JP2676789B2 - AC power supply - Google Patents
AC power supplyInfo
- Publication number
- JP2676789B2 JP2676789B2 JP63142146A JP14214688A JP2676789B2 JP 2676789 B2 JP2676789 B2 JP 2676789B2 JP 63142146 A JP63142146 A JP 63142146A JP 14214688 A JP14214688 A JP 14214688A JP 2676789 B2 JP2676789 B2 JP 2676789B2
- Authority
- JP
- Japan
- Prior art keywords
- transformer
- winding
- power supply
- pair
- switching elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inverter Devices (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は電子写真(電子複写機、レーザービームプリ
ンタ)の画像形成プロセスの一つである除電、分離プロ
セスに必要な交流コロナ発生器や、電動機、無停電電源
装置等の出力周波数が50Hz/60Hzの商用周波数から数KHz
の低周波の交流電源を必要とする交流電源装置に関する
ものである。Description: TECHNICAL FIELD The present invention relates to an AC corona generator and an electric motor required for static elimination and separation processes, which are one of image forming processes of electrophotography (electronic copying machines, laser beam printers). The output frequency of uninterruptible power supplies, etc. is from the commercial frequency of 50Hz / 60Hz to several KHz
The present invention relates to an AC power supply device requiring a low-frequency AC power supply.
従来の技術 交流電源を供給する手段として従来の技術としては、
例えば、特公昭62−16078号公報に示されているように
電圧共振型のDC−ACインバータがある。第18図に上記電
圧共振型のDC−ACインバータの回路図、第19図に各部動
作波形を示し、以上図面を参照し説明する。第18図にお
いて電源端子12,13間には直流電源14を接続し、一方の
電源端子12をリセット巻線を有するインダクタンス5の
1次巻線を介してトランス1の1次巻線の中間タップに
接続する。そしてトランス1の1次巻線の両端間に共振
コンデンサ11を接続するとともに一対のスイッチング用
のトランジスタ2,3のコレクターコミッタを介して他方
の電源端子13へ共通に接続し、トランジスタ2,3のベー
スへ、パルス幅制御発振器4から一定周波数・可変パル
ス幅のパルス信号を与えて交互にオン動作させ、インダ
クタンス5の2次巻線の一端をダイオード6を順方向に
直列に介して一方の電源端子12に接続し、他端を他方の
電源端子13に接続する。なおトランス1は適当なギャッ
プを設けてインダクタンスを調整し、共振コンデンサ11
との組み合せによる共振周波数をパルス幅制御発振器4
の発振周波数に一致させるようにしている。上記のよう
な構成でパルス幅制御発振器4の出力パルスによってト
ランジスタ2,3を交互にオン動作させることによりトラ
ンス1の2次巻線に正弦波の交流電圧を得ることができ
る。Conventional technology As a means for supplying AC power, the conventional technology includes:
For example, there is a voltage resonance type DC-AC inverter as disclosed in Japanese Patent Publication No. 62-16078. FIG. 18 shows a circuit diagram of the voltage resonance type DC-AC inverter, and FIG. 19 shows operation waveforms of respective parts, which will be described with reference to the drawings. In FIG. 18, the DC power supply 14 is connected between the power supply terminals 12 and 13, and one power supply terminal 12 is connected to the intermediate tap of the primary winding of the transformer 1 through the primary winding of the inductance 5 having the reset winding. Connect to. Then, a resonance capacitor 11 is connected between both ends of the primary winding of the transformer 1 and is commonly connected to the other power supply terminal 13 through a collector / committer of a pair of switching transistors 2 and 3 to connect the transistors 2 and 3 to each other. A pulse signal having a constant frequency and a variable pulse width is applied to the base from the pulse width control oscillator 4 to turn on alternately, and one end of the secondary winding of the inductance 5 is forwarded in series with a diode 6 to supply one power source. It is connected to the terminal 12 and the other end is connected to the other power supply terminal 13. The transformer 1 has an appropriate gap to adjust the inductance and
Pulse width control oscillator 4
It is designed to match the oscillation frequency of. With the above configuration, the transistors 2 and 3 are alternately turned on by the output pulse of the pulse width control oscillator 4, so that a sine wave AC voltage can be obtained in the secondary winding of the transformer 1.
なお、パルス幅制御発振器4は第20図に示すように発
振回路43、パルス幅変調回路42、振り分け回路41で構成
されており、前記バルス幅変調回路42は制御信号44にて
その出力パルス幅を制御する。この制御された出力パル
スたとえば第19図a,cに示すように矩形パルスを、それ
ぞれトランジスタ2,3のベースへ与えると、前記トラン
ジスタ2,3のコレクタ電圧はそれぞれ第19図b,dに示すよ
うに変化する。すなわち両トランジスタ2,3がオフとな
る期間はインダクタンス5の1次巻線の電流が遮断され
るので、この巻線の両端およびトランジスタ2,3のコレ
クタには過大な電圧が誘起されようとするがインダクタ
ンス5は2次巻線を有しその巻線の両端に電圧Vidが誘
起され、この電圧Vidが直流電源14の電圧Vdcを越えると
ダイオード6を介してそのエネルギーは直流電源14へ回
生され、トランジスタ2,3のコレクタ電圧のピーク値は
一定値に制限されることになる。そしてパルス幅制御発
振器4の出力のパルス幅を可変することによってトラン
ス1の2次巻線に得られる正弦波の出力電圧Vacをに任
意に可変することができる構成であった。The pulse width control oscillator 4 is composed of an oscillation circuit 43, a pulse width modulation circuit 42, and a distribution circuit 41 as shown in FIG. 20, and the pulse width modulation circuit 42 outputs its output pulse width by a control signal 44. To control. When this controlled output pulse, for example, a rectangular pulse as shown in FIGS. 19a and 19c, is applied to the bases of the transistors 2 and 3, respectively, the collector voltages of the transistors 2 and 3 are shown in FIGS. 19b and 19d, respectively. To change. That is, since the current in the primary winding of the inductance 5 is cut off during the period in which both the transistors 2 and 3 are off, an excessive voltage tends to be induced at both ends of this winding and the collectors of the transistors 2 and 3. However, the inductance 5 has a secondary winding, a voltage Vid is induced across the winding, and when this voltage Vid exceeds the voltage Vdc of the DC power source 14, the energy is regenerated to the DC power source 14 via the diode 6. The peak value of the collector voltage of the transistors 2 and 3 is limited to a constant value. Then, by varying the pulse width of the output of the pulse width control oscillator 4, the output voltage Vac of the sine wave obtained in the secondary winding of the transformer 1 can be arbitrarily varied.
発明が解決しようとする課題 ところがこのような従来の構成では、共振コンデンサ
11とトランス1のインダクタンスによる共振が必要で、
共振電流とインダクタンス素子の直流抵抗分による損失
と、ある程度のQを確保して共振させるのに必要な容量
の大きなコンデンサの誘電体損失は大きなものとなり、
この損失分は電源効率を悪化させる要因となっていた。
また一定の出力波形を安定に保つためには、共振周波数
の安定化とQの向上を図り、発振周波数と共振周波数の
同調をとるためトランス1のコアギャップの調整および
共振コンデンサ11の調整が必要で生産性に欠けておると
ともギャップを有するためトランス1の効率が悪く電源
効率はさらに悪化する傾向にあった。また、同調をとる
必要があるため、出力周波数は容易に可変することがで
きず、温度および経時変化によりコアのμおよび等価ギ
ャップが変化し、同調が取れなくなるため出力波形およ
び出力振幅の変動をもたらす欠点があった。さらに入力
および負荷の変動に対応するため時比率を変化させた場
合、第21図a,bに示すように出力パルスの時比率が小さ
いとき、波高率が高くなり、第21図c,dに示すように出
力パルスの時比率が大きいとき波高率が低くなる、つま
り入力変動、負荷変動により出力波高率が大きく変動す
る欠点があった。また、電子写真用の交流電源として使
用する場合、その出力数形は一般に正弦波のものと矩形
波のものと2種類のものがあるが、従来の方法では共振
を利用するため正弦波のものしか対応できない欠点があ
る。さらにトランジスタのスイッチング周波数は出力の
周波数と同じ低周波となるため、高周波化ができず、大
きなインダクタンス素子が必要で、小型、安価に提供で
きない欠点があった。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in such a conventional configuration, the resonance capacitor is
11 and the resonance of the transformer 1 inductance are required,
The loss due to the resonance current and the direct current resistance of the inductance element, and the dielectric loss of the capacitor having a large capacity necessary to resonate while securing a certain Q become large,
This loss was a factor that deteriorated the power supply efficiency.
In order to keep a constant output waveform stable, it is necessary to stabilize the resonance frequency and improve Q, and to adjust the core gap of the transformer 1 and the resonance capacitor 11 in order to tune the oscillation frequency and the resonance frequency. Therefore, the efficiency of the transformer 1 is poor and the power efficiency tends to be further deteriorated because of the lack of productivity and the gap. In addition, because it is necessary to tune, the output frequency cannot be easily varied, and the μ and equivalent gap of the core change due to changes in temperature and aging. There were drawbacks to bring. Furthermore, when the duty ratio is changed in order to respond to changes in the input and load, the crest factor increases when the duty ratio of the output pulse is small, as shown in Figs. As shown in the figure, when the duty ratio of the output pulse is large, the crest factor becomes low, that is, the output crest factor fluctuates greatly due to input fluctuation and load fluctuation. In addition, when used as an AC power supply for electrophotography, there are generally two types of output types, a sine wave type and a rectangular wave type. However, since the conventional method uses resonance, a sine wave type is used. There is a drawback that can only be dealt with. Further, since the switching frequency of the transistor is the same low frequency as the output frequency, it is impossible to increase the frequency, and a large inductance element is required, which is a drawback that it cannot be provided in a small size and at a low cost.
課題を解決するための手段 前記課題を解決するために本発明は、トランスの1次
巻線にスイッチング素子を接続し、それぞれのスイッチ
ング素子に時比率を時間に関して台形波的に変調させた
高周波パルスを印加し、前記トランスのリーケージイン
ダクタンスとその2次巻線にもたせた容量によるLCフィ
ルタを設けた構成としたものである。Means for Solving the Problems In order to solve the above problems, the present invention relates to a high-frequency pulse in which a switching element is connected to a primary winding of a transformer, and each switching element has a duty ratio trapezoidally modulated with respect to time. Is applied, and an LC filter is provided by the leakage inductance of the transformer and the capacitance applied to the secondary winding of the transformer.
作用 前記構成とすることにより、変調台形波の立上り、立
下りのスロープを加減することにより、矩形波、台形
波、疑似正弦波、三角波の任意の波形、任意の立上り、
立下りスロープの出力波形を簡単な回路構成で、かつ効
率が高く、小型、安価に得ることができる。By the above-mentioned configuration, the rising and falling slope of the modulation trapezoidal wave, by adjusting the slope of the falling, rectangular wave, trapezoidal wave, pseudo sine wave, arbitrary waveform of triangular wave, any rising,
The output waveform of the falling slope can be obtained with a simple circuit configuration, high efficiency, small size, and low cost.
実施例 以下、本発明の一実施例について図面を参照しながら
説明する。Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例における交流電源装置の回
路構成を示すものである。FIG. 1 shows a circuit configuration of an AC power supply device according to an embodiment of the present invention.
第1図において電源端子12,13間には直流電源14を接
続し、一方の電源端子12をトランス1の1次巻線の中間
タップに接続する。そしてトランス1の1次巻線に一対
のスイッチング素子であるトランジスタ2,3のコレクタ
−エミッタを介して他方の電源端子13へ接続し、トラン
ジスタ2,3のコレクタからエミッタへ逆方向に回生ダイ
オード7,8を接続し、前記トランジスタ2,3のベースへパ
ルス幅制御発振器4から時比率を時間に関して台形波的
に変調させた高周波パルスを与えて交互にオン動作させ
る。そしてトランス1の2次巻線の両端には等価的にコ
ンデンサ15が付加されている。なお、スイッチング素子
はトランジスタの他MOS電界効果型トランジスタ等使用
しても良いことは言うまでもない。In FIG. 1, a DC power supply 14 is connected between the power supply terminals 12 and 13, and one power supply terminal 12 is connected to the intermediate tap of the primary winding of the transformer 1. Then, the primary winding of the transformer 1 is connected to the other power supply terminal 13 through the collector-emitter of the pair of switching elements, the transistors 2 and 3, and the regenerative diode 7 is connected in the reverse direction from the collector of the transistors 2 and 3 to the emitter. , 8 are connected to the bases of the transistors 2 and 3, and high-frequency pulses whose time ratios are modulated in a trapezoidal manner with respect to time are applied from the pulse width control oscillator 4 to the bases of the transistors 2 and 3 so as to be turned on alternately. Capacitors 15 are equivalently added to both ends of the secondary winding of the transformer 1. Needless to say, the switching element may be a MOS field effect transistor or the like instead of the transistor.
そして、前記パルス幅制御発振器4は第3図に示すよ
うに台形波発振回路43、高周波発振回路45、パルス幅変
調回路42、振り分け回路41で構成されており、第4図a
に示すように、台形波発振回路43の台形波出力と高周波
発振回路45の高周波出力をコンパレータで構成されたパ
ルス幅変調回路42により第4図bに示すような台形波に
よって時比率が変調された高周波パルスを得、これを振
り分け回路41で出力周期の半周期毎に振り分けることで
第2図a,bに示す高周波パルスを得る。また前記トラン
ス1の等価回路は第9図に示すように、理想トランス1
0、2次側インダクタンス6、2次側換算リーケージイ
ンダクタンス5(以下リーケージインダクタンスとす
る)、浮遊容量9で構成されており、前記高周波パルス
をそれぞれトランジスタ2,3のベースへ与え、トランジ
スタ2,3を交互にオン動作させ、前記リーケージインダ
クタンス5と前記浮遊容量9によるLCフィルタにより高
周波成分を除去することでトランス1の2次巻線に第7
図c〜fの台形波の出力電圧Vacを得ることができる。The pulse width control oscillator 4 is composed of a trapezoidal wave oscillation circuit 43, a high frequency oscillation circuit 45, a pulse width modulation circuit 42, and a distribution circuit 41 as shown in FIG.
As shown in FIG. 4, the trapezoidal wave output of the trapezoidal wave oscillating circuit 43 and the high frequency output of the high frequency oscillating circuit 45 are pulse-width modulated by a pulse width modulating circuit 42 composed of a comparator, and the duty ratio is modulated by the trapezoidal wave as shown in FIG. The high-frequency pulse shown in FIGS. 2A and 2B is obtained by obtaining the high-frequency pulse and distributing it by the distribution circuit 41 for each half cycle of the output cycle. The equivalent circuit of the transformer 1 is an ideal transformer 1 as shown in FIG.
0, secondary-side inductance 6, secondary-side converted leakage inductance 5 (hereinafter referred to as leakage inductance), and stray capacitance 9. The high-frequency pulse is applied to the bases of the transistors 2 and 3, respectively. Are alternately turned on, and a high frequency component is removed by an LC filter formed by the leakage inductance 5 and the stray capacitance 9 so that the secondary winding of the transformer 1
The trapezoidal wave output voltage Vac of FIGS.
なお出力電圧Vacはパルス幅制御発振器の台形波発振
回路43の出力振幅を制御信号44により可変することによ
って任意に可変することができる。また、出力を検出し
基準電圧と比較増幅した信号を制御信号44とすること
で、フィードバック制御を行うことができる、 第2図dは、aに示す波形の時間軸を拡大した波形
で、Cはトランジスタのベースにa′の波形を印加した
場合のコレクタ−エミッタ間電圧(以降VCEと略す)波
形を示す。ここにトランス1の1次巻線P1とP2の結合が
良く、回生ダイオード8の順方向電圧降下がOVと仮定
し、トランジスタ2,3は時比率が変調された高周波パル
スによって出力の半周期毎に交互にスイッチングを行っ
ているとする。今、トランジスタ3がオフの半周期でト
ランジスタ2がオン,オフ動作を行う半周期の状態とし
て説明すると、トランジスタ2のベースにa′−1の信
号が印加されると、トランジスタ2はまずオンとなりVC
EはOVとなる。この時トランス1の1次巻線には1−1
の極性の電圧が印加される。次にベースの信号a′−1
がなくなりトランジスタ2がオフになるとトランス1の
1次巻線にはレンツの法則により1−2の極性の電圧が
発生する。この電圧はトランジスタ3のコレクタ−エミ
ッタ間を負電圧にバイアスし、負電流を流そうとする
が、回生ダイオード8が順方向であるためその負電流は
回生ダイオード8を介して直流電源14へ回生され、トラ
ンジスタ3を逆電圧から保護すると同時に回生ダイオー
ド8はオンとなっており、トランジスタ2のVCEは第2
図cに示すように2×Vdcでクリッブされコレクタ−エ
ミッタ間に過電圧がかかるのを防止することができる。
以下a′−1,a′−2,a′−3,……と同様のスイッチング
動作を繰り返し、さらに次の半周期ではトランジスタ3
も同様のスイッチング動作を繰り返し、トランス1の2
次巻線に出力電圧Vacを得ることができる。トランス1
のリーケージインダクタンスはその1次巻線と2次巻線
相互の巻幅、巻位置、巻方法によって大きく変化する。
一般にトランス1は第8図に示すように1次巻線61と2
次巻線62の巻幅、巻位置ともに同一寸法、同一場所に密
着して巻回(テレスコープ巻)し、リーケージインダク
タンスが比較的小さくなるように工夫してあるが、本発
明のように高周波で変調された波形の高周波成分を除去
するためのLCフィルタのインダクタンスとして利用する
場合、リーケージインダクタンスはある程度大きい方が
高周波発振回路の周波数(スイッチング周波数)を低く
することができ高効率とすることができる。そこで第10
図に示すように1次巻線61と2次巻線62の巻幅を変え、
巻位置をずらす、あるいは第11図に示すように1次巻線
61と2次巻線62を分離して巻回することにより1次巻線
61と2次巻線62の結合を調整し、リーケージインダクタ
ンスの値をスイッチング周波数に対し最適ポイントに設
定することによりLCフィルタのインダクタンスとして利
用することができる。しかしスイッチング素子のスイッ
チングスピードが早くでき、高周波パルスのスイッチン
グ周波数を十分に上げることができれば、第8図に示す
ようなリーケージインダクタンスが比較的小さいトラン
スにおいてもそのリーケージインダクタンスはLCフィル
タのインダクタンスとして十分な効果があることは言う
までもない。The output voltage Vac can be arbitrarily changed by changing the output amplitude of the trapezoidal wave oscillation circuit 43 of the pulse width controlled oscillator by the control signal 44. Further, feedback control can be performed by using a signal obtained by detecting the output and comparing and amplifying it with the reference voltage as the control signal 44. FIG. 2d is a waveform obtained by enlarging the time axis of the waveform shown in a. the collector in the case of applying the waveform a 'in the base of the transistor - (abbreviated hereinafter VC E) emitter voltage shows a waveform. Here good binding of the primary winding P 1 and P 2 of the transformer 1, assuming a forward voltage drop of the regeneration diode 8 and OV, transistors 2 and 3 is half of the output by the high-frequency pulse ratio modulated when It is assumed that switching is performed alternately in each cycle. Now, assuming that the transistor 2 is turned on and off in a half cycle with the transistor 3 being off, a half cycle is performed. When the signal a'-1 is applied to the base of the transistor 2, the transistor 2 is first turned on. VC
E becomes OV. At this time, the primary winding of the transformer 1 is 1-1
The voltage of the polarity of is applied. Next, the base signal a'-1
When the transistor 2 is turned off and the transistor 2 is turned off, a voltage having a polarity of 1-2 is generated in the primary winding of the transformer 1 according to Lenz's law. This voltage biases a negative voltage between the collector and the emitter of the transistor 3 and tries to flow a negative current. However, since the regenerative diode 8 is in the forward direction, the negative current is regenerated to the DC power source 14 via the regenerative diode 8. Therefore, the transistor 3 is protected from the reverse voltage, and at the same time, the regenerative diode 8 is turned on, and the VC E of the transistor 2 is set to the second value.
It is possible to prevent overvoltage from being applied between the collector and the emitter by clipping at 2 × Vdc as shown in FIG.
Thereafter, the same switching operation as a'-1, a'-2, a'-3, ... Is repeated, and in the next half cycle, the transistor 3
Repeat the same switching operation,
The output voltage Vac can be obtained at the secondary winding. Transformer 1
The leakage inductance of 1 changes greatly depending on the winding width, winding position, and winding method between the primary winding and the secondary winding.
Generally, the transformer 1 has primary windings 61 and 2 as shown in FIG.
Although the winding width and the winding position of the next winding 62 are the same in size and in close contact with each other in the same place (telescope winding), the leakage inductance is designed to be relatively small. When used as the inductance of the LC filter for removing the high frequency components of the waveform modulated by, the larger the leakage inductance, the lower the frequency (switching frequency) of the high frequency oscillation circuit and the higher the efficiency. it can. So the tenth
As shown in the figure, change the winding width of the primary winding 61 and the secondary winding 62,
Shift winding position, or primary winding as shown in Fig. 11.
61 and the secondary winding 62 are separated and wound to form the primary winding.
By adjusting the coupling between 61 and the secondary winding 62 and setting the value of the leakage inductance to the optimum point for the switching frequency, it can be used as the inductance of the LC filter. However, if the switching speed of the switching element can be increased and the switching frequency of the high frequency pulse can be sufficiently increased, the leakage inductance is sufficient as the inductance of the LC filter even in the transformer with a relatively small leakage inductance as shown in FIG. It goes without saying that it is effective.
第5図は第3図の台形波発振回路を示し、前記振幅を
可変可能でかつ台形波の立上り・立下りスロープを任意
に可変可能なものを提供するものである。FIG. 5 shows the trapezoidal wave oscillating circuit of FIG. 3, which provides a variable trapezoidal wave whose rising and falling slopes can be arbitrarily changed.
第5図の台形波発振回路の動作を、第6図、第7図に
各部動作波形を示し説明する。The operation of the trapezoidal wave oscillating circuit shown in FIG. 5 will be described with reference to FIG. 6 and FIG.
充放電コンデンサ53に充電を行わせる充電用ON/OFF可
能電流源51(以下、充電用電流源とする)を直列に接続
し、前記充放電コンデンサ53の両端に放電を行わせる放
電用ON/OFF可能電流源52(以下、放電用電流源とする)
を並列に接続したものとすれば、第6図に示すように、
充放電コンデンサ53の両端電圧は、t1で充電用電流源51
がON、放電用電流源52がOFFならば、定電流で充電さ
れ、右上りで直線的に上昇する。つぎにt2で充電用電流
源51をOFFにし、放電用電流源52がOFFのままならば、充
電も放電も行われないため、電圧は維持したまま平行移
動する。そしてt3で充電用電流源51をOFFのまま放電用
電流源52をONにすれば、定電流で放電されるため、右下
りで直線的に下降する。この時、充電用電流源51と放電
用電流源52の電流値を同じとしておけば、t1−t2とt3−
t4の勾配は同一となることから、上記動作を繰り返せば
充放電コンデンサ53の両端に台形波出力が得られる。t2
−t3とt1−t2あるいはt3−t4の比を変えることにより第
7図aのa−1〜a−4に示すように台形波出力の立上
り,立下りスロープを任意に可変可能、すなわち矩形
波、台形波、疑似正弦波、三角波とすることができるた
め、出力電圧として第7図c,d,e,fに示すものが得られ
る。A charge ON / OFF current source 51 (hereinafter referred to as a charge current source) for charging the charge / discharge capacitor 53 is connected in series, and a discharge ON / OFF switch for discharging at both ends of the charge / discharge capacitor 53 is provided. OFF-capable current source 52 (hereinafter referred to as discharge current source)
Are connected in parallel, as shown in FIG.
The voltage across the charging / discharging capacitor 53 is t 1 at the charging current source 51.
Is ON and the discharging current source 52 is OFF, the battery is charged with a constant current and rises linearly in the upper right direction. Next, at t 2 , the charging current source 51 is turned off, and if the discharging current source 52 remains off, neither charging nor discharging is performed, so that the voltage moves in parallel while maintaining the voltage. Then, at t 3 , if the discharging current source 52 is turned on while the charging current source 51 is kept off, the battery is discharged with a constant current, and therefore, it descends linearly in a right downward direction. At this time, if the current values of the charging current source 51 and the discharging current source 52 are the same, t 1 −t 2 and t 3 −
Since the slope of t 4 is the same, trapezoidal wave output is obtained at both ends of the charge / discharge capacitor 53 by repeating the above operation. t 2
By changing the ratio of -t 3 to t 1 -t 2 or t 3 -t 4 , the rising and falling slopes of the trapezoidal wave output can be arbitrarily changed as shown in a-1 to a-4 of Fig. 7a. Since it is possible, that is, a rectangular wave, a trapezoidal wave, a pseudo sine wave, and a triangular wave, the output voltages shown in FIG. 7 c, d, e, f are obtained.
また、本発明では従来例のような共振回路を有してい
ないため、第6図のt1−t4の時間を可変することによ
り、容易に出力周波数を可変させることができる、 また、前記充放電用電流源51,52の電流値を連動で変
化させれば第7図bのb−1〜b−3に示すように台形
波出力は相似形で振幅可変を行うことができ、出力電圧
としても第7図cのc−1〜c−3に示すように出力波
形が相似形で振幅が変化する。つまり出力振幅の大小に
よって波形の変化がないものが得られる。Further, since the present invention does not have a resonance circuit as in the conventional example, the output frequency can be easily changed by changing the time of t 1 -t 4 in FIG. If the current values of the charging / discharging current sources 51, 52 are changed in conjunction with each other, the trapezoidal wave output can be varied in amplitude in a similar manner as shown in b-1 to b-3 of FIG. 7b. As for the voltage, the output waveform has a similar shape and the amplitude changes, as shown by c-1 to c-3 in FIG. 7c. That is, a waveform having no change in waveform depending on the magnitude of the output amplitude is obtained.
第12図は前述した実施例のLCフィルタ用コンデンサと
して、トランス1の巻線の浮遊容量が小さい場合、コン
デンサ15を接続することによりフィルタとしての機能を
良化したものである。なお第12図に示した実施例におい
てフィルタ用コンデンサ15は2次巻線に接続してある
が、1次巻線に接続しても同様の効果が得られる。FIG. 12 shows the LC filter capacitor of the above-described embodiment in which the function of the filter is improved by connecting the capacitor 15 when the stray capacitance of the winding of the transformer 1 is small. Although the filter capacitor 15 is connected to the secondary winding in the embodiment shown in FIG. 12, the same effect can be obtained by connecting it to the primary winding.
第13図は同じく前述した実施例のLCフィルタコンデン
サとして、トランス1の巻線の浮遊容量を利用すべく第
14図に示すように、巻線間の対向面積を増加させ、浮遊
容量を持たせた箔巻きトランスを使用したものである。FIG. 13 shows the LC filter capacitor of the above-described embodiment in order to utilize the stray capacitance of the winding of the transformer 1.
As shown in Fig. 14, it uses a foil winding transformer with increased stray capacitance by increasing the facing area between windings.
第15図は前述した実施例のトランス1に電子写真用等
に使用される高圧発生用トランスを使用した場合、その
トランス1の2次巻線の浮遊容量をLCフィルタ用コンデ
ンサ15として利用したものである。一般に高圧発生用ト
ランス1は1次巻線に印加された電圧を昇圧して2次巻
線に高圧として出力するため、1次巻線と2次巻線の巻
数比は大きく設定してありその関数は1次巻線数≪2次
巻線数となっている。この巻数の多い2次巻線の浮遊容
量をLCフィルタ用コンデンサ15として利用したものであ
る。なお、第13図,第15図に示した実施例において得ら
れる浮遊容量はさほど大きくないが、本発明はスイッチ
ング周波数が高周波のため小さい浮遊容量でも十分にフ
ィルタとしての効果を得ることができる。FIG. 15 shows a case where a stray capacitance of the secondary winding of the transformer 1 is used as the capacitor 15 for the LC filter when the transformer 1 for high voltage used for electrophotography is used as the transformer 1 of the above-described embodiment. Is. Generally, the high-voltage generating transformer 1 boosts the voltage applied to the primary winding and outputs it as high voltage to the secondary winding, so that the winding ratio of the primary winding and the secondary winding is set to be large. The function is primary winding number << secondary winding number. The stray capacitance of the secondary winding having a large number of turns is used as the LC filter capacitor 15. Although the stray capacitances obtained in the embodiments shown in FIGS. 13 and 15 are not so large, the present invention can sufficiently obtain the effect as a filter even if the stray capacitances are small because the switching frequency is high.
ここに電子写真用の交流電源装置として利用する場合
について第16図にその負荷である交流コロナ発生器の電
圧・電流特性を示し、第17図a,b,cに前記交流コロナ発
生器に、各出力波形を印加した場合の電圧波形と電流波
形を示し、以下図面を参照しながら説明する。FIG. 16 shows the voltage / current characteristics of the AC corona generator that is the load in the case where it is used as an AC power supply device for electrophotography, and the AC corona generator is shown in FIGS. 17 a, b, and c. A voltage waveform and a current waveform when each output waveform is applied will be shown and described below with reference to the drawings.
一般に交流コロナ発生器は電子写真のプロセスのうち
の除電および分離部分に使用されており、感光体の除電
および感光体とコピー紙の分離性能を良くするためには
除電効率を上げる必要がある。そのためには実効コロナ
放電電流を上げる必要がある。In general, an AC corona generator is used in a charge removing and separating portion of an electrophotographic process, and it is necessary to increase a charge removing efficiency in order to improve a charge removing property of a photoreceptor and a separating performance of a photoreceptor and copy paper. For that purpose, it is necessary to increase the effective corona discharge current.
第16図においてa点,b点はそれぞれプラス側とマイナ
ス側のコロナ開始電圧で、0点よりそれまでの間では、
電圧を増加しても電流は流れず、a点、b点を超えると
電流が流れ始める特性をもっている。ただし、コロナ発
生器の浮遊容量を通って流れる電流はa点、b点を超え
なくとも流れてしまう。出力電圧が第17図aのように正
弦波の場合、その波形の半周期がコロナ開始電圧以上に
ある時間の比が小さい(導通角が小さい)ため、実効コ
ロナ放電電流が大きく取れず除電効率が上がらない。ま
た、実効コロナ放電電流を大きくするためには出力電圧
を上げると絶縁関係を強化したりトランスを大型化する
必要がある。出力電圧が第17図bのように矩形波の場
合、実効コロナ放電電流は大きく取れるが、その反面そ
の出力波形に高い周波数成分を含むため交流コロナ発生
器の浮遊容量に流れ込む電流が大きなピーク値となる。
このピーク電流は無効電流で除電効率に寄与しないが、
スイッチング素子の能力としては大容量のものが必要
で、効率悪く、安価に提供できない。また、スパイク状
に電流が流れるため、ノイズ発生の原因となり、他の回
路および機器に影響を及ぼす可能性が大である。さらに
波形の立上り・立下りの変化が急峻なため、出力電圧に
はオーバーシュートが発生する。このオーバーシュート
のためピーク電圧が高くなり、やはり絶縁関係を強化す
る必要がある。In Fig. 16, points a and b are the corona starting voltage on the plus side and minus side, respectively, and from 0 point to that point,
The current does not flow even if the voltage is increased, and the current starts to flow when the voltage exceeds points a and b. However, the current flowing through the stray capacitance of the corona generator will flow even if it does not exceed points a and b. When the output voltage is a sine wave as shown in Fig. 17a, the ratio of the time when the half cycle of the waveform is above the corona start voltage is small (the conduction angle is small), so the effective corona discharge current cannot be large and the static elimination efficiency is low. Does not rise. Further, in order to increase the effective corona discharge current, it is necessary to strengthen the insulation relationship and increase the size of the transformer by increasing the output voltage. When the output voltage is a rectangular wave as shown in Fig. 17b, a large effective corona discharge current can be obtained, but on the other hand, the output waveform contains high frequency components, so the current flowing into the stray capacitance of the AC corona generator has a large peak value. Becomes
This peak current is a reactive current and does not contribute to static elimination efficiency.
A large capacity of switching element is required, which is inefficient and cannot be provided at low cost. In addition, since the current flows in a spike shape, it causes noise and has a great possibility of affecting other circuits and devices. Further, since the rise and fall of the waveform are sharp, overshoot occurs in the output voltage. This overshoot raises the peak voltage, and it is necessary to strengthen the insulation relationship.
そこで出力電圧を第17図cのように台形波とし、さら
にその台形波の立上りと立下りのスロープを任意可変す
ることにより、出力ピーク電圧(絶縁関係)と実効電流
とノイズ発生のそれぞれ最適ポイントに容易に設定する
ことができ、コロナ発生器の絶縁の簡素化および小型
化、電源の絶縁の簡素化および小型化が図れ、除電効率
を最大にし、除電性能、分離性能を向上させることがで
きる。Therefore, the output voltage is set to a trapezoidal wave as shown in Fig. 17c, and the slopes of the rising and falling edges of the trapezoidal wave are arbitrarily changed, so that the output peak voltage (insulation relation), the effective current, and the optimum points for noise generation are optimized. It can be easily set, and the insulation of the corona generator can be simplified and miniaturized, the insulation of the power supply can be simplified and miniaturized, and the static elimination efficiency can be maximized and the static elimination performance and the separation performance can be improved. .
発明の効果 以上のように本発明によれば、 (1) 共振回路が不要となるため、共振電流とインダ
クタンスの直流抵抗分による損失がなくなり、また、共
振コンデンサが小容量のフィルタコンデンサで良く、誘
電体損失が極めて少なくなり高効率を得られる。また、
一定の出力波形を安定に得るためにトランスのコアギャ
ップ調整および共振コンデンサの調整の同調を取ること
が不要で生産性に優れており、温度変化によるトランス
のコアのμ、等価ギャップの変化およびバラツキによる
出力波形、出力振幅の変動もない。またトランスのコア
ギャップが不要であるため、さらに高効率が得られる。EFFECTS OF THE INVENTION As described above, according to the present invention, (1) since the resonance circuit is not necessary, the loss due to the direct current resistance component of the resonance current and the inductance is eliminated, and the resonance capacitor may be a small-capacity filter capacitor, Dielectric loss is extremely small and high efficiency can be obtained. Also,
It is not necessary to tune the transformer core gap adjustment and resonant capacitor adjustment to obtain a constant output waveform in a stable manner, which is excellent in productivity, and the transformer core μ, variation in equivalent gap, and variation due to temperature changes can be improved. There is no fluctuation in output waveform and output amplitude due to. Further, since the core gap of the transformer is unnecessary, higher efficiency can be obtained.
(2) 出力周波数は台形波出力の周期を調整すること
で容易に可変することができる。(2) The output frequency can be easily changed by adjusting the period of the trapezoidal wave output.
(3) 入力変動、負荷変動および出力振幅の大小によ
る波形、波高率の変化がなく、安定した出力波形を得ら
れる。(3) A stable output waveform can be obtained without any change in input fluctuation, load fluctuation, output amplitude amplitude, or crest factor.
(4) トランスの巻線に共振電流が流れないため、巻
線の銅線径の細線化が図れ、トランスの小型化ができる
とともに、スイッチング素子の容量も小さいものが使用
でき、高効率、安価となる。(4) Since the resonance current does not flow in the transformer winding, the diameter of the copper wire in the winding can be reduced, the transformer can be downsized, and a switching element with a small capacitance can be used, which is highly efficient and inexpensive. Becomes
(5) 高周波でスイッチングするため、LCフィルタの
L(インダクタンス素子)はトランスのリーケージイン
ダクタンスを利用できるので不要となり、Cも浮遊容量
を利用でき不要となるので小型軽量を実現できかつ非常
に安価となる。(5) Since switching is performed at a high frequency, L (inductance element) of the LC filter is not needed because the leakage inductance of the transformer can be used, and stray capacitance can also be used for C, so it is possible to realize small size and light weight, and it is very cheap. Become.
(6) 出力波形として、矩形波、台形波、疑似正弦
波、三角波等任意のものに設定でき、かつ立上り・立下
りスロープも任意に設定可能な交流電源装置を提供する
ことができる。(6) It is possible to provide an AC power supply device in which an output waveform can be arbitrarily set to a rectangular wave, a trapezoidal wave, a pseudo sine wave, a triangular wave, and rising and falling slopes can be arbitrarily set.
(7) 電子写真用の交流電源装置として利用した場合
の、台形波の立上り・立下りスロープを、コロナ発生
器、電源の絶縁関係および除電効率の最適ポイントに設
定でき、スイッチング素子のピーク電流も小さくできる
ため、小型、高効率なものが得られるとともに除電効率
を最大限に大きくでき除電、分離性能を向上させかつコ
ロナ発生器および交流電源装置の小型化、ノイズの低減
を図ることができる。(7) When used as an AC power supply for electrophotography, the rising and falling slopes of a trapezoidal wave can be set at the optimum points for the corona generator, power supply insulation, and static elimination efficiency, and the peak current of switching elements can also be set. Since the size can be reduced, a small size and high efficiency can be obtained, the charge removal efficiency can be maximized, the charge removal and separation performance can be improved, the corona generator and the AC power supply device can be downsized, and noise can be reduced.
(8) 回生ダイオードはスイッチング素子の逆電圧の
印加防止素子としても働き、さらにスイッチング素子と
してMOS電界効果型トランジスタを使用した時は寄生ダ
イオードを上記ダイオードとして使用できるので、実質
的に回生用、逆電圧印加防止用のダイオードを不要とす
ることができる。(8) The regenerative diode also functions as a reverse voltage impressing element for the switching element, and when a MOS field effect transistor is used as the switching element, the parasitic diode can be used as the above diode. The diode for preventing voltage application can be eliminated.
上記のように簡単な回路構成で上記効果を得ることが
できる。The above effects can be obtained with a simple circuit configuration as described above.
第1図は本発明の交流電源装置の一実施例を示す回路
図、第2図a,b,c,dは第1図に示す回路の動作を説明す
る波形図、第3図は第1図に示したパルス幅制御発振器
のブロック図、第4図a,bは第3図に示すブロックの動
作を説明する波形図、第5図は第3図に示した台形波発
振回路の回路図、第6図は第5図に示す回路の動作を説
明する波形図、第7図a,bは第3図に示すブロックの動
作の変化を説明する波形図でc,d,e,fはその変化時の出
力波形図、第8図はトランスの構造を示す断面図、第9
図はトランスの等価回路図、第10図,第11図はトランス
の構造を示す断面図、第12図,第13図,第15図は本発明
の応用例を示す回路図、第14図は第13図に示したトラン
スの巻線の構造を示した斜視図、第16図は電子写真用交
流コロナ発生器の特性図、第17図a,b,cは第15図に示し
た応用例で電子写真用交流コロナ発生器を負荷にした場
合の出力電圧、電流波形の変化を比較して示す図、第18
図は従来の電圧共振型のDC−ACインバータの一例を示す
回路図、第19図a,b,c,d,eは第18図に示す回路の動作を
説明する波形図、第20図は第18図に示したパルス幅制御
発振器のブロック図、第21図a,b,c,dは第18図に示す回
路の動作を条件を変えて比較した波形図である。 1……トランス、2,3……トランジスタ、4……パルス
幅制御発振器、5……リーケージインダクタンス、6…
…2次インダクタンス、7,8……回生ダイオード、9…
…浮遊容量、12,13……電源端子、14……直流電源、15
……コンデンサ。FIG. 1 is a circuit diagram showing an embodiment of an AC power supply device of the present invention, FIGS. 2A, 2B, 2C and 2D are waveform diagrams explaining the operation of the circuit shown in FIG. 1, and FIG. 4 is a block diagram of the pulse width controlled oscillator shown in the figure, FIGS. 4a and 4b are waveform diagrams explaining the operation of the block shown in FIG. 3, and FIG. 5 is a circuit diagram of the trapezoidal wave oscillation circuit shown in FIG. , FIG. 6 is a waveform diagram for explaining the operation of the circuit shown in FIG. 5, FIGS. 7A and 7B are waveform diagrams for explaining changes in the operation of the block shown in FIG. 3, and c, d, e and f are FIG. 8 is a sectional view showing the structure of the transformer, and FIG.
The figure is an equivalent circuit diagram of the transformer, FIGS. 10 and 11 are cross-sectional views showing the structure of the transformer, FIGS. 12, 13 and 15 are circuit diagrams showing application examples of the present invention, and FIG. Fig. 13 is a perspective view showing the structure of the windings of the transformer shown in Fig. 13, Fig. 16 is a characteristic diagram of an AC corona generator for electrophotography, and Figs. 17A, 17B, 17C and 17D are application examples shown in Fig. 15. Fig. 18 shows a comparison of changes in output voltage and current waveforms when an AC corona generator for electrophotography is used as a load.
Figure is a circuit diagram showing an example of a conventional voltage resonance type DC-AC inverter, Figure 19 a, b, c, d, e is a waveform diagram for explaining the operation of the circuit shown in Figure 18, Figure 20 is FIG. 18 is a block diagram of the pulse width controlled oscillator shown in FIG. 18, and FIGS. 21 a, b, c and d are waveform diagrams comparing the operation of the circuit shown in FIG. 18 under different conditions. 1 ... Transformer, 2, 3 ... Transistor, 4 ... Pulse width controlled oscillator, 5 ... Leakage inductance, 6 ...
… Secondary inductance, 7,8… Regenerative diode, 9…
… Stray capacitance, 12,13 …… Power supply terminal, 14 …… DC power supply, 15
…… Capacitor.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−17642(JP,A) 特開 昭62−204507(JP,A) 実開 昭63−120590(JP,U) 実開 昭51−23443(JP,U) 実開 昭60−28488(JP,U) 実開 昭56−53819(JP,U) 特公 昭38−19208(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-51-17642 (JP, A) JP-A-62-204507 (JP, A) Actual opening 63-120590 (JP, U) Actual opening Sho-51- 23443 (JP, U) Actually open 60-28488 (JP, U) Actually open 56-53819 (JP, U) Special public 38-19208 (JP, B1)
Claims (5)
チング素子を直列に接続し、上記一対のスイッチング素
子の相互接続点と上記1次巻線の中間タップとの間に直
流電源を直列に接続し、上記一対のスイッチング素子に
それぞれ並列に回生ダイオードを接続し、台形波によっ
て時比率が変調された高周波パルスを出力周期の半周期
毎に前記一対のスイッチング素子に交互に印加し、前記
トランスのリーケージインダクタンスと前記トランスの
巻線に持たせた容量によりLCフィルタを構成した交流電
源装置。1. A pair of switching elements are connected in series to both ends of a primary winding of a transformer, and a DC power source is connected in series between an interconnection point of the pair of switching elements and an intermediate tap of the primary winding. Connected to each of the pair of switching elements in parallel with a regenerative diode, alternately applying a high frequency pulse whose time ratio is modulated by a trapezoidal wave to the pair of switching elements for each half cycle of the output cycle, An AC power supply device comprising an LC filter composed of the leakage inductance of a transformer and the capacitance of the transformer winding.
チング素子を直列に接続し、上記一対のスイッチング素
子の相互接続点と上記1次巻線の中間タップとの間に直
流電源を直列に接続し、上記一対のスイッチング素子に
それぞれ並列に回生ダイオードを接続し、二つの任意に
オンオフ可能な定電流源でコンデンサに充放電を行うこ
とにより得られる台形波によって時比率が変調された高
周波パルスを出力周期の半周期毎に前記一対のスイッチ
ング素子に交互に印加し、前記トランスのリーケージイ
ンダクタンスと前記トランスの巻線に持たせた容量によ
りLCフィルタを構成した交流電源装置。2. A pair of switching elements are connected in series to both ends of a primary winding of a transformer, and a DC power source is connected in series between an interconnection point of the pair of switching elements and an intermediate tap of the primary winding. , A regenerative diode connected in parallel to each of the pair of switching elements, and high-frequency whose time ratio is modulated by a trapezoidal wave obtained by charging and discharging a capacitor with two constant current sources that can be turned on and off arbitrarily. An alternating current power supply device in which a pulse is alternately applied to the pair of switching elements every half cycle of an output cycle, and an LC filter is configured by a leakage inductance of the transformer and a capacitance provided in a winding of the transformer.
ンデンサを接続した請求項1記載の交流電源装置。3. The AC power supply device according to claim 1, wherein a capacitor is connected to the winding of the transformer as a filter capacitor.
1記載の交流電源装置。4. The AC power supply device according to claim 1, wherein the winding of the transformer is a foil winding.
求項1記載の電子写真用交流高圧電源装置。5. The AC high-voltage power supply device for electrophotography according to claim 1, wherein the transformer has a high-voltage generating winding.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63142146A JP2676789B2 (en) | 1988-06-09 | 1988-06-09 | AC power supply |
US07/342,881 US4947312A (en) | 1988-04-28 | 1989-04-25 | Non-resonance type AC power source apparatus |
EP92201378A EP0501594B1 (en) | 1988-04-28 | 1989-04-27 | Trapezoidal wave generator |
DE68924090T DE68924090T2 (en) | 1988-04-28 | 1989-04-27 | AC power supply circuit without resonance circuit. |
DE68927550T DE68927550T2 (en) | 1988-04-28 | 1989-04-27 | Trapezoidal signal generator |
EP89304222A EP0340006B1 (en) | 1988-04-28 | 1989-04-27 | Non-resonance AC power source apparatus |
US07/520,771 US4988958A (en) | 1988-04-28 | 1990-05-08 | Amplitude-controlled trapezoidal wave generating circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63142146A JP2676789B2 (en) | 1988-06-09 | 1988-06-09 | AC power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01311874A JPH01311874A (en) | 1989-12-15 |
JP2676789B2 true JP2676789B2 (en) | 1997-11-17 |
Family
ID=15308435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63142146A Expired - Lifetime JP2676789B2 (en) | 1988-04-28 | 1988-06-09 | AC power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2676789B2 (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2415841B (en) | 2004-11-08 | 2006-05-10 | Enecsys Ltd | Power conditioning unit |
GB2454389B (en) | 2006-01-13 | 2009-08-26 | Enecsys Ltd | Power conditioning unit |
US7626834B2 (en) | 2006-06-29 | 2009-12-01 | Enecsys Limited | Double ended converter with output synchronous rectifier and auxiliary input regulator |
GB0612859D0 (en) * | 2006-06-29 | 2006-08-09 | Enecsys Ltd | A DC to AC power converter |
CN107707129A (en) * | 2017-11-06 | 2018-02-16 | 南京力通达电气技术有限公司 | One kind is used for highway for matching somebody with somebody power end power cabinet |
-
1988
- 1988-06-09 JP JP63142146A patent/JP2676789B2/en not_active Expired - Lifetime
Cited By (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US10184965B2 (en) | 2006-12-06 | 2019-01-22 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
US12136890B2 (en) | 2014-03-26 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
Also Published As
Publication number | Publication date |
---|---|
JPH01311874A (en) | 1989-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2676789B2 (en) | AC power supply | |
US4988958A (en) | Amplitude-controlled trapezoidal wave generating circuit | |
JP3031265B2 (en) | Drive circuit and drive method for piezoelectric transformer | |
US9124183B2 (en) | Power inverter for feeding electric energy from a DC power generator into an AC grid with two power lines | |
JP2808190B2 (en) | Power supply with improved power factor | |
JPH09190894A (en) | Pulse voltage train generating circuit device | |
MXPA02000016A (en) | Switching power supply circuit. | |
US5774351A (en) | Series resonant DC-to-AC inverter system | |
US7084584B2 (en) | Low frequency inverter fed by a high frequency AC current source | |
JPH0773988A (en) | Discharge lamp lighting circuit | |
EP0786863B1 (en) | Switch closing time controlled variable capacitor | |
KR100207020B1 (en) | A snubber circuit for being no loss and to improve circuit for input-factor of a dc/dc converter | |
JP2775254B2 (en) | ▲ High ▼ frequency ▲ high ▼ voltage power supply for driving non-linear capacitive load | |
JP2705097B2 (en) | AC power supply | |
JP2712334B2 (en) | AC power supply | |
JPH099615A (en) | Switching power supply apparatus | |
JPH0740720B2 (en) | Switching power supply for multi-scan television receiver | |
JP2682885B2 (en) | Inverter microwave oven drive circuit | |
KR960007997B1 (en) | Converter using zero voltage switching | |
JP2581034B2 (en) | Switching power supply for multi-scan television receiver | |
JP3336134B2 (en) | Power supply | |
JPH0713431Y2 (en) | Power supply circuit | |
JPS61179096A (en) | Discharge lamp lighting apparatus | |
JP2000156937A (en) | Electric power regenerating device | |
JP3275215B2 (en) | Inverter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070725 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |