JP2685467B2 - Electron gun electrode assembly for color picture tube - Google Patents
Electron gun electrode assembly for color picture tubeInfo
- Publication number
- JP2685467B2 JP2685467B2 JP62327094A JP32709487A JP2685467B2 JP 2685467 B2 JP2685467 B2 JP 2685467B2 JP 62327094 A JP62327094 A JP 62327094A JP 32709487 A JP32709487 A JP 32709487A JP 2685467 B2 JP2685467 B2 JP 2685467B2
- Authority
- JP
- Japan
- Prior art keywords
- flange
- focusing electrode
- electrode
- electron gun
- picture tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、レーザ溶接法により、組立治具をレーザ照
射により損傷させることなく、複数部品をフランジ対向
部で溶接接合できるようにしたカラー受像管用電子銃電
極構体に関する。
〔従来の技術〕
カラー受像管用電子銃電極構体は、その組立精度が、
受像画面の画質に大きく影響するので、良好な画質のカ
ラー受像管を得るためには、電子銃電極構体の組立精度
の向上を図る必要がある。
第2図は従来のバイポテンシャル集束方式インライン
形電子銃の一例を示し、図(a)は3本の電子ビームが
並列して存在する平面による断面図、図(b)は前記平
面に直交する平面による断面図である。図中、1A,1B,1C
は頂面から夫々電子ビームA,B,Cを放出する陰極、2は
電子ビームA〜Cを制御する制御電極、3は電子ビーム
A〜Cを加速させる加速電極、4は電子ビームA〜Cを
集束させる集束電極で、下部集束電極5と上部集束電極
6を予め接合して形成されている。7は陽極、8はコン
バーゼンス電極である。
前記制御電極2、加速電極3及び下部集束電極5に
は、夫々、電子ビーム通過孔2A〜2C、3A〜3C、5A〜5Cが
設けられ、前記上部集束電極6と陽極7夫々の底面に対
向して設けられた3個の絞り孔6A〜6Cと7A〜7Cと共に、
3本の電子ビームA〜Cに対応する3個の主レンズを形
成している。
電子銃の動作電圧は、例えば、制御電極2に0V、加速
電極3に700V、集束電極4に約7kV、陽極7に25kVが印
加される。
このように構成された電子銃において、3個の陰極1A
〜1Cに与える信号電位によって夫々の電子ビーム量が制
御された3本の電子ビームA〜Cは、加速電極3と下部
集束電極5の対向する各孔間で形成されるプリフォーカ
スレンズで若干の集束作用を受けた後、上部集束電極6
と陽極7とで形成される夫々の主レンズによって図示し
てない受像管の螢光面で結像するように集束作用を受け
る。同時に両側に電子ビームA、Cは陽極7の電子ビー
ム通過孔7A、7Cを上部集束電極6の電子ビーム通過孔6
A、6Cに対して外側に僅かに偏芯させる公知の手段によ
って角度θの傾斜を与え、3本の電子ビームA、B、C
を一点に集中させる。
第3図(a)は第2図(a)中に示すP−P′線断面
における集束電極4の上面図である。電子銃の上記各電
極2〜7は第3図(a)中に示すマルチフォームガラス
9により絶縁支持され、図示してない円筒状のネック管
内に配置されるため、集束電極4の上部集束電極6の筒
状部6aは3個の電子ビーム通過孔6A〜6Cの配列方向を長
径とする長円形となり、フランジ6bの接合部がマルチフ
ォームガラス9に挿入されて支持されている。なお下部
集束電極5も同様に形成されている。
前記集束電極4は、下部集束電極5と上部集束電極6
を、予め、第3図(b)に示す短径方向の中央断面図の
如く、組立治具により組合せ接合して作られる。この図
から判るように、治具の基板10に植立された少なくとも
2本(この図では重なって1本に見える)の芯金11に、
上部集束電極6の孔6A,6B,6C及び下部集束電極5の孔5
A,5B,5C(6A,6C及び5A,5Cは図示せず)を嵌合させ、基
板10と基板12で上記両集束電極を挟持させ、相互に押付
けられたフランジ6b及び5bの複数個所を抵抗溶接点13で
接合して集束電極4に組立てる。
下部集束電極5と上部集束電極6は夫々厚さが約0.3m
mのステンレス鋼板をプレス絞り加工して作るが、筒状
部5a、6aの短径方向は長径方向に比べて上下面の平行度
の相対誤差が大きくなる。このため、第3図(b)に示
すような組立方法では、集束電極4には、下部集束電極
5及び上部集束電極6の平行度誤差がそのまま残り、例
えば第2図(b)に示すように下部集束電極5の底面が
傾斜する。
インラインカラー受像管は図示しない偏向コイルの磁
界分布を水平方向にピンクッション状、垂直方向にバレ
ル状として螢光面の全域で3本の電子ビームを集中させ
る静コンバーゼンス方式をとっているので、前記のよう
に下部集束電極5の底面が傾斜していると、陰極1Bから
放出された電子ビームBは周知の如く、螢光面の上下
で、画像の解像度すなわち集束特性に差が発生し、著し
く画質を低下させていた。
かかる問題の対策として、例えば特開昭60−163335号
公報には第4〜6図に示すような上下集束電極の接合組
立法が開示されている。第4図で、集束電極40は従来と
同様に下部集束電極50と上部集束電極60とから成り、図
には中央の電子ビーム通過孔50B,60Bが示されている。
下基板70には少なくとも2本の芯金71がスプリング72で
上下動可能に配設されている。上基板73には複数のピン
74がスプリング75で上下動可能に配設されている。前記
下および上基板70、73間には複数のスペーサ76が配設さ
れており、これらスペーサ76は各電極50、60の長さの和
より若干長く設定してある。なお、ピン74が上部集束電
極のフランジ60bを下へ押付ける個所では、下部集束電
極のフランジ50bの張出をピン74を避けて小さくしてあ
る。下部集束電極50、上部集束電極60は夫々の孔50A〜5
0C,60A〜60Cを芯金71に嵌合させ、上基板73をスペーサ7
6に密着させて押付ける。このように保持された状態で
矢印方向からレーザ光を照射してフランジ50b,60bを側
面から複数個所で溶接して接合する。レーザ光による溶
接は機械的応力を必要としないため設定時の平行度およ
び孔の同軸度が保たれた高精度の部品組立が可能であ
る。第5図はこの様な方法で組立てられた集束電極40を
示し、図中78はレーザ光による複数の溶接点である。第
6図はレーザ溶接個所の要部断面図である。
このように上下面の平行度および同軸度等の精度を改
良した集束電極40を電子銃に使用した場合は螢光面の全
域にわたって良好で均一な集束性能を有する優れたカラ
ー受像管が得られる。
しかし、このような構造の場合、第6図から判るよう
に、レーザ溶接時に、レーザ光はフランジ50b,60bの間
の隙間(0.05〜0.5mm)を通過し直接芯金71をも照射す
る。その結果、芯金71は局部的に溶融し、その周辺にス
プラッシュが付着し、その結果、組立終了した集束電極
40が芯金71から抜けなくなる、組立治具の寿命が極めて
短くなるなどの問題が生じた。
〔発明が解決しようとする問題点〕
本発明は、上記従来の複数部品電極を夫等のフランジ
部をレーザ溶接して一つの電極構体に組立てる際に生じ
た問題点を解決し、レーザ光直接照射による組立治具の
損傷が生ぜず、組立後の複合電極の取り外しが容易で、
しかも高い精度を保持しながら接合組立が行われ、良好
な特性が得られるカラー受像管用電子銃電極構体を提供
することを目的とする。
〔問題点を解決するための手段〕
上記問題点を解決するために本発明においては、少な
くとも2個の筒状部品を、夫々の相対向するフランジを
接合して形成させたカラー受像管用電子銃電極構体にお
いて、上記フランジ接合を形成する一方の部品のフラン
ジの張出寸法と、他方の部品のフランジの張出寸法とに
差を設け、上記両筒状部品を正しい相対位置に保持した
状態で、接合すべきフランジ対向部を、溶接接合するこ
とにした。
〔作用〕
上記手段をとることにより、レーザ溶接に際し、組立
治具の芯金が直接レーザ光に照射されなくなり、従って
治具芯金の損傷、レーザ光照射によるスプラッシュ付着
による問題がなくなる。なお、レーザ溶接の特徴とし
て、接合すべき対向フランジ面の間に僅かな隙間があっ
ても溶接できるから、接合すべき二つの部品の寸法誤差
を上記隙間に吸収させることが可能なので、組立後の複
合電極に高い精度を保持させることが出来る。
〔実施例〕
第1図(a)は本発明一実施例の要部拡大断面図であ
る。図中、41は本発明に係る集束電極、51は下部集束電
極、51Bは下部集束電極の中央電子ビーム通過孔、51bは
下部集束電極のフランジ、61は上部集束電極、61Bは上
部集束電極の中央電子ビーム通過孔、61bは上部集束電
極のフランジ、77は溶接用レーザ光ビームの照射方向、
70、73は組立治具の基板、71は治具の芯金である。
下部集束電極51、上部集束電極61夫々のレーザ溶接に
より接合すべきフランジ51b,61bの張出寸法には図示の
如く段差δが設けてある。溶接に際しては、この図に示
すように、フランジ張出の小さい側すなわち下部集束電
極51の外方上部から、フランジ面に対して斜めに角θだ
け傾いた方向77からレーザ光ビームを照射する。この場
合詳細には、第1図(b)に示すように、レーザ光ビー
ムAは、下部集束電極51のフランジの端面51cと、上部
集束電極61bの両方を照射する。その結果、下部集束電
極のフランジ51bの端面51cと上部集束電極のフランジ61
bとが溶着され、レーザ溶接後の形状は第1図(c)に
示すようになる。組立治具に両電極を、正しい相対位置
を保持するように装着した状態で、両電極の対向するフ
ランジ面の間に残留していた隙間Δlは、レーザ溶接の
前後で殆ど変化なく、精度の高い組立集束電極41が得ら
れる。
実験によると、下部集束電極、上部集束電極のフラン
ジ部肉厚が0.4mm,Δl=0.05〜0.10mmの場合、フランジ
部段差δ=0.4mm即ちフランジ部肉厚と略等しくするこ
とにより最良の組立精度が得られることが判った。
また、レーザ光がフランジ面に角度θを以て照射され
るので、レーザ光により治具の芯金71が損傷されること
はない。
以上のようにレーザ溶接用フランジの張出寸法に差を
設けることにより精度の高い組立電極を得ることがで
き、従って螢光面全域で電子ビームの集束状態は良好
で、高画質の画像が得られる。
なお、以上の説明では、接合すべきフランジ面間に、
隙間を生じさせてレーザ溶接の特徴を利用する場合につ
いて説明したが、組立治具に部品電極の変形を生じさせ
ないような手段(例えば治具を上下方向に弾性的に多少
伸縮可能にするなど)を講じておけば、上記隙間がない
場合でも、接合すべき相対向するフランジの張出に差が
設けてあれば、レーザ光をフランジ面に斜めに照射させ
て溶接することができ、フランジ面自体の凹凸などのた
めレーザ光によって組立治具の芯金が損傷される恐れは
皆無となる効果が得られる。
〔発明の効果〕
以上説明したように本発明によれば、組立電極を構成
する両部品電極の端面の平行精度を高く保持させながら
組立てられるので、電子ビームの集束状態が良好で高画
質の画像が得られるカラー受像管用電子銃を高い歩留り
で量産できる。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides a color image receiving method capable of welding and joining a plurality of components at a flange facing portion by a laser welding method without damaging an assembly jig by laser irradiation. The present invention relates to an electron gun electrode assembly for a tube. [Prior Art] Electron gun electrode assembly for color picture tube
Since the image quality of the image receiving screen is greatly affected, it is necessary to improve the assembly accuracy of the electron gun electrode assembly in order to obtain a color picture tube of good image quality. FIG. 2 shows an example of a conventional bipotential focusing type in-line type electron gun. FIG. 2A is a sectional view taken along a plane where three electron beams exist in parallel, and FIG. 2B is orthogonal to the plane. It is sectional drawing by a plane. 1A, 1B, 1C in the figure
Is a cathode that emits electron beams A, B, and C from the top surface, 2 is a control electrode that controls the electron beams A to C, 3 is an accelerating electrode that accelerates the electron beams A to C, and 4 is an electron beam A to C Is a focusing electrode for focusing the lower focusing electrode 5 and the upper focusing electrode 6 which are joined together in advance. Reference numeral 7 is an anode, and 8 is a convergence electrode. The control electrode 2, the acceleration electrode 3, and the lower focusing electrode 5 are provided with electron beam passage holes 2A to 2C, 3A to 3C, and 5A to 5C, respectively, and face the bottom surfaces of the upper focusing electrode 6 and the anode 7, respectively. Together with the three throttle holes 6A-6C and 7A-7C
Three main lenses corresponding to the three electron beams A to C are formed. The operating voltage of the electron gun is, for example, 0 V applied to the control electrode 2, 700 V applied to the acceleration electrode 3, about 7 kV applied to the focusing electrode 4, and 25 kV applied to the anode 7. In the electron gun constructed in this way, three cathodes 1A
The three electron beams A to C, whose electron beam amounts are controlled by the signal potentials given to 1C to 1C, are slightly separated by the prefocus lens formed between the opposing holes of the acceleration electrode 3 and the lower focusing electrode 5. After receiving the focusing action, the upper focusing electrode 6
The respective main lenses formed by the anode and the anode 7 are focused so as to form an image on the fluorescent surface of a picture tube (not shown). At the same time, the electron beams A and C on both sides pass through the electron beam passage holes 7A and 7C of the anode 7 and the electron beam passage hole 6 of the upper focusing electrode 6, respectively.
The electron beam A, B, C is provided with an inclination of an angle θ by a known means for slightly eccentricity to A, 6C.
Concentrate on one point. FIG. 3 (a) is a top view of the focusing electrode 4 taken along the line PP 'shown in FIG. 2 (a). The electrodes 2 to 7 of the electron gun are insulated and supported by the multi-form glass 9 shown in FIG. 3 (a) and arranged in a cylindrical neck tube (not shown). The cylindrical portion 6a of 6 is an ellipse having a major axis in the arrangement direction of the three electron beam passage holes 6A to 6C, and the joint portion of the flange 6b is inserted into and supported by the multi-form glass 9. The lower focusing electrode 5 is similarly formed. The focusing electrode 4 includes a lower focusing electrode 5 and an upper focusing electrode 6.
Are preliminarily combined and joined by an assembly jig as shown in the central sectional view in the minor axis direction shown in FIG. 3 (b). As can be seen from this figure, at least two cores 11 (which appear as one overlapping in this figure) set up on the jig substrate 10,
Holes 6A, 6B, 6C of the upper focusing electrode 6 and holes 5 of the lower focusing electrode 5
A, 5B, 5C (6A, 6C and 5A, 5C are not shown) are fitted together, the above focusing electrodes are sandwiched between the substrate 10 and the substrate 12, and the plural places of the flanges 6b and 5b pressed against each other are placed. The focus welding electrode 4 is assembled by joining at the resistance welding point 13. Each of the lower focusing electrode 5 and the upper focusing electrode 6 has a thickness of about 0.3 m.
The stainless steel sheet of m is produced by press drawing, but the relative error of the parallelism between the upper and lower surfaces becomes larger in the minor axis direction of the tubular portions 5a and 6a than in the major axis direction. Therefore, in the assembling method shown in FIG. 3 (b), the parallelism error between the lower focusing electrode 5 and the upper focusing electrode 6 remains in the focusing electrode 4 as shown in FIG. 2 (b). The bottom surface of the lower focusing electrode 5 is inclined. The in-line color picture tube uses a static convergence method in which the magnetic field distribution of a deflection coil (not shown) is pincushion-shaped in the horizontal direction and barrel-shaped in the vertical direction to concentrate three electron beams over the entire fluorescent surface. When the bottom surface of the lower focusing electrode 5 is inclined as shown in FIG. 5, the electron beam B emitted from the cathode 1B has a difference in image resolution, that is, focusing characteristics, above and below the fluorescent surface, as is well known. The image quality was degraded. As a measure against such a problem, for example, Japanese Patent Application Laid-Open No. 60-163335 discloses a method of joining and assembling upper and lower focusing electrodes as shown in FIGS. In FIG. 4, the focusing electrode 40 is composed of a lower focusing electrode 50 and an upper focusing electrode 60 as in the conventional case, and the central electron beam passage holes 50B and 60B are shown in the figure.
At least two cored bars 71 are provided on the lower substrate 70 so as to be vertically movable by springs 72. The upper board 73 has multiple pins
The spring 74 is arranged so as to be vertically movable. A plurality of spacers 76 are arranged between the lower and upper substrates 70, 73, and these spacers 76 are set to be slightly longer than the sum of the lengths of the electrodes 50, 60. It should be noted that, at the location where the pin 74 presses the flange 60b of the upper focusing electrode downward, the protrusion of the flange 50b of the lower focusing electrode is made small so as to avoid the pin 74. The lower focusing electrode 50 and the upper focusing electrode 60 have holes 50A to 5 respectively.
Fit 0C, 60A to 60C to the core metal 71, and place the upper substrate 73 on the spacer 7
Press it closely to 6. While being held in this way, laser light is emitted from the direction of the arrow to weld the flanges 50b and 60b at a plurality of positions from the side surface to join them. Since welding with laser light does not require mechanical stress, it is possible to assemble parts with high precision while maintaining parallelism at the time of setting and coaxiality of holes. FIG. 5 shows the focusing electrode 40 assembled by such a method, and in the figure, 78 are a plurality of welding points by laser light. FIG. 6 is a sectional view of a main part of a laser welding part. Thus, when the focusing electrode 40 with improved accuracy of parallelism and coaxiality of the upper and lower surfaces is used in the electron gun, an excellent color picture tube having good and uniform focusing performance over the entire fluorescent surface can be obtained. . However, in the case of such a structure, as can be seen from FIG. 6, during laser welding, the laser light passes through the gap (0.05 to 0.5 mm) between the flanges 50b and 60b and directly irradiates the cored bar 71. As a result, the cored bar 71 is locally melted, and splash is attached to the periphery of the cored bar 71.
There were problems such as the 40 being stuck in the core 71 and the life of the assembly jig being extremely short. [Problems to be Solved by the Invention] The present invention solves the problems that occur when assembling the above-described conventional multi-component electrodes into a single electrode assembly by laser-welding the flange portion of the husband, etc. The assembly jig is not damaged by irradiation, and the composite electrode can be easily removed after assembly.
Moreover, it is an object of the present invention to provide an electron gun electrode assembly for a color picture tube in which bonding and assembling are performed while maintaining high accuracy and good characteristics are obtained. [Means for Solving the Problems] In order to solve the above problems, according to the present invention, at least two tubular parts are formed by joining respective facing flanges to each other. In the electrode structure, a difference is provided between the overhanging dimension of the flange of one component forming the above flange joint and the overhanging dimension of the flange of the other component, and the two tubular components are held in correct relative positions. We decided to weld the flange facing parts to be joined. [Operation] By adopting the above means, the core metal of the assembly jig is not directly irradiated with the laser beam during the laser welding, so that the problems due to the damage of the core metal of the jig and the splash adhesion due to the laser beam irradiation are eliminated. As a feature of laser welding, it is possible to weld even if there is a slight gap between the facing flange surfaces to be joined, so it is possible to absorb the dimensional error of the two parts to be joined in the above gap, so after assembly It is possible to maintain high precision in the composite electrode. [Embodiment] FIG. 1 (a) is an enlarged sectional view of an essential part of an embodiment of the present invention. In the figure, 41 is a focusing electrode according to the present invention, 51 is a lower focusing electrode, 51B is a central electron beam passage hole of the lower focusing electrode, 51b is a flange of the lower focusing electrode, 61 is an upper focusing electrode, and 61B is an upper focusing electrode. The central electron beam passage hole, 61b is the flange of the upper focusing electrode, 77 is the irradiation direction of the laser light beam for welding,
Reference numerals 70 and 73 are substrates of the assembly jig, and 71 is a core metal of the jig. As shown in the drawing, a step δ is provided in the overhanging dimension of the flanges 51b and 61b to which the lower focusing electrode 51 and the upper focusing electrode 61 are to be joined by laser welding. At the time of welding, as shown in this figure, a laser light beam is emitted from the side with a small flange overhang, that is, from the outer upper side of the lower focusing electrode 51, in a direction 77 obliquely inclined by an angle θ with respect to the flange surface. In this case, in detail, as shown in FIG. 1B, the laser light beam A irradiates both the end surface 51c of the flange of the lower focusing electrode 51 and the upper focusing electrode 61b. As a result, the end surface 51c of the lower focusing electrode flange 51b and the upper focusing electrode flange 61c are
b and are welded, and the shape after laser welding is as shown in FIG. 1 (c). With both electrodes mounted on the assembly jig so as to hold the correct relative positions, the gap Δl remaining between the opposing flange surfaces of both electrodes hardly changed before and after laser welding, and A highly assembled focusing electrode 41 is obtained. According to the experiment, when the flange thickness of the lower focusing electrode and the upper focusing electrode is 0.4 mm and Δl = 0.05 to 0.10 mm, the flange step difference δ = 0.4 mm, that is, the flange thickness is approximately equal to the best assembly. It turns out that accuracy can be obtained. Further, since the laser light is applied to the flange surface at an angle θ, the core metal 71 of the jig is not damaged by the laser light. As described above, a highly accurate assembly electrode can be obtained by providing a difference in the overhanging dimension of the laser welding flange, and therefore the electron beam focusing state is good over the entire fluorescent surface, and a high quality image can be obtained. To be In the above description, between the flange surfaces to be joined,
The case of using the characteristics of laser welding by creating a gap has been explained, but a means that does not cause deformation of the component electrode in the assembly jig (for example, the jig can be elastically expanded and contracted slightly in the vertical direction). Even if there is no gap, if there is a difference in the bulging of the opposing flanges that should be joined, it is possible to irradiate the flange surface with laser light diagonally and weld it. It is possible to obtain an effect that there is no possibility that the core metal of the assembly jig is damaged by the laser light due to the unevenness of itself. [Effects of the Invention] As described above, according to the present invention, since the assembly is performed while keeping the parallel accuracy of the end faces of both component electrodes constituting the assembly electrode high, the focused state of the electron beam is good and a high quality image is obtained. It is possible to mass-produce color picture tube electron guns with high yield.
【図面の簡単な説明】
第1図(a)は本発明一実施例の要部拡大断面図、第1
図(b),(c)は本発明によるフランジ溶接を説明す
る図、第2図(a),(b)は従来のインライン形電子
銃の一例の断面図、第3図(a)は其の集束電極の上面
図、第3図(b),第4図は集束電極の従来の組立法を
説明する図、第5図は従来の集束電極の斜視図、第6図
は従来の集束電極レーザ溶接する際の問題点を説明する
図である。
40、41…集束電極、50、51…下部集束電極、50B,51B…
下部集束電極の中央電子ビーム通過孔、50b,51b…下部
集束電極のフランジ、51c…下部集束電極のフランジの
端面、60、61…上部集束電極、60B,61B…上部集束電極
の中央電子ビーム通過孔、60b,61b…上部集束電極のフ
ランジ、71…組立治具の芯金、77…溶接用レーザ光ビー
ム照射方向。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is an enlarged sectional view of an essential part of an embodiment of the present invention.
FIGS. 2 (b) and 2 (c) are diagrams for explaining flange welding according to the present invention, FIGS. 2 (a) and 2 (b) are sectional views of an example of a conventional in-line type electron gun, and FIG. FIG. 3 (b) and FIG. 4 are views for explaining a conventional assembling method of the focusing electrode, FIG. 5 is a perspective view of the conventional focusing electrode, and FIG. 6 is a conventional focusing electrode. It is a figure explaining the problem at the time of laser welding. 40, 41 ... Focusing electrodes, 50, 51 ... Lower focusing electrodes, 50B, 51B ...
Central electron beam passage hole of lower focusing electrode, 50b, 51b ... Flange of lower focusing electrode, 51c ... End face of flange of lower focusing electrode, 60,61 ... Upper focusing electrode, 60B, 61B ... Passing central electron beam of upper focusing electrode Holes, 60b, 61b ... Flange of upper focusing electrode, 71 ... Core of assembly jig, 77 ... Irradiation direction of laser light beam for welding.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 正広 千葉県茂原市早野3300番地 株式会社日 立製作所茂原工場内 (72)発明者 高橋 芳昭 千葉県茂原市早野3681番地 日立デバイ スエンジニアリング株式会社内 (56)参考文献 特開 昭60−163335(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masahiro Miyazaki 3300 Hayano Mobara-shi, Chiba Sun Inside the Mobara factory (72) Inventor Yoshiaki Takahashi 3681 Hayano, Mobara-shi, Chiba Hitachi, Ltd. Su Engineering Co., Ltd. (56) References JP-A-60-163335 (JP, A)
Claims (1)
ランジを接合して形成させたカラー受像管用電子銃電極
構体において、上記フランジ接合を形成する一方の部品
のフランジの張出寸法と、他方の部品のフランジの張出
寸法とに、少なくとも一部において差を設け、前記フラ
ンジの張出寸法に差を設けたフランジ対向部であってし
かも前記張出寸法の小さい部品の端面をレーザー溶接に
より接合したことを特徴とするカラー受像管用電子銃電
極構体。 2.接合すべき両筒状部品のフランジ張出寸法の差をフ
ランジ肉厚に略等しく設定したことを特徴とする特許請
求の範囲第1項記載のカラー受像管用電子銃電極構体。 3.両筒状部品の接合すべき相対向するフランジ面の間
に0.05〜0.1mmの隙間を残留させてレーザー溶接したこ
とを特徴とする特許請求の範囲第2項記載のカラー受像
管用電子銃電極構体。(57) [Claims] In an electron gun electrode assembly for a color picture tube, wherein at least two tubular parts are formed by joining mutually facing flanges, the flange overhanging dimension of one of the parts forming the flange joint and the other At least a part of the flange size of the component is different from that of the flange, and the end faces of the parts facing the flange that are different in the flange size and have a small size are joined by laser welding. An electron gun electrode assembly for a color picture tube characterized by the above. 2. The electron gun electrode assembly for a color picture tube according to claim 1, characterized in that the difference between the flange overhanging dimensions of the two tubular parts to be joined is set to be substantially equal to the flange wall thickness. 3. An electron gun electrode assembly for a color picture tube according to claim 2, characterized in that a gap of 0.05 to 0.1 mm is left between the opposed flange surfaces of the two tubular parts to be joined and laser welding is performed. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62327094A JP2685467B2 (en) | 1987-12-25 | 1987-12-25 | Electron gun electrode assembly for color picture tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62327094A JP2685467B2 (en) | 1987-12-25 | 1987-12-25 | Electron gun electrode assembly for color picture tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01169852A JPH01169852A (en) | 1989-07-05 |
JP2685467B2 true JP2685467B2 (en) | 1997-12-03 |
Family
ID=18195224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62327094A Expired - Fee Related JP2685467B2 (en) | 1987-12-25 | 1987-12-25 | Electron gun electrode assembly for color picture tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2685467B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001126636A (en) | 1999-10-29 | 2001-05-11 | Hitachi Ltd | Cathode-ray tube |
JP2005273475A (en) * | 2004-03-23 | 2005-10-06 | Sanoh Industrial Co Ltd | Fuel injection rail |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60163335A (en) * | 1984-02-06 | 1985-08-26 | Hitachi Ltd | Assembling of electron gun electrode structure for color picture tube |
-
1987
- 1987-12-25 JP JP62327094A patent/JP2685467B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01169852A (en) | 1989-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6031326A (en) | Electron gun with electrode supports | |
JP2685467B2 (en) | Electron gun electrode assembly for color picture tube | |
KR0172994B1 (en) | Electron gun and method of assembling it | |
KR100323124B1 (en) | Cathode ray tube and its deflection aberration correcting member, method of manufacturing the same, and image display apparatus. | |
JP3157856B2 (en) | Electron gun for cathode ray tube | |
US4631443A (en) | Multibeam electron gun having a formed transition member | |
JPH0558208B2 (en) | ||
KR100190313B1 (en) | Color picture tube and in-line electron gun | |
JPH0312418B2 (en) | ||
JPH0158620B2 (en) | ||
JPH0682541B2 (en) | Inline electron gun | |
JPH0630217B2 (en) | Method for manufacturing electron gun electrode assembly for color picture tube | |
JP3245917B2 (en) | Cathode ray tube | |
JP2821133B2 (en) | Electron gun structure for color picture tube | |
JPH10334824A (en) | Electron gun for cathode-ray tube | |
JPH04106844A (en) | Electron gun for cathode-ray tube | |
KR100224977B1 (en) | Electron gun for color cathode ray tube | |
JP2921878B2 (en) | In-line type electron gun for color picture tube | |
KR200147984Y1 (en) | Pre-electrode of braun tube electron gun | |
JPS63168932A (en) | Assembling method for electron gun for in-line type color cathode-ray tube | |
JP3403746B2 (en) | Color picture tube equipment | |
KR900000352B1 (en) | Electron gun | |
JP3053825B2 (en) | Color cathode ray tube | |
JPH029428B2 (en) | ||
JPH09223471A (en) | Electron gun for cathode ray tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |