substantially coincides with the shaft center of the quartz tube (1) as in the case of the flange flange door (9). Of course, the axis may be shifted if necessary.
In addition, a cylindrical resistance heater (1) is provided on the outer circumference of the quartz tube (1) so as to surround the quartz tube (1).
6) is provided coaxially. Heat insulation cover (1
3) is a structure for effectively receiving the heat for heating the object to be processed by the heater (16), particularly radiant heat, that is, it is arranged substantially coaxially with the quartz tube (1). Further, since the heat insulating cover (13) is made of a good heat conductor, the heat absorbed by the heat insulating cover (14) near the heater (16) is conducted to the entire area where the heat insulating cover (13) is formed. However, there is little temperature gradient depending on the location in the heat insulating cover (13), and the heat can be kept substantially even.
上記石英チューブ(1)内には複数の被処理体例えば
半導体ウエハ(17)を整列配置して搭載する石英ボート
(18)を収納できる。この石英ボート(18)はフロント
フランジドア(5)の開閉により図示しないソフトラン
ディング,ロボット装置等によりロード,アンロード可
能となっている。このようにして減圧CVD装置が構成さ
れている。In the quartz tube (1), a quartz boat (18) on which a plurality of objects to be processed, for example, semiconductor wafers (17) are arranged and mounted can be housed. The quartz boat (18) can be loaded and unloaded by a soft landing (not shown), a robot device or the like by opening and closing the front flange door (5). In this way, the low pressure CVD apparatus is constructed.
次に動作作用を説明する。すなわち、半導体ウエハ
(17)を配列した石英ボード(18)をソフトランディン
グ装置(図示せず)により石英チューブ(1)の予め定
められた位置に搬入する。石英チューブ(1)内の石英
ボート(18)に整列搭載された半導体ウエハ(17)をヒ
ーター(16)により所望温度例えば600〜800℃に加熱
し、石英チューブ(1)内の圧力を排気装置(12)を作
動させ、所定圧力例えば0.1〜1.0Torrに減圧する。そし
てガス導入管(2)からプロセスガス例えばテトラエト
キシシランSi(OC2H5)4を所定流量例えば50〜120SCCM
を流す。半導体ウエハ(17)上には所定のプロセス条件
に設定されているのでSiO2膜が成長する。Next, the operation operation will be described. That is, the quartz board (18) on which the semiconductor wafers (17) are arranged is loaded into the quartz tube (1) at a predetermined position by a soft landing device (not shown). The semiconductor wafer (17) aligned and mounted on the quartz boat (18) in the quartz tube (1) is heated to a desired temperature, for example, 600 to 800 ° C. by the heater (16), and the pressure in the quartz tube (1) is exhausted. (12) is activated to reduce the pressure to a predetermined pressure, for example, 0.1 to 1.0 Torr. Then, a process gas such as tetraethoxysilane Si (OC 2 H 5 ) 4 is supplied from the gas introduction pipe (2) at a predetermined flow rate, for example, 50 to 120 SCCM.
Flow. Since a predetermined process condition is set on the semiconductor wafer (17), a SiO 2 film grows.
また高温の未反応プロセスガスは冷却されたリャフラ
ンジ(7)やリャフランジドア(9)の近くでは上記し
たO−リングの耐熱温度に急激に冷却しているため、こ
の冷却された比較的低温部の内壁面上に反応生成物SiO2
が付着する。この反応生成物の付着を防ぐには、所定の
プロセス温度とほぼ同等の温度もしくは、反応生成物が
生成されにくい程度の温度例えば200℃以上にフランジ
周辺を保持することが必要となる。Further, the high temperature unreacted process gas is rapidly cooled to the above heat resistant temperature of the O-ring near the cooled flange (7) and the flange door (9). On the inner wall of the reaction product SiO 2
Adheres. In order to prevent the adhesion of the reaction product, it is necessary to maintain the periphery of the flange at a temperature substantially equal to a predetermined process temperature or at a temperature at which the reaction product is hard to be generated, for example, 200 ° C. or higher.
そこで、この実施例では保温カバー(13)を設けて対
策している。そして、その保温をヒーター(16)からの
熱を利用している事を特徴としている。すなわち、石英
チューブ(1)とフランジ部から成る反応容器内部の熱
伝播は、反応容器内に於いては減圧(真空)の為、伝導
や対流よりも輻射が大部分であると考えられる。そこで
この実施例の特徴として、熱良導体から成る保温カバー
(13)は冷却されたリャフランジ(7)とリャフランジ
ドア(9)の表面を覆うように、また表面に接触しない
様に設けられ、ヒーター(16)と保温カバー(13)の軸
心がほぼ一致しているので、ヒーター(16)からの輻射
熱は第2図に示す様に保温カバー(13)の全体に及び、
さらに熱量は少なくなるが細い奥の小径の円筒体(15)
の内部にまで行き渡る。またリャフランジ(7)、リャ
フランジドア(9)及び中継用配管(10)側へと温度は
下って行くため、保温カバー(13)が石英等の熱不良導
体の場合、石英チューブ(1)側から中継用配管(10)
側へ行くに従い、上記外周温度に影響され、温度勾配が
でき中継用配管(10)近傍では反応生成物が生成されや
すい温度例えば200℃以下に下り、保温カバー(13)の
小径円筒体(15)付近に反応生成物が付着し易くなる。
しかしこの実施例の特徴の一つである保温カバー(13)
は熱良導体製であることから、ヒーター(16)の、より
近い部分で受けた大量の熱は上記保温カバー(13)の細
い小径円筒体(15)の中継用配管(10)側へ熱伝導し、
保温カバー(13)は温度勾配の少ない、ほぼ均一な温度
分布になり、反応生成物が付着しにくい温度例えば200
℃以上に保温可能となる。またリャフランジドア(9)
の排気装置(12)側に設けた中継用配管(10)は、保温
カバー(13)に比較し急激に例えば100℃以下に温度が
下っているため反応生成物が付着し易い。しかし、この
中継用配管(10)は着脱自在に構成されているので容易
に取り外し、洗浄が出来る。そして反応生成物は半導体
のプロセス領域より離れた個所に生成されることによ
り、反応生成物が反応容器内へ戻り、汚染源となること
は少なくなる。Therefore, in this embodiment, a heat insulating cover (13) is provided as a countermeasure. And it is characterized by utilizing the heat from the heater (16) to keep it warm. That is, it is considered that the heat propagation inside the reaction vessel composed of the quartz tube (1) and the flange portion is mostly due to radiation rather than conduction or convection due to the reduced pressure (vacuum) in the reaction vessel. Therefore, as a feature of this embodiment, the heat insulating cover (13) made of a good heat conductor is provided so as to cover the surfaces of the cooled flanges (7) and the flange doors (9) and so as not to contact the surfaces. Since the axes of the heat insulating cover (16) and the heat insulating cover (13) are substantially coincident with each other, the radiant heat from the heater (16) extends over the entire heat insulating cover (13) as shown in FIG.
Further, the amount of heat decreases, but the cylindrical body with a small inner diameter is thin (15).
Goes all the way inside. Further, since the temperature goes down to the side of the flange (7), the door (9) of the flange, and the pipe (10) for relay, when the heat insulating cover (13) is a heat-defective conductor such as quartz, the quartz tube (1) side. To relay piping (10)
As it goes to the side, the temperature is affected by the above-mentioned outer peripheral temperature, and a temperature gradient is generated, so that the temperature is easily lowered to 200 ° C. or less in the vicinity of the relay pipe (10), and the small diameter cylindrical body (15) of the heat insulating cover (13) ), The reaction product is likely to adhere to the vicinity.
However, one of the features of this embodiment is the heat insulation cover (13).
Is a good conductor of heat, so a large amount of heat received in the closer part of the heater (16) is conducted to the relay pipe (10) side of the small diameter cylindrical body (15) of the heat insulating cover (13). Then
The heat-retaining cover (13) has a small temperature gradient and an almost uniform temperature distribution.
It is possible to keep the temperature above ℃. Lilla flange door (9)
Since the temperature of the relay pipe (10) provided on the side of the exhaust device (12) of the relay pipe (10) is drastically lowered to, for example, 100 ° C. or lower as compared with the heat insulating cover (13), the reaction product is likely to adhere to the relay pipe (10). However, since this relay pipe (10) is configured to be removable, it can be easily removed and washed. Then, the reaction product is generated at a position apart from the semiconductor process region, so that the reaction product is less likely to return to the reaction container and become a pollution source.
また保温カバー(13)は排気系のリャフランジ(7)
側に限らず、比較的低温部で反応生成物の付着する領域
であれば、例えばフロントフランジ(3)側に形状を合
せた保温カバーをフロントフランジ(3)側に配設して
も反応生成物の付着を避ける効果がある。The heat insulation cover (13) is the exhaust flange (7).
Not only on the side, but in a region where the reaction product adheres at a relatively low temperature portion, for example, even if a heat insulating cover having a shape matching the front flange (3) side is provided on the front flange (3) side, the reaction product is generated. It has the effect of avoiding adhesion of objects.
次に、テトラエトキシシランSi(OC2H5)4を70〜100
SCCM、反応容器内圧力0.3〜1.0Torr、プロセス温度700
℃の条件で反応生成物の付着状態を調べたところ、第3
図に示す様な反応生成物の付着状態になり、保温カバー
(13)の小径の円筒体(15)の排気装置(12)側に最も
近い先端位置に僅か付着物(21)が認められる程度で、
保温カバー(13)の無い、中継用配管(10)に断面が山
状(22)に大量付着し、保温カバー(13)の効果が確認
できた。付着物(21)の付着量は、小径の円筒体(15)
の長さに関係しこの長さが短かい程付着量は少なく長い
程付着量が多くなる。これは熱源のヒーター(16)から
受ける熱輻射量に起因していることが明らかである。こ
の小径の円筒体の内径が35〜40mmの場合は長さ50mm位が
適正である。Next, tetraethoxysilane Si (OC 2 H 5 ) 4 is added to 70 to 100
SCCM, reaction vessel pressure 0.3 to 1.0 Torr, process temperature 700
When the adhesion state of the reaction product was examined under the condition of ℃,
The reaction product adheres as shown in the figure, and a small amount of adhered matter (21) is observed at the tip position of the small diameter cylindrical body (15) of the heat insulating cover (13) closest to the exhaust device (12) side. so,
A large amount of cross-section (22) adhered to the relay pipe (10) without the heat insulating cover (13), confirming the effect of the heat insulating cover (13). The amount of adhered matter (21) adhered is smaller than that of the cylindrical body (15).
The shorter the length, the smaller the adhesion amount, and the longer the length, the larger the adhesion amount. It is clear that this is due to the amount of heat radiation received from the heat source heater (16). When the inner diameter of this small-diameter cylindrical body is 35 to 40 mm, a length of about 50 mm is appropriate.
上記中継用配管(10)は取り外し可能に構成している
ため取り脱し洗浄することによりクリーン対策が可能で
ある。以上本発明の実施例について説明したが、本発明
は上記実施例に限定されるものではなく、本発明の要旨
の範囲内で種々の変形実施が可能である。特に減圧CVD
装置、TEOS装置、常圧CVD装置、プラズマCVD装置、ドラ
イエッチング装置、LCDエッチング装置、アッシング装
置など熱処理装置に有効である。Since the relay pipe (10) is configured to be removable, it is possible to take a clean measure by removing and cleaning it. Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the gist of the present invention. Especially low pressure CVD
It is effective for heat treatment equipment such as equipment, TEOS equipment, atmospheric pressure CVD equipment, plasma CVD equipment, dry etching equipment, LCD etching equipment, and ashing equipment.
上記実施例では円筒状に保温カバーを設けた例につい
て説明したが、本発明の効果を有する範囲で構造選択は
可能である。例えば、格子状、スリット状又は分割片の
配置、さらに薄板で形成するなど何れでもよい。In the above embodiment, an example in which the heat insulation cover is provided in a cylindrical shape has been described, but the structure can be selected within the range in which the effect of the present invention is obtained. For example, it may be formed in a lattice shape, a slit shape, an arrangement of divided pieces, or a thin plate.
本発明によれば、金属製の筒状部への反応生成物の付
着を低減でき、かつ中継用配管は着脱自在に設けられて
いるので、付着した反応生成物の清掃除去が容易にな
り、パーティクル発生を抑えることができる。According to the present invention, it is possible to reduce the adhesion of the reaction product to the metal tubular portion, and since the relay pipe is provided detachably, it becomes easy to clean and remove the adhered reaction product, Generation of particles can be suppressed.
第1図は本発明装置の一実施例を説明するための減圧CV
D装置の構成説明図、第2図は第1図のヒーター熱の保
温カバーへの輻射熱伝播の説明図、第3図は第1図装置
による反応生成物の付着状態の説明図である。 1……石英チューブ、3……フロントフランジ 4……O−リング、5……フロントフランジドア 6……冷却機構、7……リャフランジ 8……排気用円筒体、9……リャフランジドア 10……中継用配管、12……排気装置 13……保温カバー、14……大径の円筒体 15……小径の円筒体、16……ヒーター 17……半導体ウエハ、18……石英ボートFIG. 1 is a depressurized CV for explaining an embodiment of the device of the present invention.
FIG. 2 is a diagram for explaining the configuration of the D device, FIG. 2 is a diagram for explaining radiant heat propagation of the heater heat of FIG. 1 to the heat insulating cover, and FIG. 3 is a diagram for explaining the state of adhesion of reaction products by the device in FIG. 1 ... Quartz tube, 3 ... Front flange 4 ... O-ring, 5 ... Front flange door 6 ... Cooling mechanism, 7 ... Lya flange 8 ... Exhaust cylinder, 9 ... Lya flange door 10 ... … Relay pipe, 12 …… Exhaust device 13 …… Heat-insulating cover, 14 …… Large diameter cylinder 15 …… Small diameter cylinder, 16 …… Heater 17 …… Semiconductor wafer, 18 …… Quartz boat
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/31 H01L 21/302 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01L 21/31 H01L 21/302 B
Claims (1)
端部に設けられ、排気管が接続されると共に、冷却機構
が設けられた金属製の筒状部とを備え、前記反応管内に
処理ガスを導入して被処理体の熱処理を行う熱処理装置
において、 前記排気管の一部に着脱自在に設けられた中継用配管
と、 前記筒状部の内面及び前記中継用配管に至るまでの排気
管の内面を間隙を介して覆うように設けられた熱良導体
よりなる保温カバーと、を備え、 前記反応管内のガスを保温カバーを介して排気し、前記
中継用配管で反応生成物を析出させることを特徴とする
熱処理装置。1. A reaction tube surrounded by a heating portion, and a metal tubular portion provided at an end of the reaction tube, connected to an exhaust pipe, and provided with a cooling mechanism. In a heat treatment apparatus for introducing a processing gas into a reaction tube to heat-treat an object, a relay pipe detachably provided in a part of the exhaust pipe, an inner surface of the tubular portion and the relay pipe. A heat insulating cover made of a good heat conductor provided so as to cover the inner surface of the exhaust pipe through a gap, and the gas in the reaction pipe is exhausted through the heat insulating cover, and a reaction is generated in the relay pipe. A heat treatment apparatus for depositing a substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63148694A JP2686465B2 (en) | 1988-06-16 | 1988-06-16 | Heat treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63148694A JP2686465B2 (en) | 1988-06-16 | 1988-06-16 | Heat treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH022617A JPH022617A (en) | 1990-01-08 |
JP2686465B2 true JP2686465B2 (en) | 1997-12-08 |
Family
ID=15458508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63148694A Expired - Fee Related JP2686465B2 (en) | 1988-06-16 | 1988-06-16 | Heat treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2686465B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101323360B1 (en) * | 2011-12-29 | 2013-10-30 | (주)티티에스 | Heater unit and substrate treating apparatus having the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103014873B (en) * | 2012-09-18 | 2017-07-14 | 苏州四海常晶光电材料有限公司 | A kind of pure oxygen atmosphere annealing device and method for annealing |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6139937U (en) * | 1984-08-17 | 1986-03-13 | セイコーエプソン株式会社 | Diffusion furnace type vapor phase growth equipment |
JPS61294826A (en) * | 1985-06-24 | 1986-12-25 | Toshiba Corp | Low pressure cvd apparatus |
-
1988
- 1988-06-16 JP JP63148694A patent/JP2686465B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101323360B1 (en) * | 2011-12-29 | 2013-10-30 | (주)티티에스 | Heater unit and substrate treating apparatus having the same |
Also Published As
Publication number | Publication date |
---|---|
JPH022617A (en) | 1990-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5368648A (en) | Sealing apparatus | |
JP3164248B2 (en) | Heat treatment equipment | |
EP0463633B1 (en) | Chemical-vapor-deposition apparatus and method for reducing particulate contamination in a chemical-vapor-deposition process | |
US5131842A (en) | Corrosion resistant thermal treating apparatus | |
JP4015791B2 (en) | Heat treatment equipment | |
JP2686465B2 (en) | Heat treatment equipment | |
JP2004214283A (en) | Semiconductor device manufacturing apparatus | |
US3964430A (en) | Semi-conductor manufacturing reactor instrument with improved reactor tube cooling | |
JP3597903B2 (en) | Processing equipment | |
JP3578258B2 (en) | Heat treatment equipment | |
JPH0930893A (en) | Vapor growth device | |
JP3070567B2 (en) | Vertical reduced pressure vapor phase growth apparatus and vapor phase growth method using the same | |
JP3625741B2 (en) | Heat treatment apparatus and method | |
JPH0639709B2 (en) | Plasma CVD equipment | |
JP3463785B2 (en) | Sealing device and processing device | |
JPH0548307B2 (en) | ||
KR0155381B1 (en) | Treating apparatus | |
JPH01312833A (en) | Vapor phase growth device | |
JP3717768B2 (en) | Gas cleaning method for semiconductor manufacturing equipment | |
JP2001214271A (en) | Film forming device | |
JPH06173010A (en) | Heat-treating device | |
JP4256174B2 (en) | Low pressure vapor phase growth equipment | |
JPH01278715A (en) | Film manufacturing device | |
JPH0337189A (en) | Apparatus for vapor growth | |
JP2000026973A (en) | Cvd system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |