[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2676111B2 - Fluid pressure continuously operated reciprocating actuator - Google Patents

Fluid pressure continuously operated reciprocating actuator

Info

Publication number
JP2676111B2
JP2676111B2 JP1084330A JP8433089A JP2676111B2 JP 2676111 B2 JP2676111 B2 JP 2676111B2 JP 1084330 A JP1084330 A JP 1084330A JP 8433089 A JP8433089 A JP 8433089A JP 2676111 B2 JP2676111 B2 JP 2676111B2
Authority
JP
Japan
Prior art keywords
valve
chamber
piston
fluid pressure
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1084330A
Other languages
Japanese (ja)
Other versions
JPH02266104A (en
Inventor
清二 木村
Original Assignee
相生精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 相生精機株式会社 filed Critical 相生精機株式会社
Priority to JP1084330A priority Critical patent/JP2676111B2/en
Publication of JPH02266104A publication Critical patent/JPH02266104A/en
Application granted granted Critical
Publication of JP2676111B2 publication Critical patent/JP2676111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体圧駆動連続作動型往復動アクチュエー
タに関し、特に加圧エアや油圧の供給を受けて出力ロッ
ドを連続的に往復駆動するアクチュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid pressure driven continuously operating reciprocating actuator, and more particularly to an actuator for continuously reciprocating an output rod by receiving supply of pressurized air or hydraulic pressure. Regarding

〔従来技術〕(Prior art)

従来、この種の流体圧駆動連続作動型往復動アクチュ
エータとしては、ハウジング内にバネ復帰型単動流体圧
シリンダを組込み、シリンダの作動室に対して液体圧供
給口と排出口とを方向切換弁機構の切換作動により択一
的に連通可能にし、作動室と供給口が連通されると供給
された流体圧(通常は圧縮空気)によりピストンと出力
ロッドが復帰バネに抗して進出駆動され、また作動室が
排出口に連通されるとピストンと出力ロッドが復帰バネ
により後退駆動され、且つピストンに連動連結された制
御弁機構により制御用流体圧流路が切換えられて方向切
換弁機構を切換作動させるように構成したものが知られ
ている。
Conventionally, as this type of fluid pressure driven continuous operation type reciprocating actuator, a spring return type single acting fluid pressure cylinder is incorporated in the housing, and a directional switching valve is provided for the fluid pressure supply port and the discharge port with respect to the working chamber of the cylinder. When the working chamber and the supply port are communicated with each other, the piston and the output rod are driven to advance against the return spring by the fluid pressure (usually compressed air) when the mechanism is switched. When the working chamber communicates with the discharge port, the piston and the output rod are driven backward by the return spring, and the control fluid pressure flow passage is switched by the control valve mechanism linked to the piston to switch the directional switching valve mechanism. It is known to be configured so as to cause it.

本願出願人は、特公昭55−40761号公報に示すよう
に、従来装置の諸欠点を解消して小型・軽量にして比較
的安価に製作でき且つ作動確実性と耐久性に優れたもの
を実用化した。
As disclosed in Japanese Patent Publication No. 55-40761, the applicant of the present invention puts into practical use a device which is small in size and light in weight, can be manufactured at a relatively low cost, and has excellent operational reliability and durability, while eliminating the drawbacks of the conventional device. Turned into

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記往復動アクチュエータは、作動室に供給される流
体圧でピストンと出力ロッドを進出駆動させ、また復帰
バネでピストンと出力ロッドを復帰作動させる構成とな
っていたので、次のような諸欠点が残っている。
The reciprocating actuator has a structure in which the piston and the output rod are driven to advance by the fluid pressure supplied to the working chamber, and the piston and the output rod are reset by the return spring. Remaining.

上記往復動アクチュエータをプランジャ型油圧ポンプ
駆動用のアクチュエータに適用した場合を例にして説明
すると、復帰バネを収容する為にピストンの往復動スト
ロークと最大圧縮状態の復帰バネの長さの合計長さ以上
のバネ収容室を設けなければならないのでアクチュエー
タが大型化すること、出力アップつまり油圧ポンプの吐
出量増加の為にピストンの往復動サイクルを高速化する
と復帰バネが追従不能となり復帰バネが破損してしまう
ので高速化に限界があること、油圧ポンプの吐出量増加
の為にピストン及び出力ロッドのストロークを大きくす
ると、復帰バネのバネ長が大きくなるので大型の復帰バ
ネが必要となり全体として大型化してしまうこと、復帰
バネの追従性を高める為に復帰バネのバネ力を強くする
と1サイクル当りの出力が低下し油圧ポンプの吐出圧が
低下してしまうこと及び低圧の流体圧で駆動できなくな
って油圧ポンプの汎用性が低下すること、復帰バネのバ
ネ力に抗してピストンを往動駆動させなければならない
ので、駆動力源としての圧力流体の動力のかなりの部分
が無駄になってしまうこと、つまりエネルギロスが大き
くなること、など種々の問題がある。
The case where the above reciprocating actuator is applied to an actuator for driving a plunger type hydraulic pump will be described as an example. The total length of the reciprocating stroke of the piston and the length of the returning spring in the maximum compression state for accommodating the returning spring. Since the above spring accommodating chamber must be provided, the actuator becomes larger, and if the reciprocating cycle of the piston is accelerated to increase the output, that is, the discharge amount of the hydraulic pump, the return spring becomes unable to follow and the return spring is damaged. Since there is a limit to speeding up, and when the stroke of the piston and output rod is increased to increase the discharge amount of the hydraulic pump, the spring length of the return spring increases, so a large return spring is required and the overall size increases. If the spring force of the return spring is increased in order to improve the followability of the return spring, Force is reduced and the discharge pressure of the hydraulic pump is reduced, and the versatility of the hydraulic pump is reduced due to the inability to drive with low fluid pressure, and the piston is driven forward against the spring force of the return spring. Therefore, there are various problems such that a considerable part of the power of the pressure fluid as the driving force source is wasted, that is, the energy loss becomes large.

本発明は、復帰バネに代えて流体圧によりピストンを
復帰駆動し得るような流体圧駆動連続作動型往復動アク
チュエータを提供することを目的とする。
An object of the present invention is to provide a fluid pressure driven continuous operation type reciprocating actuator capable of returning and driving a piston by fluid pressure instead of a return spring.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る流体圧駆動連続作動型往復動アクチュエ
ータは、ハウジング内にピストンとこのピストンに固着
された出力ロッドとを有する複動流体圧シリンダを設
け、この流体圧シリンダにピストンを流体圧で進出駆動
する往動作動室とピストンを流体圧で後退駆動する復動
作動室を設け、上記往動作動室を流体圧供給口に接続す
る供給位置と排出口に接続する排出位置とに択一的に切
換えられる切換弁体と、この切換弁体を供給位置に付勢
する付勢手段と、その付勢力に抗して切換弁体を流体圧
で排出位置に切換える弁作動室とを備えた切換弁機構を
設け、上記ピストンから延び切換弁体に挿通された弁部
材を介して、ピストンが後退限位置にあるときは弁作動
室を排出口に接続し且つピストンが後退限位置と進出限
位置の間にあるときは弁作動室を封止し且つピストンが
進出限位置にあるときは弁作動室を流体圧供給口に接続
する制御弁機構を設け、上記制御弁機構の弁作動室に連
通した受圧室の流体圧で閉弁付勢され且つスプリングで
開弁付勢された可動弁体を備え、上記ピストンの進出作
動時にスプリング力で開弁して復動作動室を排出口に接
続するとともにピストンの後退作動時に閉弁する開閉弁
機構を設け、 上記開閉弁機構の閉弁時に可動弁体で開弁駆動されて
復動作動室を流体圧供給口に接続し且つ開閉弁機構の開
弁時にスプリングで閉弁駆動される供給弁機構を設けた
ものである。
A fluid pressure driven continuous operation type reciprocating actuator according to the present invention is provided with a double acting fluid pressure cylinder having a piston and an output rod fixed to the piston in a housing, and the piston is fluidly advanced to the fluid pressure cylinder. A forward motion moving chamber to be driven and a backward motion moving chamber to drive the piston backward by fluid pressure are provided, and the forward motion moving chamber is selectively provided as a supply position connecting to the fluid pressure supply port and a discharge position connecting to the discharge port. A switching valve body that can be switched to a switch position, a biasing means that biases the switching valve body to the supply position, and a valve working chamber that switches the switching valve body to the discharge position by fluid pressure against the biasing force. A valve mechanism is provided, and the valve working chamber is connected to the discharge port when the piston is at the backward limit position and the piston is at the backward limit position and the forward limit position through the valve member that extends from the piston and is inserted into the switching valve body. When it is between A control valve mechanism that seals the working chamber and connects the valve working chamber to the fluid pressure supply port when the piston is at the advance limit position is provided with the fluid pressure of the pressure receiving chamber that communicates with the valve working chamber of the control valve mechanism. Equipped with a movable valve body that is urged to close and opened by a spring.When the piston moves forward, it opens with a spring force to connect the return motion chamber to the discharge port and closes it when the piston moves backward. An on-off valve mechanism for valve operation is provided, and when the above-mentioned on-off valve mechanism is closed, it is driven by the movable valve body to open the valve to connect the return motion chamber to the fluid pressure supply port and when the on-off valve mechanism is opened, the valve is closed by a spring. The supply valve mechanism is provided.

〔作用〕[Action]

本発明に係る流体圧駆動連続作動型往復動アクチュエ
ータにおいては、流体圧供給口に圧力流体が供給されて
いる状態で、ピストンが後退限位置にあるときには制御
弁機構によって弁作動室が排出口に接続されているの
で、切換弁体は付勢手段により供給位置に保持され、圧
力流体が流体圧供給口から往動作動室へ供給され、また
このとき弁作動室が排出口に接続されているので弁作動
室に連通した受圧室には、圧力流体が供給されず、開閉
弁機構の可動弁体はスプリング力で開弁され復動作動室
が排出口に接続されて、ピストンは往動作動室内の流体
圧によって進出駆動を開始する。ピストンが後退限位置
から進出限位置に達するまでは制御弁機構によって弁作
動室が圧力流体排出状態で封止されるので切換弁体は供
給位置に保持される。従って、上記のように往動作動室
に圧力流体が供給され、ピストンは継続して進出駆動さ
れる。
In the fluid pressure driven continuous operation type reciprocating actuator according to the present invention, when the piston is in the retracted limit position while the pressure fluid is being supplied to the fluid pressure supply port, the valve working chamber is set to the discharge port by the control valve mechanism. Since it is connected, the switching valve body is held at the supply position by the urging means, the pressure fluid is supplied from the fluid pressure supply port to the forward operation moving chamber, and at this time, the valve working chamber is connected to the discharge port. Therefore, the pressure fluid is not supplied to the pressure receiving chamber communicating with the valve working chamber, the movable valve element of the opening / closing valve mechanism is opened by the spring force, the return motion chamber is connected to the discharge port, and the piston moves forward. The advancing drive is started by the fluid pressure in the room. Since the valve operating chamber is sealed in the pressure fluid discharge state by the control valve mechanism until the piston reaches the retreat limit position and the advance limit position, the switching valve body is held at the supply position. Therefore, as described above, the pressurized fluid is supplied to the forward motion chamber, and the piston is continuously advanced.

その後、ピストンが進出限位置に達すると、制御弁機
構により弁作動室が流体圧供給口に接続され、切換弁体
は弁作動室内の流体圧により付勢手段の付勢力に抗して
排出位置に切換えられるので、往動作動室は排出口に接
続される。一方、弁作動室が流体圧供給口に接続される
ので、受圧室に圧力流体が供給され、その流体圧により
開閉弁機構の可動弁体はスプリング力に抗して閉弁し且
つ供給弁機構を開弁駆動して復動作動室を流体圧供給口
に接続するので、ピストンは復動作動室内の流体圧によ
って後退駆動を開始する。ピストンが後退限位置に達す
るまでは受圧室は圧力流体充填状態であり、開閉弁機構
は閉弁し供給弁機構は可動弁体により開弁状態を保持す
るのでピストンの後退駆動が継続される。ピストンが後
退限位置に達すると、制御弁機構により弁作動室が排出
口に接続され、切換弁体が供給位置に切換られ、以下前
記同様に繰返し、ピストンは往復駆動されることにな
る。
After that, when the piston reaches the advance limit position, the valve working chamber is connected to the fluid pressure supply port by the control valve mechanism, and the switching valve body is displaced by the fluid pressure in the valve working chamber against the biasing force of the biasing means. The forward-moving chamber is connected to the discharge port. On the other hand, since the valve working chamber is connected to the fluid pressure supply port, the pressure fluid is supplied to the pressure receiving chamber, and the fluid pressure causes the movable valve element of the opening / closing valve mechanism to close against the spring force and the supply valve mechanism. Since the valve is driven to open and the backward movement moving chamber is connected to the fluid pressure supply port, the piston starts backward movement by the fluid pressure in the backward movement moving chamber. Until the piston reaches the retreat limit position, the pressure receiving chamber is filled with the pressure fluid, the opening / closing valve mechanism is closed, and the supply valve mechanism is kept in the valve open state by the movable valve body, so that the backward drive of the piston is continued. When the piston reaches the retreat limit position, the valve operating chamber is connected to the discharge port by the control valve mechanism, the switching valve body is switched to the supply position, and the piston is reciprocally driven in the same manner as above.

本発明の往復動アクチュエータにおいては、復動作動
室内に圧力流体を供給し、その流体圧でピストンを後退
駆動するように構成したので、復帰バネを省略すること
が可能となり、ピストンの往復動のストロークを必要に
応じて自由に大きく或いは小さく設計することが出来、
復動作動室はピストンの往復動ストロークに必要なだけ
の小型の作動室に形成できるため、往復動アクチュエー
タの小型化を図ることが出来る。加えて、ピストンの進
出作動時には復動作動室は排出口に接続されるので、圧
力流体のエネルギロスを解消して、往復動アクチュエー
タの出力を高めることが出来、ピストンの後退作動時に
は復動作動室に圧力流体供給口から圧力流体が供給され
るので、ピストンの後退駆動力を大きくし、ピストンの
後退作動を高速化し、往復動サイクルを高速化出来る。
In the reciprocating actuator of the present invention, since the pressure fluid is supplied into the backward moving chamber and the piston is driven backward by the fluid pressure, the return spring can be omitted and the reciprocating motion of the piston can be eliminated. The stroke can be freely designed to be large or small as required,
Since the reciprocating motion chamber can be formed in a small working chamber required for the reciprocating stroke of the piston, the reciprocating actuator can be downsized. In addition, since the return motion chamber is connected to the discharge port when the piston moves forward, the energy loss of the pressure fluid can be eliminated and the output of the reciprocating actuator can be increased. Since the pressure fluid is supplied to the chamber from the pressure fluid supply port, the backward driving force of the piston can be increased, the backward movement of the piston can be speeded up, and the reciprocating cycle can be speeded up.

〔発明の効果〕〔The invention's effect〕

本発明に係る流体圧駆動連続作動型往復動アクチュエ
ータによれば、上記〔作用〕の項で説明したように、開
閉弁機構と供給弁機構とによってピストンの進出作動時
には復動作動室を排出口に接続し、ピストンの後退作動
時には復動作動室に圧力流体を供給して後退駆動するよ
うに構成したことにより、バネを省略できること、圧力
流体のエネルギロスを解消し往復動サイクルの高速化つ
まり出力アップを実現し得ること、ピストンの往復動ス
トロークを必要に応じて自由に大きく或いは小さく設計
することが出来ること、復動作動室を小型化して往復動
アクチュエータを小型化し得ること、往復動アクチュエ
ータの汎用性を向上し得ること、などの効果が得られ
る。
According to the fluid pressure driven continuous operation type reciprocating actuator according to the present invention, as described in the above [Operation], the reciprocating motion chamber is discharged through the opening and closing valve mechanism and the supply valve mechanism when the piston advances. Connected to the piston and configured to supply backward pressure by supplying pressure fluid to the backward movement chamber when the piston moves backward, the spring can be omitted, energy loss of the pressure fluid can be eliminated, and the reciprocating cycle speed can be increased. The output can be increased, the reciprocating stroke of the piston can be freely designed to be large or small according to need, the reciprocating motion chamber can be downsized, and the reciprocating actuator can be downsized. The versatility of can be improved, and other effects can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について図面に基いて説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施例は、圧縮空気(以下、加圧エアという)駆動
連続作動型往復動アクチュエータによりプランジャを駆
動するようにしたエア駆動式油圧ポンプに本発明を適用
した場合の一例である。
The present embodiment is an example in which the present invention is applied to an air-driven hydraulic pump in which a plunger is driven by a compressed air (hereinafter, referred to as pressurized air) driven continuous operation type reciprocating actuator.

第1図に示すように、この油圧ポンプHPは往復動アク
チュエータACとポンプ本体部PCとを備え、往復動アクチ
ュエータACのハウジング10は、上部ハウジング11と中間
ハウジング12と下部ハウジング13とを複数のコモンボル
ト14で一体的に連結して構成されている。
As shown in FIG. 1, the hydraulic pump HP includes a reciprocating actuator AC and a pump main body PC, and a housing 10 of the reciprocating actuator AC includes an upper housing 11, an intermediate housing 12, and a lower housing 13. It is configured by integrally connecting with a common bolt 14.

ハウジング10内の下半部内には複動エアシリンダ20が
設けられ、このエアシリンダ20のシリンダ孔21内にはピ
ストン22が装着され、ピストン22の下端から延びる出力
ロッド23の下部にプランジャ24が形成され、シリンダ孔
21のうちのピストン22の上側には往動作動室25がまたピ
ストン22の下側には復動作動室26が夫々形成されてい
る。
A double-acting air cylinder 20 is provided in the lower half of the housing 10, a piston 22 is mounted in a cylinder hole 21 of the air cylinder 20, and a plunger 24 is provided below the output rod 23 extending from the lower end of the piston 22. Formed and cylinder hole
A forward motion chamber 25 is formed on the upper side of the piston 22 of the 21, and a backward motion chamber 26 is formed on the lower side of the piston 22.

下部ハウジング13内にはプランジャ孔15が設けられ、
プランジャ24がプランジャ孔15内に進退駆動され、吸入
口16から吸入チェック弁17を介してプランジャ孔15に吸
入された油はプランジャ24により圧縮され、吐出チェッ
ク弁18を介して吐出口19へ吐出される。
A plunger hole 15 is provided in the lower housing 13,
The plunger 24 is driven into and out of the plunger hole 15, and the oil sucked into the plunger hole 15 from the suction port 16 via the suction check valve 17 is compressed by the plunger 24 and discharged to the discharge port 19 via the discharge check valve 18. To be done.

上記ハウジング10の上部の側部には外部の加圧エア供
給限から加圧エア(例えば、5.0kg/cm2G)が供給される
加圧エア供給口3が設けられ、ハウジング10の上端部内
には排気口としてのマフラ4を介して大気中に連通する
排気室5が形成されている。
The upper side of the housing 10 is provided with a pressurized air supply port 3 to which pressurized air (for example, 5.0 kg / cm 2 G) is supplied from an external pressurized air supply limit. An exhaust chamber 5 communicating with the atmosphere via a muffler 4 serving as an exhaust port is formed therein.

次に、切換弁機構30について説明する。 Next, the switching valve mechanism 30 will be described.

中間ハウジング12の仕切壁31の上面には中間ハウジン
グ12内に収容された環状部材32が固着され、環状部材32
の外周側には加圧エア供給口3に連なる加圧エア供給路
33が形成され、仕切壁31の凹部34と環状部材32の内側に
は切換弁体35が装着され、切換弁体35の下端部の下部ピ
ストン部36が凹部34に気密摺動自在に装着されるととも
に、切換弁体35の中段部には環状かつ鍔状の切換弁部37
が形成され、切換弁体35の上端部の上部ピストン部38は
環状部材32のシリンダ孔39に気密摺動自在に内嵌され、
切換弁部37と下部ピストン36との間で切換弁体35の外周
部には排気路40により排気室5に連なる環状排気路41が
形成され、切換弁部37の外周側には通路42aにより往動
作動室25に連なる環状通路42が形成されている。環状部
材32には切換弁部37の上面の環状の第1弁面43が当接す
る第1弁座44が形成され、仕切壁31には切換弁部37の下
面の環状の第2弁面45が当接する第2弁座46が形成さ
れ、第1弁面43と上部ピストン部38との間で切換弁体35
の外周側には通路47により加圧エア供給路33に連なる環
状の受圧室48が形成され、切換弁体35はスプリング49で
下方へ弾性付勢されている。
An annular member 32 housed in the intermediate housing 12 is fixed to the upper surface of the partition wall 31 of the intermediate housing 12, and the annular member 32
On the outer peripheral side of the pressurizing air supply path connected to the pressurizing air supply port 3
33 is formed, a switching valve body 35 is mounted inside the recess 34 of the partition wall 31 and the annular member 32, and a lower piston portion 36 at the lower end of the switching valve body 35 is mounted in the recess 34 in a hermetically slidable manner. In addition, in the middle part of the switching valve body 35, an annular and flanged switching valve portion 37
Is formed, the upper piston portion 38 of the upper end portion of the switching valve body 35 is fitted in the cylinder hole 39 of the annular member 32 in a hermetically slidable manner,
An annular exhaust passage 41 is formed between the switching valve portion 37 and the lower piston 36 on the outer peripheral portion of the switching valve body 35 by the exhaust passage 40 and is connected to the exhaust chamber 5. An annular exhaust passage 41 is formed on the outer peripheral side of the switching valve portion 37 by the passage 42a. An annular passage 42 that communicates with the forward movement moving chamber 25 is formed. The annular member 32 is formed with a first valve seat 44 on which the annular first valve surface 43 of the upper surface of the switching valve portion 37 abuts, and the partition wall 31 is the annular second valve surface 45 of the lower surface of the switching valve portion 37. A second valve seat 46 against which the switching valve element 35 is formed between the first valve surface 43 and the upper piston portion 38.
An annular pressure-receiving chamber 48 connected to the pressurized air supply passage 33 is formed on the outer peripheral side by the passage 47, and the switching valve body 35 is elastically biased downward by a spring 49.

上記切換弁体35の第2弁面45が第2弁座46に当接した
ときには第1弁面43と第1弁座44間が開き、往動作動室
25は通路42a、環状通路42、受圧室48、通路47及び加圧
エア供給路33により加圧エア供給口3に連通される。従
って、このときの切換弁体35の位置を供給位置という。
When the second valve surface 45 of the switching valve element 35 comes into contact with the second valve seat 46, the space between the first valve surface 43 and the first valve seat 44 is opened, and the forward movement moving chamber
The passage 25a, the annular passage 42, the pressure receiving chamber 48, the passage 47 and the pressurized air supply passage 33 communicate with the pressurized air supply port 3. Therefore, the position of the switching valve element 35 at this time is referred to as a supply position.

上記切換弁体35の第1弁面43が第1弁座44に当接した
ときには第2弁面45と第2弁座46間が開き、往動作動室
25は通路42a、環状通路42、環状排気路41及び排気路40
により排気室5に連通される。従って、このときの切換
弁体35の位置を排出位置という。
When the first valve surface 43 of the switching valve body 35 contacts the first valve seat 44, the second valve surface 45 and the second valve seat 46 are opened, and the forward movement moving chamber
25 is a passage 42a, an annular passage 42, an annular exhaust passage 41 and an exhaust passage 40.
To communicate with the exhaust chamber 5. Therefore, the position of the switching valve body 35 at this time is referred to as a discharge position.

上記切換弁体35の下部ピストン35と凹部34とで弁作動
室50が形成され、弁作動室50に加圧エアが供給されない
ときには、切換弁体35は受圧室48の加圧エアとスプリン
グ49とで供給位置に付勢され、弁作動室50に後述のよう
に加圧エアが供給されたときには、切換弁体35は排出位
置へ切換えられる。
When the valve operating chamber 50 is formed by the lower piston 35 and the recess 34 of the switching valve body 35, and the pressurized air is not supplied to the valve operating chamber 50, the switching valve body 35 uses the pressurized air in the pressure receiving chamber 48 and the spring 49. When the valve working chamber 50 is urged to the supply position by and the pressurized air is supplied to the valve operating chamber 50 as described later, the switching valve body 35 is switched to the discharging position.

次に、制御弁機構60について説明する。 Next, the control valve mechanism 60 will be described.

上記ピストン22の中心部に固着されたロッド状の弁部
材61は、仕切壁31の摺動孔62と切換弁体35の挿通孔63と
を挿通して上方へ延び、弁部材61の途中部には小径部64
が形成され、摺動孔62の内周部には弁部材61の外周面に
気密状に圧接される上下1対のOリング65・66が装着さ
れ、挿通孔63の上端部の内周部には弁部材61の外周面に
気密状に圧接されるOリング67が装着され、仕切壁31に
は加圧エア供給口3に連なる加圧エア通路68がOリング
65・66の外側まで形成されている。
The rod-shaped valve member 61 fixed to the central portion of the piston 22 is inserted through the sliding hole 62 of the partition wall 31 and the insertion hole 63 of the switching valve body 35 to extend upward, and the middle portion of the valve member 61. Has a small diameter part 64
A pair of upper and lower O-rings 65 and 66, which are airtightly pressed against the outer peripheral surface of the valve member 61, are attached to the inner peripheral portion of the sliding hole 62, and the inner peripheral portion of the upper end of the insertion hole 63 is formed. An O-ring 67, which is pressed against the outer peripheral surface of the valve member 61 in an airtight manner, is attached to the partition wall 31, and a pressurized air passage 68 communicating with the pressurized air supply port 3 is attached to the partition wall 31.
It is formed up to the outside of 65 and 66.

上記ピストン22が第1図に図示の後退限位置にあると
きには、小径部64によりOリング67の封止が解除され、
弁作動室50は挿通孔63の弁部材61の外側の環状隙間69に
より排気室5に連通され、またピストン22が第2図に図
示の進出限位置にあるときにはOリング67により環状隙
間69が封止されるとともに小径部64よりOリング65の封
止が解除されて加圧エア通路68が弁作動室50に連通さ
れ、またピストン22が後退限位置と進出限位置の間にあ
るときには両Oリング65・67により弁作動室50は封止さ
れる。
When the piston 22 is in the retracted limit position shown in FIG. 1, the small-diameter portion 64 releases the O-ring 67,
The valve working chamber 50 is communicated with the exhaust chamber 5 by an annular gap 69 outside the valve member 61 in the insertion hole 63, and when the piston 22 is at the advance limit position shown in FIG. When the O-ring 65 is unsealed from the small diameter portion 64 and the pressurized air passage 68 is communicated with the valve working chamber 50, both are closed when the piston 22 is between the retreat limit position and the advance limit position. The valve working chamber 50 is sealed by the O-rings 65 and 67.

次に、開閉弁機構70と供給弁機構71について説明す
る。
Next, the opening / closing valve mechanism 70 and the supply valve mechanism 71 will be described.

この往復動アクチュエータACは、往動作動室25を加圧
エア供給口3に接続し復動作動室26を排気室5に接続す
ることにより、ピストン22と出力ロッド23を進出駆動さ
せ、また往動作動室25を排気室5に接続し復動作動室26
を加圧エア供給口3に接続することにより、ピストン22
と出力ロッド23を後退駆動させるように構成されてい
る。その為、ピストン22の進出作動時に開弁して復動作
動室26を排気室5に接続するとともにピストン22の後退
作動時に閉弁する開閉弁機構70と、開閉弁機構70の閉弁
時に復動作動室26を加圧エア供給口3に接続するととも
に開閉弁機構70の開弁時に閉弁駆動される供給弁機構71
が次のように設けられている。
This reciprocating actuator AC connects the forward motion chamber 25 to the pressurized air supply port 3 and the backward motion chamber 26 to the exhaust chamber 5 to drive the piston 22 and the output rod 23 to advance, and The moving chamber 25 is connected to the exhaust chamber 5, and the backward moving chamber 26
Is connected to the pressurized air supply port 3,
And the output rod 23 is driven backward. Therefore, the opening / closing valve mechanism 70 that opens when the piston 22 advances and connects the return motion chamber 26 to the exhaust chamber 5 and closes when the piston 22 moves backward, and the valve opening / closing mechanism 70 that closes when the opening / closing valve mechanism 70 closes. A supply valve mechanism 71 that connects the operation chamber 26 to the pressurized air supply port 3 and is driven to close when the opening / closing valve mechanism 70 opens.
Are provided as follows.

上部ハウジング11内には、環状シリンダ部材72が内嵌
装着され、ハウジング11と環状シリンダ部材72とからな
る環状シリンダ部73には、環状の可動弁体74が気密摺動
自在に装着され且つこの可動弁体74は圧縮コイルバネか
らなる第1スプリング75で上方に弾性付勢され、環状部
材32には環状の供給弁体76が気密摺動自在に外嵌され、
且つ圧縮コイルバネからなる第2スプリング77で上方に
弾性付勢されている。
An annular cylinder member 72 is fitted and mounted in the upper housing 11, and an annular movable valve element 74 is airtightly slidably mounted in an annular cylinder portion 73 composed of the housing 11 and the annular cylinder member 72. The movable valve body 74 is elastically urged upward by a first spring 75 formed of a compression coil spring, and an annular supply valve body 76 is airtightly slidably fitted onto the annular member 32.
Further, it is elastically biased upward by a second spring 77 which is a compression coil spring.

可動弁体74の下面には環状の第3弁面78が形成され、
供給弁体76の上端部には第3弁面78に当接する第3弁座
79が形成され、供給弁体76の中段部の上面には環状の第
4弁面80が形成され、上部ハウジング11の鍔部81の下面
には第4弁面80に当接する第4弁座82が形成され、鍔部
81の上面には可動弁体74の下限位置を規制する第1規制
部83が形成され、環状部材32の外周部には供給弁体76の
下限位置を規制する第2規制部84が形成されている。
An annular third valve surface 78 is formed on the lower surface of the movable valve body 74,
A third valve seat abutting against the third valve face 78 is provided on the upper end portion of the supply valve body 76.
79 is formed, an annular fourth valve surface 80 is formed on the upper surface of the middle portion of the supply valve body 76, and a fourth valve seat abutting the fourth valve surface 80 is formed on the lower surface of the flange portion 81 of the upper housing 11. 82 is formed, collar part
A first restricting portion 83 that restricts the lower limit position of the movable valve body 74 is formed on the upper surface of 81, and a second restricting portion 84 that restricts the lower limit position of the supply valve body 76 is formed on the outer peripheral portion of the annular member 32. ing.

上記環状シリンダ部材72と可動弁体74の上面の間には
環状受圧室85が形成され、上部ハウジング11の側部には
環状受圧室85に連なる通気孔86が形成され、通気孔86
は、第3図に図示のように弁作動室50に連なる加圧エア
通路50aに連結管87で接続されている。
An annular pressure receiving chamber 85 is formed between the annular cylinder member 72 and the upper surface of the movable valve body 74, and a vent hole 86 is formed in a side portion of the upper housing 11 so as to communicate with the annular pressure receiving chamber 85.
Is connected by a connecting pipe 87 to the pressurized air passage 50a connected to the valve working chamber 50 as shown in FIG.

ピストン22が後退限位置にあるときは、環状受圧室85
に弁作動室50から加圧エアが供給されないので、可動弁
体74と供給弁体76は第1図に図示の状態にあり、可動弁
体74は第1スプリング75により上方に駆動され第3弁面
78が第3弁座79から離れ、供給弁体76は第2スプリング
77により上方に駆動され第4弁面80と第4弁座82間は閉
じられ、復動作動室26は中間ハウジング12の下端の孔8
8、ボルト孔と共通の環状通路89、通路90及び排出口91
により排気室5に連通されている。
When the piston 22 is in the retracted limit position, the annular pressure receiving chamber 85
Since pressurized air is not supplied from the valve operating chamber 50 to the valve operating chamber 50, the movable valve element 74 and the supply valve element 76 are in the state shown in FIG. 1, and the movable valve element 74 is driven upward by the first spring 75. Valve face
78 is separated from the third valve seat 79, and the supply valve body 76 is the second spring.
It is driven upward by 77 and the space between the fourth valve surface 80 and the fourth valve seat 82 is closed, and the return motion chamber 26 is provided with the hole 8 at the lower end of the intermediate housing 12.
8, common annular passage 89, passage 90 and outlet 91 with bolt holes
Is connected to the exhaust chamber 5.

ピストン22が進出限位置にあるときは、可動弁体74と
供給弁体76は第2図に図示の状態にあり、可動弁体74は
弁作動室50から環状受圧室85に供給された加圧エアによ
り第1スプリング75と第2スプリング77のバネ力に抗し
て下方に駆動され第3弁面78と第3弁座79間は閉じ、供
給弁体76は可動弁体74により下方に押動されるので、第
4弁面80が第4弁座82間から離れ、復動作動室26は加圧
エア供給路33に接続される。
When the piston 22 is at the advance limit position, the movable valve body 74 and the supply valve body 76 are in the state shown in FIG. 2, and the movable valve body 74 is supplied from the valve working chamber 50 to the annular pressure receiving chamber 85. The compressed air is driven downward against the spring force of the first spring 75 and the second spring 77, the third valve surface 78 and the third valve seat 79 are closed, and the supply valve body 76 is moved downward by the movable valve body 74. Since it is pushed, the fourth valve face 80 separates from the space between the fourth valve seats 82, and the return motion chamber 26 is connected to the pressurized air supply passage 33.

尚、上記第1〜第4弁面43・45・78・80には耐摩耗性
に優れる合成樹脂部材が埋込まれている。
A synthetic resin member having excellent wear resistance is embedded in the first to fourth valve faces 43, 45, 78, 80.

次に、上記往復動アクチュエータACの作動について説
明する。
Next, the operation of the reciprocating actuator AC will be described.

加圧エア供給口3に加圧エアが供給されている状態
で、ピストン22が後退限位置にあるときには制御弁機構
60によって弁作動室50が排気室5に接続されているの
で、切換弁体35は受圧室48の加圧エアとスプリング49の
付勢力により供給位置に保持され、加圧エアが加圧エア
供給口3から往動作動室25へ供給され、ピストン22は往
動作動室25内の加圧エアによって進出駆動される。ピス
トン22が後退限位置から進出限位置に達するまでは制御
弁機構60によって弁作動室50がエア圧排出状態で封止さ
れるので切換弁体35は供給位置に保持される。従って、
上記のように往動作動室25に加圧エアの供給が継続さ
れ、ピストン22は進出駆動される。この間通気孔86、連
結管87及び加圧エア通路50aを介して弁作動室50に連通
する環状受圧室85には加圧エアが供給されないので、可
動弁体74は第1スプリング75により上方に駆動され第3
弁面78が第3弁座79から離れ、復動作動室26は排気口91
に連通した状態、つまり大気圧に保持される。
When the piston 22 is at the backward limit position while the pressurized air is being supplied to the pressurized air supply port 3, the control valve mechanism
Since the valve working chamber 50 is connected to the exhaust chamber 5 by 60, the switching valve body 35 is held at the supply position by the pressurized air in the pressure receiving chamber 48 and the urging force of the spring 49, and the pressurized air is supplied by the pressurized air. The piston 22 is supplied from the port 3 to the forward movement moving chamber 25, and the piston 22 is driven to advance by the pressurized air in the forward movement moving chamber 25. The control valve mechanism 60 seals the valve operating chamber 50 in the air pressure exhausted state until the piston 22 reaches the retracted limit position and the advanced limit position, so that the switching valve body 35 is held at the supply position. Therefore,
As described above, the supply of the pressurized air to the outward motion chamber 25 is continued, and the piston 22 is driven to advance. During this time, the pressurized air is not supplied to the annular pressure receiving chamber 85 communicating with the valve working chamber 50 through the ventilation hole 86, the connecting pipe 87 and the pressurized air passage 50a, so that the movable valve body 74 is moved upward by the first spring 75. Driven third
The valve face 78 is separated from the third valve seat 79, and the return motion chamber 26 is exhausted to the exhaust port 91.
The state of being communicated with, that is, maintained at atmospheric pressure.

その後、ピストン22が進出位置に達すると、制御弁機
構60により弁作動室50が加圧エア供給口3に接続され、
切換弁体35は弁作動室5内の加圧エアにより受圧室48の
加圧エアとスプリング49の付勢力に抗して排出位置に切
換えられるので、往動作動室25は排気室5に接続され
る。一方、弁作動室50が加圧エア供給口3に接続される
と、環状受圧室85に加圧エアが供給され、加圧エアによ
り下方に駆動される可動弁体74が第1スプリング75・第
2スプリング77のバネ力に抗して供給弁体76を下方に駆
動するので第4弁座82から第4弁面80が離れ、復動作動
室26は加圧エア供給口3に接続されて加圧エアが供給さ
れる。復動作動室26内の加圧エアによりピストン22は後
退駆動を開始する。ピストン22が進出限位置から後退限
位置に達するまでは弁作動室50が加圧エア充填状態で封
止されるので切換弁体35は排出位置に保持される。ピス
トン22が後退限位置に達するまでは環状受圧室85には加
圧エアが充填され、第4弁面80が第4弁座82から離れた
状態を保持するので、復動作動室26へ加圧エアが継続し
て供給され、ピストン22の後退駆動が続けられる。こう
して、ピストン22が後退限位置に達すると、制御弁機構
60により弁作動室50が排気室5に接続され、切換弁体35
が供給位置に切換えられ、以下前記同様に繰返し、ピス
トン22は往復駆動されることになる。
After that, when the piston 22 reaches the advanced position, the control valve mechanism 60 connects the valve working chamber 50 to the pressurized air supply port 3,
Since the switching valve body 35 is switched to the discharge position by the pressurized air in the valve working chamber 5 against the pressurized air in the pressure receiving chamber 48 and the urging force of the spring 49, the forward operation moving chamber 25 is connected to the exhaust chamber 5. To be done. On the other hand, when the valve working chamber 50 is connected to the pressurized air supply port 3, pressurized air is supplied to the annular pressure receiving chamber 85, and the movable valve element 74 driven downward by the pressurized air moves the first spring 75. Since the supply valve body 76 is driven downward against the spring force of the second spring 77, the fourth valve surface 80 is separated from the fourth valve seat 82, and the return motion chamber 26 is connected to the pressurized air supply port 3. Pressurized air is supplied. The piston 22 starts the backward drive by the pressurized air in the backward movement moving chamber 26. Since the valve working chamber 50 is sealed in the pressurized air filled state until the piston 22 reaches the retracted limit position from the advanced limit position, the switching valve body 35 is held at the discharge position. Until the piston 22 reaches the backward limit position, the annular pressure receiving chamber 85 is filled with the pressurized air, and the fourth valve face 80 is kept away from the fourth valve seat 82. The compressed air is continuously supplied, and the backward drive of the piston 22 is continued. Thus, when the piston 22 reaches the backward limit position, the control valve mechanism
The valve working chamber 50 is connected to the exhaust chamber 5 by 60, and the switching valve body 35
Is switched to the supply position, and the above is repeated in the same manner as described above, so that the piston 22 is reciprocally driven.

以上の説明から明らかなように、往復動アクチュエー
タACにおいて、ピストン22の往復作動に同期して切換弁
機構30と制御弁機構60によって、往動作動室25へ加圧エ
アが供給・排出され、また開閉弁機構70と供給弁機構71
によって復動作作動室26はピストン22の進出駆動時には
排気室5に接続され、またピストン22の後退駆動時に加
圧エア供給通路33に接続されるので、ピストン22は往復
動を連続的に繰返し、出力ロッド23の先端のプランジャ
24はプランジャ孔15内で往復動を連続的に繰返すことに
なる。従って、油圧ポンプ本体部PCにおいては、油の吸
入と圧縮・吐出とを連続的に繰返すことになる。
As is clear from the above description, in the reciprocating actuator AC, the switching valve mechanism 30 and the control valve mechanism 60 supply / exhaust the pressurized air to / from the forward moving chamber 25 in synchronization with the reciprocating operation of the piston 22. The on-off valve mechanism 70 and the supply valve mechanism 71
Due to this, the backward movement working chamber 26 is connected to the exhaust chamber 5 when the piston 22 is driven forward, and is connected to the pressurized air supply passage 33 when the piston 22 is driven backward, so that the piston 22 repeats reciprocating motion continuously. Plunger at the tip of output rod 23
24 repeats reciprocating motion continuously within the plunger hole 15. Therefore, in the hydraulic pump main body PC, oil suction and compression / discharge are continuously repeated.

このように、本実施例の油圧ポンプHPにおいては、加
圧エアによりピストン22を後退駆動するように構成され
ているので、ピストン22を後退駆動させるための復帰バ
ネを省略することが可能となり、往復動サイクルを高速
化して往復動アクチュエータACの出力アップを図ること
が出来、ピストン22の往復動のストロークを必要に応じ
て自由に大きく或いは小さく設計することが出来、復動
作動室26はピストン22の往復動ストロークに必要なだけ
の小型に形成できるため、油圧ポンプHP自体の小型化を
図ることが出来る。しかも、加圧供給口3に低圧の加圧
エアを供給して駆動することも可能となる。
As described above, in the hydraulic pump HP of the present embodiment, since the piston 22 is configured to be driven backward by the pressurized air, it is possible to omit the return spring for driving the piston 22 backward. The reciprocating cycle can be speeded up to increase the output of the reciprocating actuator AC, and the reciprocating stroke of the piston 22 can be freely designed to be large or small as necessary. Since the size can be made as small as necessary for the reciprocating stroke of 22, the hydraulic pump HP itself can be downsized. Moreover, it is possible to drive by supplying low-pressure pressurized air to the pressurized supply port 3.

次に、前記実施例の変形例について、第3図〜第6図
に基いて説明する。尚、前記実施例と同一の機構には同
一符号を付してその説明を省略する。
Next, a modified example of the above embodiment will be described with reference to FIGS. The same mechanisms as those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.

<変形例1> 前記実施例の開閉弁機構70と供給弁機構71に代えて、
第4図に図示のようにスプール弁機構100を下部ハウジ
ング13に設け、復動作動室26を加圧エア供給口3と排気
口5とに択一的に切換えて接続するようにしてもよい。
<Modification 1> Instead of the opening / closing valve mechanism 70 and the supply valve mechanism 71 of the above-described embodiment,
As shown in FIG. 4, the spool valve mechanism 100 may be provided in the lower housing 13, and the return motion chamber 26 may be selectively switched between the pressurized air supply port 3 and the exhaust port 5 for connection. .

上記スプール弁機構100について説明すると、下部ハ
ウジング13の下端面から弁室101が凹説され、弁室101に
はスプール弁体102が摺動自在に装着され、弁室101の上
端側には復動作動室26に連なる摺動孔103が形成され、
弁室101の下端側にはネジ部材104が下部ハウジング13に
螺着して設けられ、弁室101の上部にはスプール弁体102
を下方に付勢する圧縮コイルバネからなるスプリング10
5が内装され、弁室101の下部は受圧室106に形成されて
いる。ハウジング10内には弁室101を加圧エア供給通路3
3に接続する供給通路107及び排気室5に連通する排気路
108が形成され、下部ハウジング13の下端面からは受圧
室106を連結管を介して弁作動室50に連通するエア通路1
09が形成されている。
Explaining the spool valve mechanism 100, the valve chamber 101 is recessed from the lower end surface of the lower housing 13, a spool valve body 102 is slidably mounted in the valve chamber 101, and a return valve is provided on the upper end side of the valve chamber 101. A sliding hole 103 that is continuous with the motion chamber 26 is formed,
A screw member 104 is provided on the lower end side of the valve chamber 101 by being screwed to the lower housing 13, and a spool valve body 102 is provided on the upper part of the valve chamber 101.
10 consisting of a compression coil spring that urges the
5, the lower part of the valve chamber 101 is formed in the pressure receiving chamber 106. Inside the housing 10, the valve chamber 101 is provided with a pressurized air supply passage 3
Exhaust passage communicating with the supply passage 107 connected to 3 and the exhaust chamber 5.
108 is formed, and the air passage 1 that communicates the pressure receiving chamber 106 from the lower end surface of the lower housing 13 with the valve working chamber 50 via the connecting pipe.
09 is formed.

上記スプール弁機構100において、弁作動室50に加圧
エアが充填された状態では、受圧室106に加圧エアが供
給され、第4図に図示のようにスプール弁体102がスプ
リング105のバネ力に抗して上方に駆動され、供給路107
がスプール弁体102に形成された通路孔110に接続され、
排気路108はスプール弁体102の下部ランドで封止されて
復動作動室26に加圧エアが供給される。弁作動室50が排
気室5に接続された状態では、スプール弁体102はスプ
リング105により下方に駆動され、供給路107はスプール
弁体102の上部ランドで封止され、排気路108はスプール
弁体102の通気孔110に接続されて、復動作動室26は排気
室5に連通する。
In the spool valve mechanism 100, when the valve working chamber 50 is filled with the pressurized air, the pressure receiving chamber 106 is supplied with the pressurized air, and the spool valve body 102 is the spring of the spring 105 as shown in FIG. Driven upward against the force, the supply path 107
Is connected to a passage hole 110 formed in the spool valve body 102,
The exhaust passage 108 is sealed by the lower land of the spool valve body 102, and pressurized air is supplied to the backward movement moving chamber 26. When the valve working chamber 50 is connected to the exhaust chamber 5, the spool valve body 102 is driven downward by the spring 105, the supply passage 107 is sealed by the upper land of the spool valve body 102, and the exhaust passage 108 is connected to the spool valve. The backward movement chamber 26 is connected to the ventilation hole 110 of the body 102 and communicates with the exhaust chamber 5.

このように下部ハウジング13を有効に利用してスプー
ル弁機構100を設けることにより、前記開閉弁機構70・
供給弁機構71を構成する比較的大型な部材である環状シ
リンダ部材72・可動弁体74・第1スプリング75・供給弁
体76・第2スプリング77を省略することが出来、油圧ポ
ンプHP自体を更に小型・軽量にすることが可能になる。
As described above, by providing the spool valve mechanism 100 by effectively utilizing the lower housing 13, the opening / closing valve mechanism 70.
It is possible to omit the annular cylinder member 72, the movable valve body 74, the first spring 75, the supply valve body 76, and the second spring 77, which are relatively large members that configure the supply valve mechanism 71, and to replace the hydraulic pump HP itself. Further, it becomes possible to make it smaller and lighter.

尚、上記スプール弁機構100を下部ハウジング13に設
けずにユニット化して油圧ポンプHPのハウジング10に固
定してもよい。
The spool valve mechanism 100 may be unitized and fixed to the housing 10 of the hydraulic pump HP without being provided in the lower housing 13.

<変形例2> 前記実施例の制御弁機構60に代えて、第5図に図示の
ような制御弁機構60Aを設ける。
<Modification 2> Instead of the control valve mechanism 60 of the above embodiment, a control valve mechanism 60A as shown in FIG. 5 is provided.

切換弁体35Aには筒部120が設けられ、筒部120には弁
孔121を開閉する第2弁部材122が装着され、マフラ4に
は圧縮コイルバネからなる閉弁バネ123が取付けられ、
第2弁部材122は閉弁バネ123により下方に弾性付勢さ
れ、第2弁部材122の下方にあって、ピストン22の中心
部に固着されたロッド状の弁部材61Aは、前記実施例の
弁部材61の小径部64の下端よりも上方の部分を取り除い
たものである。
The switching valve body 35A is provided with a tubular portion 120, the tubular portion 120 is provided with a second valve member 122 for opening and closing the valve hole 121, and the muffler 4 is provided with a valve closing spring 123 made of a compression coil spring.
The second valve member 122 is elastically biased downward by the valve closing spring 123, and the rod-shaped valve member 61A, which is below the second valve member 122 and fixed to the central portion of the piston 22, is the same as in the above embodiment. The portion above the lower end of the small diameter portion 64 of the valve member 61 is removed.

尚、制御弁機構60Aのその他の部分は前記実施例と同
様なので説明を省略する。
The other parts of the control valve mechanism 60A are the same as those in the above-mentioned embodiment, and the description thereof will be omitted.

上記制御弁機構60Aにおいて、ピストン22が図示のよ
うに後退限位置にあるときは、弁部材61Aが閉弁バネ123
のバネ力に抗して第2弁部材122を突上げ弁孔121を開孔
するので、弁作動室50は環状隙間69と弁孔121と筒部120
の通路を介して排気室5に接続されるので、切換弁体35
Aは供給位置に保持され、またピストン22が進出限位置
にあるときには、第2弁部材122は閉弁バネ123により下
降して弁孔121を閉じるとともに弁部材61Aの上端部がO
リング66の下方まで下降するので、加圧エア通路68が弁
作動室50に連通され、弁作動室50に加圧エアが充填され
て、切換弁体35Aは排出位置に切換られる。その他の作
動は前記実施例と同様なので説明を省略する。
In the control valve mechanism 60A, when the piston 22 is at the retracted limit position as shown, the valve member 61A causes the valve closing spring 123
Since the second valve member 122 is pushed up and the valve hole 121 is opened against the spring force of the valve working chamber 50, the valve working chamber 50 has the annular gap 69, the valve hole 121, and the tubular portion 120.
Since it is connected to the exhaust chamber 5 via the passage of
A is held at the supply position, and when the piston 22 is at the advance limit position, the second valve member 122 is lowered by the valve closing spring 123 to close the valve hole 121 and the upper end portion of the valve member 61A becomes O.
As it descends below the ring 66, the pressurized air passage 68 communicates with the valve operating chamber 50, the valve operating chamber 50 is filled with pressurized air, and the switching valve body 35A is switched to the discharge position. The other operations are the same as those in the above-mentioned embodiment, so that the description thereof will be omitted.

<変形例3> 前記実施例の切換弁体35の切換弁部37に代えて、第4
図に図示のように切換弁機構30Bにおいて環状のシール
部材130を有する切換弁部37Bを切換弁体35Bに設ける。
第4図に図示のように切換弁体35Bが供給位置にあると
きは、シール剤130が第2弁座46Bの内周面に当接し、往
動作動室25は通路42a、環状通路42、環状隙間131、受圧
室48、通路47及び加圧エア供給路33により加圧エア供給
口3に連通される。
<Modification 3> In place of the switching valve portion 37 of the switching valve body 35 of the above embodiment, a fourth
As shown in the figure, in the switching valve mechanism 30B, a switching valve portion 37B having an annular seal member 130 is provided in the switching valve body 35B.
As shown in FIG. 4, when the switching valve body 35B is in the supply position, the sealant 130 abuts on the inner peripheral surface of the second valve seat 46B, and the forward movement moving chamber 25 receives the passage 42a, the annular passage 42, The annular air gap 131, the pressure receiving chamber 48, the passage 47, and the pressurized air supply passage 33 communicate with the pressurized air supply port 3.

一方、切換弁体35Bが排出位置に切換えられると、シ
ール部材130が第1弁座44Bの内周面に当接するととも
に、環状隙間131は環状排気路41に連通した状態にな
り、往動作動室25は通路42a、環状通路42、環状隙間13
1、環状排気路41及び排気路40により排気室5に連通さ
れる。その他の作動は前記実施例と同様なのでその説明
を省略する。
On the other hand, when the switching valve body 35B is switched to the discharge position, the seal member 130 abuts on the inner peripheral surface of the first valve seat 44B, and the annular gap 131 is in communication with the annular exhaust passage 41, and the forward movement is performed. The chamber 25 includes the passage 42a, the annular passage 42, and the annular gap 13
1. The exhaust chamber 5 is communicated with the annular exhaust passage 41 and the exhaust passage 40. The other operations are the same as those in the above-mentioned embodiment, and the description thereof will be omitted.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第5図は本発明の実施例を示すもので、第1図
はピストンが後退限位置にあるときの油圧ポンプの縦断
面図、第2図はピストンが進出限位置にあるときの油圧
ポンプの縦断面図、第3図は弁作動室と受圧室とを接続
する連結管等の正面図、第4図〜第6図は夫々本実施例
の変形例を示すもので、第4図はスプール弁機構の断面
図、第5図は制御弁機構の変形例を示す油圧ポンプの部
分断面図、第6図は切換弁部の変形例を示す油圧ポンプ
の部分断面図。 AC……往復動アクチュエータ、3……加圧エア供給口、
4……マフラ、5……排気室、10……ハウジング、20…
…複動エアシリンダ、22……ピストン、23……出力ロッ
ド、25……往動作動室、26……復動作動室、30……切換
弁機構、35・35B……切換弁体、49……スプリング、50
……弁作動室、60・60A……制御弁機構、61……弁部
材、70……開閉弁機構、71……供給弁機構、74……可動
弁体、75……第1スプリング、76……供給弁体、77……
第2スプリング、85……環状受圧室、100……スプール
弁機構。
1 to 5 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of the hydraulic pump when the piston is at the backward limit position, and FIG. 2 is when the piston is at the forward limit position. FIG. 3 is a longitudinal sectional view of the hydraulic pump of FIG. 3, FIG. 3 is a front view of a connecting pipe or the like that connects the valve working chamber and the pressure receiving chamber, and FIGS. 4 to 6 are modifications of this embodiment. 4 is a sectional view of a spool valve mechanism, FIG. 5 is a partial sectional view of a hydraulic pump showing a modified example of a control valve mechanism, and FIG. 6 is a partial sectional view of a hydraulic pump showing a modified example of a switching valve portion. AC ... Reciprocating actuator, 3 ... Pressurized air supply port,
4 ... muffler, 5 ... exhaust chamber, 10 ... housing, 20 ...
… Double acting air cylinder, 22 …… Piston, 23 …… Output rod, 25 …… Forward moving chamber, 26 …… Reverse operating chamber, 30 …… Switching valve mechanism, 35 / 35B …… Switching valve body, 49 ...... Spring, 50
...... Valve working chamber, 60 / 60A ...... Control valve mechanism, 61 ...... Valve member, 70 ...... Open / close valve mechanism, 71 ...... Supply valve mechanism, 74 ...... Movable valve body, 75 ...... First spring, 76 ...... Supply valve body, 77 ……
2nd spring, 85 ... Annular pressure receiving chamber, 100 ... Spool valve mechanism.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ハウジング内にピストンとこのピストンに
固着された出力ロッドとを有する複動流体圧シリンダを
設け、この流体圧シリンダにピストンを流体圧で進出駆
動する往動作動室とピストンを流体圧で後退駆動する復
動作動室を設け、 上記往動作動室を流体圧供給口に接続する供給位置と排
出口に接続する排出位置とに択一的に切換えられる切換
弁体と、この切換弁体を供給位置に付勢する付勢手段
と、その付勢力に抗して切換弁体を流体圧で排出位置に
切換える弁作動室とを備えた切換弁機構を設け、 上記ピストンから延び切換弁体に挿通された弁部材を介
して、ピストンが後退限位置にあるときは弁作動室を排
出口に接続し且つピストンが後退限位置と進出限位置の
間にあるときは弁作動室を封止し且つピストンが進出限
位置にあるときは弁作動室を流体圧供給口に接続する制
御弁機構を設け、 上記制御弁機構の弁作動室に連通した受圧室の流体圧で
閉弁付勢され且つスプリングで開弁付勢された可動弁体
を備え、上記ピストンの進出作動時にスプリング力で開
弁して復動作動室を排出口に接続するとともにピストン
の後退作動時に閉弁する開閉弁機構を設け、 上記開閉弁機構の閉弁時に可動弁体で開弁駆動されて復
動作動室を流体圧供給口に接続し且つ開閉弁機構の開弁
時にスプリングで閉弁駆動される供給弁機構を設けたこ
とを特徴とする流体圧駆動連続作動型往復動アクチュエ
ータ。
1. A double-acting fluid pressure cylinder having a piston and an output rod fixed to the piston is provided in a housing, and a forward-moving moving chamber for advancing and driving the piston by fluid pressure is provided in the fluid pressure cylinder. A return motion chamber that is driven backward by pressure is provided, and a switching valve body that can be selectively switched between a supply position that connects the forward motion chamber to the fluid pressure supply port and a discharge position that connects to the discharge port, and this switching valve body. A switching valve mechanism including a biasing means for biasing the valve body to the supply position and a valve working chamber for switching the switching valve body to the discharge position by fluid pressure against the biasing force is provided, and the switching valve mechanism extends from the piston and switches. The valve working chamber is connected to the discharge port when the piston is at the backward limit position through the valve member inserted through the valve body, and the valve working chamber is opened when the piston is between the backward limit position and the forward limit position. Sealed and piston is in the advanced position Control valve mechanism that connects the valve working chamber to the fluid pressure supply port, the valve is actuated by the fluid pressure of the pressure receiving chamber communicating with the valve actuating chamber of the control valve mechanism to be closed and opened by a spring. An opening / closing valve mechanism for opening the valve by spring force when the piston moves forward to connect the return motion chamber to the discharge port and closing the valve when the piston moves backward. A supply valve mechanism is provided, which is driven to open by a movable valve element when the valve is closed, connects the return motion chamber to a fluid pressure supply port, and is driven to be closed by a spring when the opening / closing valve mechanism is opened. Fluid pressure continuously operated reciprocating actuator.
JP1084330A 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator Expired - Fee Related JP2676111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084330A JP2676111B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084330A JP2676111B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Publications (2)

Publication Number Publication Date
JPH02266104A JPH02266104A (en) 1990-10-30
JP2676111B2 true JP2676111B2 (en) 1997-11-12

Family

ID=13827505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084330A Expired - Fee Related JP2676111B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Country Status (1)

Country Link
JP (1) JP2676111B2 (en)

Also Published As

Publication number Publication date
JPH02266104A (en) 1990-10-30

Similar Documents

Publication Publication Date Title
CA2159798C (en) Mechanical shift, pneumatic assist pilot valve
JPH0649276B2 (en) Pneumatic fastening device
KR101655420B1 (en) Hydraulic Power Cylinder with Booser Pump Equipment
KR20000071764A (en) Servo driving pilot type solenoid valve
US4971531A (en) Pump arrangement driven by compressed-air
CN112567140B (en) Supercharging device
JPH0570722B2 (en)
JP2852953B2 (en) Fluid pressure piston mover
JP2676111B2 (en) Fluid pressure continuously operated reciprocating actuator
US4150603A (en) Fluid operable hammer
JPH0749041Y2 (en) Fluid pressure continuously operated reciprocating actuator
EP0428406A1 (en) Reciprocating actuator
US4261249A (en) Hammer
JP2676110B2 (en) Fluid pressure continuously operated reciprocating actuator
JP2955220B2 (en) In-line pressure booster
KR20000064677A (en) Control valve for speed control of the first mover in the hydraulic system
JP3342929B2 (en) High pressure fluid generator
RU2046223C1 (en) Fluid-pressure intensifier
JP3840865B2 (en) Driving machine
JP3898695B2 (en) High pressure fluid generator
JPH11247806A (en) Hydraulic cylinder
JP2526615Y2 (en) Air driven pump
JPS5939202Y2 (en) Air-hydraulic conversion intensifier
JP2001248545A (en) Pneumatic driving hydraulic pump
JPH0417841Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees