JP2676405B2 - Quartz glass for semiconductor manufacturing equipment or jig and manufacturing method thereof - Google Patents
Quartz glass for semiconductor manufacturing equipment or jig and manufacturing method thereofInfo
- Publication number
- JP2676405B2 JP2676405B2 JP1103390A JP10339089A JP2676405B2 JP 2676405 B2 JP2676405 B2 JP 2676405B2 JP 1103390 A JP1103390 A JP 1103390A JP 10339089 A JP10339089 A JP 10339089A JP 2676405 B2 JP2676405 B2 JP 2676405B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- heat
- powder
- resistant
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Glass Compositions (AREA)
- Glass Melting And Manufacturing (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は少なくとも一面側が略1000℃以上の高温下に
曝される半導体製造装置若しくは治具を製造する為に用
いられる石英ガラス体及びその製造方法に係り、特にウ
エーハの高温反応処理に用いられるポート、炉芯管、搬
送治具、更には単結晶引上げ用ルツボとして適用される
石英ガラス体及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION "Industrial field of application" The present invention relates to a quartz glass body used for manufacturing a semiconductor manufacturing apparatus or a jig whose at least one surface side is exposed to a high temperature of approximately 1000 ° C or more, and its manufacture. More particularly, the present invention relates to a quartz glass body used as a crucible for pulling a single crystal, a port used for a high temperature reaction treatment of a wafer, a furnace core tube, a carrying jig, and a manufacturing method thereof.
「従来の技術」 従来より、例えば高温雰囲気下において半導体ウエー
ハ表面に酸化膜、絶縁膜、若しくは単結晶膜等を生成す
る酸化、拡散、気相成長その他のウエーハ熱処理装置は
公知であり、かかる熱処理装置に用いられるボート、炉
芯管、搬送治具等においては前記生成膜表面に不純物の
付着若しくは侵入を防ぐ為に、一般に化学的安定性の高
い高純度の石英ガラス材が用いられている。“Prior Art” Conventionally, a wafer heat treatment apparatus such as oxidation, diffusion, vapor phase growth or the like for producing an oxide film, an insulating film, a single crystal film or the like on the surface of a semiconductor wafer in a high temperature atmosphere has been known, and such a heat treatment In a boat, furnace core tube, transfer jig, etc. used in the apparatus, a high-purity quartz glass material having high chemical stability is generally used in order to prevent adhesion or intrusion of impurities to the surface of the formed film.
一方前記熱処理炉内温度はチップメモリの高集積化に
比例して1300℃前後にまで高温化が進んでいにも拘ら
ず、該雰囲気化に曝される前記ボート等の高純度石英ガ
ラス材は1150℃前後の温度で軟化し、1300℃前後では極
めて変形し易い状態となる。On the other hand, although the temperature in the heat treatment furnace is increasing to about 1300 ° C. in proportion to the high integration of the chip memory, the high-purity quartz glass material such as the boat exposed to the atmosphere is It softens at temperatures around 1150 ° C and becomes extremely deformable at around 1300 ° C.
従ってかかる処理工程下では前記ボート等の各種治具
の耐久性が極めて短寿命化し製造コストの上昇を招くの
みならず、前記変形により該ボート上に支持搭載されて
いるウエーハ等の倒れや変形等が生じ製品歩留まりが低
下する。Therefore, under such a treatment step, not only the durability of various jigs such as the boat becomes extremely short and the manufacturing cost rises, but also the deformation and the like of the wafer and the like supported and mounted on the boat due to the deformation. Occurs and the product yield decreases.
かかる欠点を解消する為に、従来より種々の対策が取
られている。Various countermeasures have been taken in the past to solve such a drawback.
例えば実開昭58−92729号においては、前記石英ガラ
ス管内に耐熱性を有するSiC棒その他の耐熱性芯体を内
挿されたボートが開示されているが、前記耐熱性芯体は
石英ガラスに比較して熱膨張が著しく大である為に、前
記両部材の間に空隙間隔を設けねばならず、結果として
洗浄乾燥等の常温下における取扱いの際に前記両部材が
互いに衝接し、破損やクラック等が発生し易い。For example, in Japanese Utility Model Publication No. 58-92729, a boat in which a heat-resistant SiC rod or other heat-resistant core is inserted in the quartz glass tube is disclosed, but the heat-resistant core is made of quartz glass. Since the thermal expansion is remarkably large in comparison, a gap interval must be provided between the both members, and as a result, the two members collide with each other during handling at room temperature such as washing and drying, and damage or damage occurs. Cracks are likely to occur.
かかる欠点を解消する為に、前記両部材間にクッショ
ン効果を有する耐熱性粉末を充填した装置(実開昭58−
166032号)が存在するが、かかる装置においては外側の
石英ガラス管にクラック等が入った場合に前記粉末が外
部に飛散してウエーハの汚染等が生じ易く尚問題があ
る。In order to eliminate such drawbacks, a device in which heat-resistant powder having a cushioning effect is filled between the both members (Shokai Sho-58-
No. 166032) exists, but in such a device, when the outer quartz glass tube is cracked, the powder is scattered to the outside, and the wafer is apt to be contaminated.
この為前記のような熱膨張率の異なる異種材料を用い
る事なく、高純度の合成石英ガラス間の内部に、補強材
として機能する低純度の石英ガラス管又は棒を内挿した
技術(実公昭60−15336号)が開示されているが、この
ように例え同種材料であっても芯体を内挿する構成では
前記両部材間の衝接を完全に避ける事が出来ない。For this reason, a technique of inserting a low-purity quartz glass tube or rod functioning as a reinforcing material inside high-purity synthetic quartz glass without using different materials having different coefficients of thermal expansion as described above (Actual publication) No. 60-15336) is disclosed, but even with the same kind of material, it is impossible to completely avoid the contact between the two members with the structure in which the core body is inserted.
又前記いずれの技術も夫々別体で形成した複数の部材
の組み合わせである為に、溶接等を必要とする複雑な形
状の治具に対しては全く適用する事が出来ない。Also, since each of the above techniques is a combination of a plurality of members formed separately, it cannot be applied to a jig having a complicated shape requiring welding or the like.
そこで前記のように複数の部材を用いて耐熱性をもた
す事なく、例えば結晶石英粒を筒状加熱装置に充填して
加熱し表層部に透明石英ガラス層を有する結晶質石英体
により形成された石英器具を提案している(特開昭56−
145123号)が、かかる表層部に透明石英ガラス層を有す
る結晶質石英体であっても、複雑な熱加工による加熱
や、溶接による加熱により、内層部の結晶質石英体部ま
で透明石英ガラス化が進み結果的に加工加熱部では結晶
質石英体としての耐熱性の効果がなんら得られないなど
の問題があった。Therefore, as described above, without forming heat resistance by using a plurality of members, for example, crystalline quartz particles are filled in a cylindrical heating device and heated to form a crystalline quartz body having a transparent quartz glass layer on the surface layer portion. Proposed quartz instrument (Japanese Patent Laid-Open No. 56-
No. 145123) is a crystalline quartz body having a transparent quartz glass layer on the surface layer, but even if it is heated by complicated thermal processing or heating by welding, the crystalline quartz body part of the inner layer is made transparent quartz glass. As a result, there was a problem that the heat resistance effect of the crystalline quartz body could not be obtained in the processing and heating section.
又、かかる従来技術においての非加工部であっても表
層に形成された透明石英層が薄層である為に、ウエーハ
支持ボードのように周面にウエーハ保持用の保持溝を刻
設した場合に前記焼結部が露出して強度性が低下するの
みならず、特に洗浄の際に前記露出した焼結部より洗浄
液や汚染物質が侵入し、円滑な洗浄が困難になるのみな
らず、熱処理時にこれの残留物が漏出してらがウエーハ
表面の生成膜に悪影響を及ぼす。In addition, even if it is a non-processed portion in such a conventional technique, since the transparent quartz layer formed on the surface layer is a thin layer, when a holding groove for holding a wafer is engraved on the peripheral surface like a wafer support board. Not only the sintered portion is exposed to reduce the strength, especially during cleaning, the cleaning liquid and contaminants enter from the exposed sintered portion, which makes smooth cleaning difficult, and heat treatment. Occasionally, if the residue leaks out, the resulting film on the wafer surface is adversely affected.
本発明はかかる従来技術の欠点に鑑み、石英ガラス製
の一の部材を用いて加熱処理雰囲気下でも軟化する恐れ
のない耐熱性を有する石英ガラス体及びその製造方法を
提供する事を第1の目的とする。In view of the above-mentioned drawbacks of the prior art, the present invention provides a quartz glass body having heat resistance that does not tend to soften even in a heat treatment atmosphere by using one member made of quartz glass, and a method for producing the same. To aim.
本発明の他の目的とする所は、熱加工により耐熱性が
損なわれずしかも熱加工溶接が容易にして又その一部を
刻設する場合においてもその刻設部位の平滑性を確保す
る事が出来、これによりウエーハ保持溝として機能させ
る場合においても、十分なる強度性と洗浄容易性を得る
事の出来る石英ガラス体およびその製造方法を提供する
事にある。Another object of the present invention is to ensure the smoothness of the engraved portion even if a part of it is engraved so that the heat resistance is not impaired by the heat processing and the heat processing welding is facilitated. It is an object of the present invention to provide a quartz glass body and a method for producing the same that can achieve sufficient strength and easy cleaning even when the quartz glass body functions as a wafer holding groove.
「課題を解決する為の手段」 本発明は、下記実施例に示すように例えば、公知の合
成石英ガラスの製造法であるスート法やVAD法及びゾル
ゲル法若しくは高純度の石英管内に所定の混合粉末を充
填した状態で加熱延伸する事により石英ガラス体の全域
若しくは所定方向に沿って延設する内域又は表域に、シ
リコン、カーボン、若しくはこれらの化合物からなる耐
熱性微粉末又は耐熱繊維を所定割合で分散(以下該分散
個所を分散部位という)させたものである。"Means for solving the problem" The present invention, as shown in the following examples, for example, the soot method and VAD method and sol-gel method, which are known synthetic quartz glass manufacturing methods, or a predetermined mixture in a high-purity quartz tube. The heat-resistant fine powder or heat-resistant fiber made of silicon, carbon, or a compound thereof is added to the entire area of the quartz glass body or the inner area or the surface area extending along a predetermined direction by heating and stretching the powder-filled state. The particles are dispersed at a predetermined ratio (hereinafter, the dispersed portion is referred to as a dispersed portion).
即ち、請求項1記載の石英ガラス体においては、 耐熱性微粉末又は耐熱繊維を石英ガラス粉中に所定割
合で分散させた混合粉末の溶融体である分散体が中心側
に位置し、高純度石英ガラスが表層側に位置し、両者が
一体的に融着してなることを特徴とするものである。That is, in the quartz glass body according to claim 1, a dispersion, which is a molten powder of heat-resistant fine powder or heat-resistant fibers dispersed in quartz glass powder at a predetermined ratio, is located on the center side and has a high purity. The quartz glass is located on the surface layer side, and both are integrally fused.
この場合前記耐熱性微粉末又は耐熱繊維にシリコン、
カーボン若しくはこれらの化合物を用いた場合は半導体
毒とならない為に、製品歩留まりが低下する事もなく、
好ましい。In this case, the heat-resistant fine powder or heat-resistant fiber is silicon,
When carbon or these compounds are used, since it does not become a semiconductor poison, the product yield does not decrease,
preferable.
かかる石英ガラス体の製造方法は、請求項2記載の発
明に開示されており、即ち、高純度の石英管内に、耐熱
性微粉末又は耐熱繊維を石英ガラス粉中に所定割合で分
散させた混合粉末を充填した状態で加熱延伸させること
により、表層側に位置する高純度石英ガラスと、中心側
に位置する前記混合粉末の溶融体である分散体とが一体
的に融着して形成される。A method for producing such a quartz glass body is disclosed in the invention according to claim 2, that is, a mixture of heat-resistant fine powder or heat-resistant fibers dispersed in quartz glass powder at a predetermined ratio in a high-purity quartz tube. By heating and stretching the powder in a filled state, the high-purity quartz glass located on the surface side and the dispersion, which is a melt of the mixed powder located on the center side, are integrally fused and formed. .
又、請求項3及び4記載の発明は、石英ガラス体の全
域若しくは所定方向に沿って延設する内域又は表域に、
シリコン、カーボン若しくはこれらの化合物からなる耐
熱微粉末又は耐熱繊維を所定割合で分散させる製法に関
するものであり、例えば、請求項3記載の発明において
は、シリコン、カーボン、若しくはこれらの化合物とSi
O2からなる混合スート体を形成し、該混合スート体を加
熱源を通過させて、前記シリコーン、カーボン、若しく
はこれらの化合物からなる耐熱性微粉末又は耐熱繊維が
全域に分散された石英ガラス体を形成してなることを特
徴とするものであり、かかる製造方法によれば中実石英
ガラス体の製造方法の製造が容易である。Further, the invention according to claims 3 and 4, the whole area of the quartz glass body or the inner area or the surface area extending along a predetermined direction,
The present invention relates to a method for dispersing heat-resistant fine powder or heat-resistant fiber made of silicon, carbon or a compound thereof at a predetermined ratio. For example, in the invention according to claim 3, silicon, carbon, or a compound thereof and Si
A quartz glass body in which a mixed soot body made of O 2 is formed, the mixed soot body is passed through a heating source, and the heat-resistant fine powder or heat-resistant fiber made of the silicone, carbon, or a compound thereof is dispersed in the entire area. According to such a manufacturing method, the manufacturing method of the solid quartz glass body is easy.
又請求項4記載の発明は、中空状の石英ガラス体の製
造に適したものであり、例えば駆動系により回転する耐
熱性型体の内面に、石英ガラス粉に耐熱性微粉末又は耐
熱繊維を均一に混合した混合粉を遠心力により吹き付け
円筒状の粉体とした後、前記駆動系により耐熱性円筒型
体を回転させながら中心部に挿入した加熱源により中心
域側より加熱し溶融一体化することにより前記耐熱性微
粉末又は耐熱繊維が全域に分散された中空状の石英ガラ
ス体を形成してなることを特徴とするものである。The invention according to claim 4 is suitable for manufacturing a hollow quartz glass body, and for example, heat-resistant fine powder or heat-resistant fiber is added to quartz glass powder on the inner surface of a heat-resistant mold body rotated by a drive system. After uniformly mixing the mixed powder into a cylindrical powder by centrifugal force, the heat source inserted into the center while the heat-resistant cylindrical body is rotated by the drive system is heated from the central region side and melted and integrated. By doing so, a heat-resistant fine powder or heat-resistant fiber is dispersed in the entire area to form a hollow quartz glass body.
「作用」 本発明は、高純度の例えば1150℃前後で軟化し易い合
成石英ガラスを用いた場合でも、該石英ガラス中に例え
ばシリコン、カーボン、若しくは炭化珪素等の耐熱性微
粉末を所定割合で分散させる事により見掛け上の粘度が
向上する事に着目したものであり、これにより1300℃前
後の高温雰囲気下でも十分なる耐熱性強度を有し且つ変
形を生じる事の少ない石英ガラス体を得る事が出来る。"Operation" The present invention, for example, even when using a synthetic quartz glass having a high purity, which is easily softened at around 1150 ° C, heat-resistant fine powder such as silicon, carbon, or silicon carbide in the quartz glass at a predetermined ratio. It was focused on the fact that the apparent viscosity is improved by dispersing it, and by doing so, it is possible to obtain a quartz glass body that has sufficient heat resistance strength even in a high temperature atmosphere of around 1300 ° C and does not easily deform. Can be done.
又シリコン、炭化珪素等は前記したように石英ガラス
に比して熱膨張率が異なる為に、前記した従来技術のよ
うにこれを芯体状に封入した場合には当然に熱膨張率の
差により石英ガラス側に割れ等が生じてしまうが、本発
明は前記耐熱材を微粉末化又は繊維化して石英ガラス体
内に一体的に分散した為に、該粉末体又は繊維体それ自
体の膨張程度は無視し得る程小さくなる為に、石英ガラ
ス側に割れ等が生じる恐れがなくなる。Further, since silicon, silicon carbide and the like have different thermal expansion coefficients as compared with quartz glass as described above, when they are enclosed in a core like the prior art described above, the difference in thermal expansion coefficient is naturally. However, since the heat-resistant material is finely pulverized or made into fibers and dispersed integrally in the quartz glass body, the degree of expansion of the powder body or the fiber body itself is caused. Is so small that it can be ignored, so there is no risk of cracks or the like occurring on the quartz glass side.
この場合前記粉末体の粒径又は繊維体の線径が余りに
大きいと、又粉末体又は繊維体の分散割合が大になる
と、石英ガラス側に割れ等が生じる場合がある為に、前
記微粉末又は繊維の分散割合が5重量%以下で且つその
粒径は100μm以下に設定するのがよい。又、前記微粉
末又は繊維の分散割合が0.01重量%以下になると、微粉
体又は繊維体の分散効果が低下し、高音雰囲気下での耐
熱性強度が低下してしまう為に前記分散割合は0.01〜5
重量%に設定するのがよい。尚前記微粉体の形状は極力
突起を有さない球形状に形成するのが熱膨張による石英
ガラスの割れ等を防止する上で好ましい。In this case, if the particle diameter of the powder body or the wire diameter of the fibrous body is too large, or if the dispersion ratio of the powder body or the fibrous body becomes large, cracks or the like may occur on the quartz glass side. Alternatively, it is preferable that the dispersion ratio of the fibers is 5% by weight or less and the particle size thereof is 100 μm or less. Further, when the dispersion ratio of the fine powder or fiber is 0.01% by weight or less, the dispersion effect of the fine powder or the fibrous body is reduced, the heat resistance strength in a high-tone atmosphere is reduced, the dispersion ratio is 0.01. ~ 5
It is good to set to the weight percent. It is preferable that the fine powder is formed in a spherical shape having no protrusions as much as possible in order to prevent cracking of the quartz glass due to thermal expansion.
又シリコン、炭化珪素等はウエーハ表面の生成膜に悪
影響を与える半導体毒でない為に、前記分散部位が表面
上に露出した場合でも製品歩留まりが低下する事はな
い。Further, since silicon, silicon carbide and the like are not semiconductor poisons which adversely affect the formed film on the surface of the wafer, the product yield does not decrease even when the dispersed portion is exposed on the surface.
従って目的とする石英治具に合わせて前記分散部位を
石英ガラス体の表面層、内部若しくは全域に亙って形成
する事が可能となるが、前記耐熱強度を増大させるとい
う前記効果を円滑に達成するには、例えば軸状、円筒状
に形成した石英体の場合はその前記分散部位を軸方向に
沿って、又半球若しくは板状体の場合はその面方向に沿
って夫々延設させる必要がある。Therefore, although it is possible to form the dispersion portion over the surface layer, the inside or the entire area of the quartz glass body according to the desired quartz jig, the above effect of increasing the heat resistance strength is smoothly achieved. In order to achieve this, for example, in the case of a quartz body formed in a shaft shape or a cylindrical shape, it is necessary to extend the dispersion site along the axial direction, and in the case of a hemisphere or a plate body, along the surface direction thereof. is there.
更に前記分散部位は石英ガラス体と一体化している為
に当然に溶接及び熱加工が容易であり、耐熱性を損なう
ことなく複雑形状の治具更には大型の治具の形成も可能
である。Further, since the dispersion portion is integrated with the quartz glass body, it is naturally easy to weld and heat-process, and a jig having a complicated shape or a large jig can be formed without impairing heat resistance.
又前記分散部位は後記実施例に示すように製造方法の
選択により必ずしも中実体のみではなく、多数の微小空
隙を有するポーラス状に形成する事も可能である。Further, as shown in the examples below, the dispersion portion may be formed not only as a solid substance but also as a porous material having a large number of minute voids by selecting a manufacturing method.
「実施例」 以下本発明の実施例による石英ガラス体を製造方法に
基づいて説明する。"Example" Hereinafter, a quartz glass body according to an example of the present invention will be described based on a manufacturing method.
ただしこの実施例に記載されている構成部品の材質、
配合割合などは特に特定的な記載がない限りは、この発
明の範囲をそれのみに限定する趣旨ではなく、単なる説
明例に過ぎない。However, the material of the components described in this example,
Unless otherwise specified, the mixing ratio and the like are not intended to limit the scope of the present invention thereto, but are merely illustrative examples.
先ず公知の合成法に基づいて高純度の中空円筒状の石
英ガラス管12を製造した後、その一端側を封止し他端側
より下記の混合粉13を充填する。First, a high-purity hollow cylindrical quartz glass tube 12 is manufactured based on a known synthesis method, and then one end side thereof is sealed and the following mixed powder 13 is filled from the other end side.
前記内部に充填する混合粉13は、高純度の合成石英ガ
ラス粉内に粒径を5〜80μm程度に調整した炭化珪素Si
C粉を1〜2重量%、5重量%、10重量%だけ夫々均一
に混合して形成したものを用意する。The mixed powder 13 to be filled inside is silicon carbide Si whose particle size is adjusted to about 5 to 80 μm in high-purity synthetic quartz glass powder.
Prepare a mixture formed by uniformly mixing C powder in an amount of 1 to 2% by weight, 5% by weight, and 10% by weight, respectively.
そして前記混合粉を充填した石英ガラス管12は、第1
図(b)に示すように耐熱性支持部材16を用いて両端支
持を行い、石英ガラス管12の開口側に減圧装置17を接続
する。そして前記石英ガラス管12をゆっくり回転させ、
先の減圧装置17より減圧しながら酸素−水素ガシバーナ
ー15により石英ガラス管12端側を2000℃前後まで加熱し
た後、前記耐熱性支持部材16を介してその一端側を引張
して延伸し、細径化された石英ガラス棒1Aを形成する。The quartz glass tube 12 filled with the mixed powder is
As shown in FIG. 3B, both ends are supported by using a heat resistant support member 16, and a decompression device 17 is connected to the opening side of the quartz glass tube 12. And slowly rotate the quartz glass tube 12,
While heating the quartz glass tube 12 end side to around 2000 ° C. by the oxygen-hydrogen gas burner 15 while depressurizing from the depressurizing device 17, the one end side is stretched and stretched through the heat resistant support member 16, A quartz glass rod 1A having a reduced diameter is formed.
そしてこのように形成された石英ガラス棒1Aの断面構
造を見ると石英ガラス管10の中にSiC粉2が均等に分散
されたポーラス状の耐熱性分散部位11が一体的に形成さ
れているのが確認出来た。Looking at the cross-sectional structure of the quartz glass rod 1A thus formed, the porous glass heat-resistant dispersion portion 11 in which the SiC powder 2 is evenly dispersed is integrally formed in the quartz glass tube 10. Was confirmed.
又、同様な方法で、前記炭化珪素SiC粉の代わりに線
径が5〜80μmの炭化珪素SiC繊維を用いた場合でも、
同様に石英ガラス棒の断面構造を見ると石英ガラス管の
中にSiC繊維が均等に分散されたポーラス状の耐熱性分
散部位が一体的に形成されているのが確認出来た。Further, in the same manner, even when using a silicon carbide SiC fiber having a wire diameter of 5 to 80 μm instead of the silicon carbide SiC powder,
Similarly, when the cross-sectional structure of the quartz glass rod was observed, it was confirmed that a porous heat-resistant dispersion portion in which SiC fibers were uniformly dispersed was integrally formed in the quartz glass tube.
次に前記分散部位11内にSiC粉を1〜2重量%、5重
量%、10重量%夫々含有させた石英ガラス棒1Aを各5本
づつ1300℃の加熱炉内で10時間加熱した後室温(約20
℃)まで徐冷して再び1300℃の加熱炉内で10時間加熱す
るサイクルを10回繰り返した所、10重量%含有させた石
英ガラス棒1Aについては5本中2本についてクラックが
入っているものが確認された。Next, five quartz glass rods 1A each containing 1 to 2% by weight, 5% by weight, and 10% by weight of SiC powder in the dispersion part 11 were heated in a heating furnace at 1300 ° C. for 10 hours, and then at room temperature. (About 20
After repeating 10 times the cycle of gradually cooling to (° C) and again heating in a heating furnace at 1300 ° C for 10 hours, about 10% by weight of the quartz glass rod 1A contained 2 out of 5 cracks. Things have been confirmed.
次に粒径が110〜150μmのSiC粉を1〜2重量%分散
混合したものを1300℃の加熱炉内で10時間加熱した後室
温(約20℃)まで徐冷して再び1300℃の加熱炉内で10時
間加熱するサイクルを10回繰り返した所、全ての石英ガ
ラス棒1Aについてクラックが入っている事が確認され
た。Next, 1 to 2 wt% of SiC powder with a particle size of 110 to 150 μm is dispersed and mixed, heated in a heating furnace at 1300 ° C for 10 hours, then slowly cooled to room temperature (about 20 ° C) and heated again to 1300 ° C. When the cycle of heating for 10 hours in the furnace was repeated 10 times, it was confirmed that all the quartz glass rods 1A had cracks.
第2図は、前記SiC粉2が全域に分散された中実状の
石英ガラス体1Bを製造する方法で、第2図(b)に示す
ように四塩化珪素SiC4を酸素−水素炎で燃焼するバーナ
ー21と該SiCl4を一酸化炭素−酸素炎で燃焼するバーナ
ー22によるVAD法で、原料ガス及び燃焼ガスの供給量を
調整しながらSiO2−SiC混合スート体を形成し加熱源を
通過することにより同図(a)に示す中実状の石英ガラ
ス体1Bを製造することが出来る。この場合SiCl4を一酸
化炭素−酸素炎で燃焼するバーナー22の燃焼量を調整す
る事により、前記SiC粉2の分散割合を自在に調整する
事が出来る。FIG. 2 shows a method for producing a solid quartz glass body 1B in which the SiC powder 2 is dispersed over the entire area. As shown in FIG. 2 (b), silicon tetrachloride SiC 4 is burned with an oxygen-hydrogen flame. By a VAD method using a burner 21 and a burner 22 that burns the SiCl 4 with a carbon monoxide-oxygen flame, a SiO 2 —SiC mixed soot body is formed while adjusting the supply amounts of the raw material gas and the combustion gas and passes through a heating source. By doing so, it is possible to manufacture the solid quartz glass body 1B shown in FIG. In this case, the dispersion ratio of the SiC powder 2 can be freely adjusted by adjusting the combustion amount of the burner 22 that burns SiCl 4 with a carbon monoxide-oxygen flame.
そこで、前記SiC粉2の分散割合が0.5%,0.05%,0.00
5%のもの及び全く分散させない石英ガラス体1Bを製造
し、各々の石英ガラス体を用いて縦型ボートを製作して
実際に5″ウエーハを搭載した状態で1300℃の加熱炉内
で120時間加熱しウエーハ保持部の変形度合を観察した
所SiC粉2の分散割合が0.005%のもの及びは全く分散さ
せなかったものはウエーハが、両者とも保持部から取り
出せないほど変形したのにたいし、分散割合が0.5%,0.
05%のものは変形程度が極めて少なく保持部から取り出
しも支障がないなど格段にその効果が向上している事が
確認された。Therefore, the dispersion ratio of the SiC powder 2 is 0.5%, 0.05%, 0.00
We made 5% quartz glass body 1B that does not disperse at all and manufactured a vertical boat using each quartz glass body and actually loaded a 5 ″ wafer in a heating furnace at 1300 ° C. for 120 hours. When the degree of deformation of the wafer holding part was observed by heating, the wafers with the SiC powder 2 having a dispersion ratio of 0.005% and those not dispersed at all were deformed so much that they could not be taken out from the holding part. Dispersion ratio is 0.5%, 0.
It was confirmed that the effect of 05% was remarkably improved, as the degree of deformation was extremely small and there was no problem in taking it out from the holding part.
第3図は同図(a)に示す前記SiC粉2が全域に分散
された中空状の石英ガラス体1Cを製造する方法を示し、
その構成作用を同図(b)に基づいて簡単に説明する
に、駆動系30により回転する耐熱性円筒型体31の内面
に、石英ガラス粉に炭化珪素SiC粉又は炭化珪素SiC繊維
を均一に混合した混合粉を遠心力により吹き付け円筒状
の粉体32とした後、駆動系30により耐熱性円筒型体31を
回転させながら中心部に挿入した加熱源33により中心域
側より加熱し溶融一体化することにより容易に前記SiC
粉2が全域に分散された中空状の石英ガラス体1Cを製造
可能である。尚34は電源である。FIG. 3 shows a method for producing a hollow quartz glass body 1C in which the SiC powder 2 shown in FIG.
Briefly explaining the constitutional action with reference to FIG. 2B, quartz glass powder, silicon carbide SiC powder or silicon carbide SiC fiber is uniformly applied to the inner surface of the heat-resistant cylindrical body 31 rotated by the drive system 30. The mixed powder is blown by a centrifugal force into a cylindrical powder 32, and then the heat-resistant cylindrical body 31 is rotated by the drive system 30 and heated from the central region side by the heating source 33 inserted in the central part to melt and integrate. Can be easily converted into SiC
It is possible to manufacture a hollow quartz glass body 1C in which the powder 2 is dispersed all over. Incidentally, 34 is a power source.
又、金属アルコキシドを出発原料とするゾルゲル法な
ど他の石英ガラス製造法においても容易に分散石英ガラ
ス体を形成可能である。Further, the dispersed silica glass body can be easily formed by other silica glass manufacturing methods such as a sol-gel method using a metal alkoxide as a starting material.
「発明の効果」 以上記載した如く本発明によれば1300℃前後の高温雰
囲気下でも十分なる耐熱強度性と変形のない、更には熱
膨張によるクラック等の発生のない石英ガラス体を形成
出来るとともに、その用途に応じて中心域にのみ前記分
散部位が存在するもの(請求項1及び3記載の発明)、
又全域に存在するもの(請求項2、4及び5記載の発
明)、更にはポーラス状のものや中実状のものも製造可
能である。[Advantages of the Invention] As described above, according to the present invention, it is possible to form a quartz glass body that does not have sufficient heat resistance strength and deformation even in a high temperature atmosphere of about 1300 ° C., and that cracks due to thermal expansion do not occur. , The dispersion site being present only in the central region according to its use (the invention according to claims 1 and 3),
In addition, it is possible to manufacture those existing in the entire area (the inventions according to claims 2, 4 and 5), and also those having a porous shape or a solid shape.
又前記分散部位は石英ガラス体として一体化されてい
る為に、熱加工や溶接も容易であり、この結果複雑形状
の治具が容易に製造出来る。Further, since the dispersed parts are integrated as a quartz glass body, heat processing and welding are easy, and as a result, a jig having a complicated shape can be easily manufactured.
又前記石英ガラス体内に分散させた微粉末にシリコ
ン、カーボン若しくはこれらの化合物を用いた場合は半
導体毒とならない為に、製品歩留まりが低下する事もな
い。Further, when silicon, carbon, or a compound thereof is used as the fine powder dispersed in the quartz glass body, it does not become a semiconductor poison, so that the product yield does not decrease.
等の種々の著効を有す。And so on.
第1図(a)(b)乃至第3図(a)(b)はいずれも
本発明の実施例に係る石英ガラス体の製造装置とその装
置により製造された石英ガラス体を示す概略図である。1 (a) (b) to 3 (a) (b) are schematic views showing a quartz glass body manufacturing apparatus according to an embodiment of the present invention and a quartz glass body manufactured by the apparatus. is there.
Claims (4)
製造装置若しくは、治具を製造する為に用いられる石英
ガラス体において、 耐熱性微粉末又は耐熱繊維を石英ガラス粉中に所定割合
で分散させた混合粉末の溶融体である分散体が中心側に
位置し、高純度石英ガラスが表層側に位置し、両者が一
体的に融着してなることを特徴とする石英ガラス体。1. A quartz glass body used for manufacturing a semiconductor manufacturing apparatus or a jig, at least one side of which is exposed to a high temperature, wherein heat-resistant fine powder or heat-resistant fibers are dispersed in quartz glass powder at a predetermined ratio. A quartz glass body, characterized in that the dispersion, which is a melt of the mixed powder, is located on the center side, the high-purity quartz glass is located on the surface layer side, and both are integrally fused.
製造装置若しくは、治具を製造する為に用いられる石英
ガラス体の製造方法において、 高純度の石英管内に、耐熱性微粉末又は耐熱繊維を石英
ガラス粉中に所定割合で分散させた混合粉末を充填した
状態で加熱延伸して、表層側に位置する高純度石英ガラ
スと、中心側に位置する前記混合粉末の溶融体である分
散体とが一体的に融着してなることを特徴とする石英ガ
ラス体の製造方法。2. A method for manufacturing a quartz glass body used for manufacturing a semiconductor manufacturing apparatus or a jig, at least one surface of which is exposed to high temperature, wherein a heat-resistant fine powder or heat-resistant fiber is placed in a high-purity quartz tube. Heat-stretched in a state where the mixed powder dispersed at a predetermined ratio in the quartz glass powder is filled, and high-purity quartz glass located on the surface layer side, and a dispersion which is a melt of the mixed powder located on the center side. A method for producing a quartz glass body, characterized in that the above are integrally fused.
製造装置若しくは、治具を製造する為に用いられる石英
ガラス体の製造方法において、 シリコーン、カーボン、若しくはこれらの化合物とSiO2
からなる混合スート体を形成し、該混合スート体を加熱
源を通過させて、前記シリコン、カーボン、若しくはこ
れらの化合物からなる耐熱性微粉末又は耐熱繊維が全域
に分散された石英ガラス体を形成してなることを特徴と
する石英ガラス体の製造方法。3. A method for manufacturing a quartz glass body used for manufacturing a semiconductor manufacturing apparatus or a jig, at least one surface of which is exposed to high temperature, wherein silicon, carbon, or a compound thereof and SiO 2 are used.
Forming a mixed soot body consisting of, and passing the mixed soot body through a heating source to form a quartz glass body in which the heat-resistant fine powder or heat-resistant fiber made of the above-mentioned silicon, carbon, or a compound thereof is dispersed in the entire area. A method of manufacturing a quartz glass body, which comprises:
製造装置若しくは、治具を製造する為に用いられる石英
ガラス体の製造方法において、 駆動系により回転する耐熱性型体の内面に、石英ガラス
粉に耐熱性微粉末又は耐熱繊維を均一に混合した混合粉
を遠心力により吹き付け円筒状の粉体とした後、前記駆
動系により耐熱性円筒型体を回転させながら中心部に挿
入した加熱源により中心域側より加熱し溶融一体化する
ことにより前記耐熱性微粉末又は耐熱繊維が全域に分散
された中空状の石英ガラス体を形成してなることを特徴
とする石英ガラス体の製造方法。4. A method for manufacturing a quartz glass body used for manufacturing a semiconductor manufacturing apparatus or a jig, at least one surface of which is exposed to high temperature, wherein quartz glass is formed on an inner surface of a heat-resistant mold body rotated by a drive system. A heat source that is formed by spraying a heat-resistant fine powder or a mixed powder of heat-resistant fibers uniformly into a powder by a centrifugal force to form a cylindrical powder, and then inserting the heat-resistant cylindrical body in the center while rotating the drive system. A heat-resistant fine powder or heat-resistant fibers are dispersed in the whole area to form a hollow quartz glass body by heating from the central region side and melt-integrated, thereby producing a quartz glass body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1103390A JP2676405B2 (en) | 1989-04-25 | 1989-04-25 | Quartz glass for semiconductor manufacturing equipment or jig and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1103390A JP2676405B2 (en) | 1989-04-25 | 1989-04-25 | Quartz glass for semiconductor manufacturing equipment or jig and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02283015A JPH02283015A (en) | 1990-11-20 |
JP2676405B2 true JP2676405B2 (en) | 1997-11-17 |
Family
ID=14352745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1103390A Expired - Lifetime JP2676405B2 (en) | 1989-04-25 | 1989-04-25 | Quartz glass for semiconductor manufacturing equipment or jig and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2676405B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957431B2 (en) | 2013-11-11 | 2018-05-01 | Heraeus Quarzglas Gmbh & Co. Kg | Composite material, heat-absorbing component, and method for producing the composite material |
EP3390304B1 (en) | 2015-12-18 | 2023-09-13 | Heraeus Quarzglas GmbH & Co. KG | Spray granulation of silicon dioxide in the production of quartz glass |
JP6881776B2 (en) | 2015-12-18 | 2021-06-02 | ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー | Preparation of opaque quartz glass body |
US11492285B2 (en) | 2015-12-18 | 2022-11-08 | Heraeus Quarzglas Gmbh & Co. Kg | Preparation of quartz glass bodies from silicon dioxide granulate |
JP6984897B2 (en) | 2015-12-18 | 2021-12-22 | ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー | Increased silicon content during quartz glass preparation |
WO2017103120A1 (en) | 2015-12-18 | 2017-06-22 | Heraeus Quarzglas Gmbh & Co. Kg | Production of a synthetic quartz glass granulate |
EP3390294B1 (en) | 2015-12-18 | 2024-02-07 | Heraeus Quarzglas GmbH & Co. KG | Reduction of alkaline earth metal content of silica granule by treatment at high temperature of carbon doped silica granule |
US10730780B2 (en) | 2015-12-18 | 2020-08-04 | Heraeus Quarzglas Gmbh & Co. Kg | Preparation of a quartz glass body in a multi-chamber oven |
KR20180095616A (en) | 2015-12-18 | 2018-08-27 | 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 | Preparation of silica glass body using dew point control in melting furnace |
KR20180095622A (en) | 2015-12-18 | 2018-08-27 | 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 | Manufacture of Silica Glass Products from Molten Crucibles Made of Refractory Metals |
WO2017103153A1 (en) | 2015-12-18 | 2017-06-22 | Heraeus Quarzglas Gmbh & Co. Kg | Glass fibers and preforms made of quartz glass having low oh, cl, and al content |
DE102016118137A1 (en) * | 2016-09-26 | 2018-03-29 | Heraeus Noblelight Gmbh | Infrared Panel Heaters |
KR20230079075A (en) * | 2020-10-01 | 2023-06-05 | 토소 에스지엠 가부시키가이샤 | Black quartz glass and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5892729U (en) * | 1981-12-17 | 1983-06-23 | 山形日本電気株式会社 | semiconductor manufacturing equipment |
US4464192A (en) * | 1982-05-25 | 1984-08-07 | United Technologies Corporation | Molding process for fiber reinforced glass matrix composite articles |
JPS61219724A (en) * | 1985-03-27 | 1986-09-30 | Kogyo Kaihatsu Kenkyusho | Production of molded article of modified silica glass |
-
1989
- 1989-04-25 JP JP1103390A patent/JP2676405B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02283015A (en) | 1990-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2676405B2 (en) | Quartz glass for semiconductor manufacturing equipment or jig and manufacturing method thereof | |
US7937968B2 (en) | Method for bonding components made of material with a high silicic acid content | |
KR100261872B1 (en) | Heat treatment facility for synthetic vitreous silica bodies | |
KR100637027B1 (en) | Process and apparatus for manufacturing a glass ingot from synthetic silica | |
EP1088789A2 (en) | Porous silica granule, its method of production and its use in a method for producing quartz glass | |
KR20010095084A (en) | Fluid heating apparatus | |
JP2013540688A (en) | Method for producing synthetic quartz glass granules | |
JPH11317282A (en) | Molybdenum disilicide composite ceramic heating element and its manufacture | |
JP2008511527A (en) | Bonding agent for joining component parts, method for joining component parts made of material having high silicic acid content, and component assembly obtained by the method | |
US5985779A (en) | Opaque quartz glass product and method of manufacture | |
JP4014724B2 (en) | Method for producing silica glass | |
JP2810941B2 (en) | Method for producing polygonal columnar silica glass rod | |
KR100197471B1 (en) | Silica glass jig | |
JPS5849290B2 (en) | quartz reaction tube | |
GB2181727A (en) | Method of preparing a silica glass member | |
JPH11310423A (en) | Synthetic quartz glass and its production | |
JPS63236723A (en) | Quartz glass products for semiconductor industry | |
JPH10502324A (en) | Sintered quartz glass product and method for producing the same | |
JP3449654B2 (en) | Method for producing opaque quartz glass | |
JP3693772B2 (en) | Method for producing opaque quartz glass cylinder | |
JPS61232239A (en) | Production of porous glass | |
JP2002047014A (en) | Thermal shielding cylinder, device and method of manufacturing glass preform provided with it | |
JPH0729798B2 (en) | Method for manufacturing composite quartz glass tube for semiconductor heat treatment | |
JP3371399B2 (en) | Cristobalite crystalline phase-containing silica glass and method for producing the same | |
JP2611684B2 (en) | Manufacturing method of quartz glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 12 |