[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2673330B2 - Method for forming composite protective coating on ceramic compact - Google Patents

Method for forming composite protective coating on ceramic compact

Info

Publication number
JP2673330B2
JP2673330B2 JP4296158A JP29615892A JP2673330B2 JP 2673330 B2 JP2673330 B2 JP 2673330B2 JP 4296158 A JP4296158 A JP 4296158A JP 29615892 A JP29615892 A JP 29615892A JP 2673330 B2 JP2673330 B2 JP 2673330B2
Authority
JP
Japan
Prior art keywords
zirconia
coating
molded body
composite protective
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4296158A
Other languages
Japanese (ja)
Other versions
JPH06144973A (en
Inventor
辻彦 安田
隆一 升田
芳郎 林
誠 森
義夫 西原
Original Assignee
中部助川興業株式会社
トヨタ自動車株式会社
昭和電工株式会社
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中部助川興業株式会社, トヨタ自動車株式会社, 昭和電工株式会社, 宇部興産株式会社 filed Critical 中部助川興業株式会社
Priority to JP4296158A priority Critical patent/JP2673330B2/en
Publication of JPH06144973A publication Critical patent/JPH06144973A/en
Application granted granted Critical
Publication of JP2673330B2 publication Critical patent/JP2673330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大気雰囲気下で金属溶
湯との接触部位を有する部材の表面に形成する、セラミ
ック成形体の複合保護皮膜形成方法に関するものであ
る。上記部材としては、鋳造装置の溶湯取扱装置に付随
する、ヒータチューブ、温度計保護管、炉壁、湯道、湯
口入れ子、等が例示できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a composite protective film on a ceramic molded body, which is formed on the surface of a member having a contact portion with a molten metal in the atmosphere. Examples of the member include a heater tube, a thermometer protection tube, a furnace wall, a runner, a spout insert, etc. which accompany a molten metal handling device of a casting device.

【0002】[0002]

【従来の技術】ここでは、アルミニウム(合金含む)の
溶湯取扱装置に付随する部材を、主として例に採り説明
するが、亜鉛やマグネシウム等の溶湯取扱装置に付随す
る部材の場合も同様である。
2. Description of the Related Art Here, a member associated with an apparatus for handling molten metal of aluminum (including alloy) will be mainly described as an example, but the same applies to a member associated with an apparatus for handling molten metal such as zinc or magnesium.

【0003】金属溶湯取扱装置の付随部材の要求品質と
しては、金属溶湯の融点以上の温度に耐えること、金属
溶湯に侵蝕されないこと、高温の大気雰囲気下で腐食し
ないこと等が挙げられる。
The required quality of the associated members of the apparatus for handling molten metal is that it can withstand a temperature above the melting point of the molten metal, that it is not corroded by the molten metal, and that it does not corrode in a high temperature atmosphere.

【0004】従来、上記部材の成形材料としては、鋳鉄
が主であったが、鋳鉄では黒鉛の成長に伴う変形が起こ
るため、寿命が短いという欠点があった。そこで鋳鉄に
代わる材料としてアルミナ、マグネシア、炭化ケイ素等
のセラミック材料が、特に、熱衝撃性に優れた窒化ケイ
素が、使用されるようになってきている(特開平2−3
8391号公報参照)。
Conventionally, cast iron has been mainly used as a molding material for the above-mentioned members. However, cast iron has a drawback that its life is short because it is deformed by the growth of graphite. Therefore, ceramic materials such as alumina, magnesia, and silicon carbide have come to be used as substitutes for cast iron, and particularly silicon nitride having excellent thermal shock resistance has been used (Japanese Patent Laid-Open No. 2-3).
8391 gazette).

【0005】[0005]

【発明が解決しようとする課題】しかし、アルミニウム
溶湯には、鋳造性確保等の見地から、通常、フラックス
(アルカリ・アルカリ土類金属塩等)を添加する。この
ため、当該フラックス成分が、窒化ケイ素と反応し、窒
化ケイ素を溶損させる結果となる。
However, a flux (alkali / alkaline earth metal salt, etc.) is usually added to the molten aluminum in order to ensure castability. Therefore, the flux component reacts with silicon nitride, resulting in melting and damage of silicon nitride.

【0006】またもう一つの問題はフラックスを含んだ
ノロが(成分例:Al23 86.5wt%、MgO: 2.9wt
%、Si O2 : 2.8wt%、Na2 O: 5.1wt%、Na
F: 1.2wt%)固着し、容易に剥離できなくなる。無理
に剥離しようとすると窒化ケイ素母材を破壊する結果を
招く。
[0006] Another problem is that the flux-containing slag (component example: Al 2 O 3 86.5 wt%, MgO: 2.9 wt%
%, Si O 2: 2.8wt% , Na 2 O: 5.1wt%, Na
(F: 1.2 wt%) adheres and cannot be easily peeled off. Forcibly peeling results in the destruction of the silicon nitride base material.

【0007】フラックス成分と反応せずフラックスが固
着しない材料としてジルコニアがあるが、ジルコニアは
熱衝撃に弱く、部材として単独で使用するには限界があ
る。
Zirconia is a material that does not react with the flux component and does not adhere to the flux, but zirconia is vulnerable to thermal shock, and there is a limit when used alone as a member.

【0008】そこで、熱衝撃に強い窒化ケイ素とフラッ
クスアタックに強いジルコニアの両方の長所を生かすた
めに、窒化ケイ素表面にジルコニアの溶射皮膜を備えた
材料が考えられる。
Therefore, in order to utilize the advantages of both silicon nitride, which is resistant to thermal shock, and zirconia, which is resistant to flux attack, a material having a sprayed coating of zirconia on the surface of silicon nitride is considered.

【0009】ところが、窒化ケイ素は一般の金属やセラ
ミックと馴じみが悪く、単純に溶射したのでは窒化ケイ
素表面にジルコニア系溶射皮膜を備えた実用的な材料を
得ることはできない。
However, silicon nitride is not well compatible with ordinary metals and ceramics, and if it is simply sprayed, a practical material having a zirconia-based sprayed coating on the surface of silicon nitride cannot be obtained.

【0010】そして、アルミニウム溶湯と接触する部材
は、ジルコニア皮膜が窒化ケイ素母材に強固に密着す
ること、急激な熱衝撃に対しても剥離しないものであ
ること、溶射皮膜がなるべく緻密であり、アルミニウ
ム合金の侵入を防ぐと共にアルミニウム合金によって侵
蝕されないこと等の性質を具備したものが要求される。
The member that comes into contact with the molten aluminum has the zirconia coating firmly adhered to the silicon nitride base material, does not peel off even when subjected to a rapid thermal shock, and the sprayed coating is as dense as possible. It is required to have a property of preventing the invasion of the aluminum alloy and not being corroded by the aluminum alloy.

【0011】本発明は、上記にかんがみて、窒化ケイ素
質成形体(セラミック成形体)の表面に、上記性質を具
備する複合保護皮膜を形成する方法を提供することにあ
る。
In view of the above, the present invention provides a method for forming a composite protective film having the above-mentioned properties on the surface of a silicon nitride molded body (ceramic molded body).

【0012】[0012]

【課題を解決するための手段】本発明では前記困難を解
決し、熱衝撃に強く耐フラックスアタック性に優れたセ
ラミック成形体を得るため、先ず窒化ケイ素成形体表面
に該窒化ケイ素と濡れ性の良好な高融点遷移金属を溶射
し、ガラス質物質を含浸させて焼成した後、耐高温酸化
合金からなる中間皮膜を溶射し、最後に安定化ジルコニ
アを溶射し、さらに該ジルコニア皮膜に有機ケイ素ポリ
マーを含浸させて焼成する、セラミック成形体の複合保
護皮膜の形成方法に想到した。
In the present invention, in order to solve the above-mentioned difficulties and to obtain a ceramic molded body which is resistant to thermal shock and excellent in flux attack resistance, first, the surface of the silicon nitride molded body is wetted with the wettability with the silicon nitride molded body. After spraying a good high-melting-point transition metal, impregnating it with a glassy substance and firing it, spraying an intermediate coating consisting of a high temperature oxidation resistant alloy, finally spraying stabilized zirconia, and further coating the zirconia coating with an organosilicon polymer. A method of forming a composite protective film of a ceramic molded body, which is impregnated with and fired, was conceived.

【0013】以下、上記各手段の構成について詳細に説
明をする。図1は、本発明の複合保護皮膜の形成方法を
適用した溶湯用温度計保護管の構成を説明する図であ
る。 (1) 上記高融点金属の溶射は、火炎溶射でもよいが、通
常、溶射材料の変質の少ないプラズマ溶射により行な
う。当該高融点金属溶射皮膜3の厚さは10〜70μm
程度で良い。10μm未満では、窒化ケイ素母材(セラ
ミック成形体)1と上層の耐高温酸化合金溶射皮膜5と
の密着性に問題が発生し易くなる。また、70μmを越
えると、加熱冷却に伴って発生する熱応力のため被膜が
剥離し易くなる。
The configuration of each of the above means will be described in detail below. FIG. 1 is a diagram for explaining the structure of a molten metal thermometer protective tube to which the method for forming a composite protective film of the present invention is applied. (1) The flame-spraying of the refractory metal may be flame spraying, but it is usually performed by plasma spraying which causes less deterioration of the sprayed material. The high melting point metal spray coating 3 has a thickness of 10 to 70 μm.
The degree is good. If the thickness is less than 10 μm, a problem tends to occur in the adhesion between the silicon nitride base material (ceramic molded body) 1 and the upper layer high temperature oxidation resistant alloy sprayed coating 5. On the other hand, when the thickness exceeds 70 μm, the coating film is likely to peel off due to the thermal stress generated by heating and cooling.

【0014】上記窒化ケイ素と濡れ性の良好な高融点遷
移金属としては、窒化化ケイ素と比較的拡散反応を起し
易いMo,Nb,W等を挙げることができる。
Examples of the high melting point transition metal having good wettability with silicon nitride include Mo, Nb, and W, which relatively easily cause a diffusion reaction with silicon nitride.

【0015】(2) 上記高融点金属溶射皮膜3に対するガ
ラス質物質の含浸・焼成処理は、ガラス質物質を溶媒中
に分散させたものをスプレー・浸漬・はけ塗り等により
塗布した後、乾燥・予熱してから850℃程度まで加熱
して焼成する。このガラス質の含浸・焼成は、上記高融
点金属溶射皮膜3が、溶湯熱により窒化ケイ素母材中に
拡散反応して窒化物を形成するまでの、初期結合力を確
保するために行なうものである。上記ガラス質の塗布量
は、固形分換算で10〜30g/m2 とする。
(2) In the impregnation and firing treatment of the above-mentioned high melting point metal sprayed coating 3 with a glassy substance, a glassy substance dispersed in a solvent is applied by spraying, dipping, brush coating, etc., and then dried. -After preheating, heat to about 850 ° C and fire. This glassy impregnation / firing is carried out in order to secure an initial bonding force until the refractory metal spray coating 3 diffuses into the silicon nitride base material by the heat of the molten metal to form a nitride. is there. The coating amount of the glassy material is 10 to 30 g / m 2 in terms of solid content.

【0016】上記、ガラス物質としては、ケイ酸ナトリ
ウム、アルミン酸ナトリウムを主成分とするものであ
る。さらにこれにSiO2 、MgO、Al23 等の酸化
物や、Si、Al、Fe 等の金属を加えたものであっても良
い。
The above-mentioned glass substance is mainly composed of sodium silicate and sodium aluminate. Further, an oxide such as SiO 2 , MgO or Al 2 O 3 or a metal such as Si, Al or Fe may be added thereto.

【0017】(3) 上記耐高温酸化合金溶射皮膜5の形成
は、前記高融点溶射皮膜3の場合と同様、通常、プラズ
マ溶射により行なう。当該耐高温酸化合金溶射皮膜3の
厚さは50〜120μm程度で良い。50μm未満で
は、ジルコニア系溶射皮膜5と窒化ケイ素基材1と高融
点合金層6との間の熱膨張差を緩和する作用を奏し難
く、120μmを越えると、加熱冷却に伴って発生する
熱応力のため被膜が剥離し易くなる。
(3) The high temperature oxidation resistant alloy spray coating 5 is usually formed by plasma spraying, as in the case of the high melting point spray coating 3. The high temperature oxidation resistant alloy sprayed coating 3 may have a thickness of about 50 to 120 μm. If it is less than 50 μm, it is difficult to exert the effect of relaxing the thermal expansion difference among the zirconia-based sprayed coating 5, the silicon nitride base material 1 and the high melting point alloy layer 6, and if it exceeds 120 μm, the thermal stress generated by heating and cooling is increased. Therefore, the coating film is easily peeled off.

【0018】上記耐高温酸化合金としては、通常、高温
の合金溶湯に腐食されにくく、且つ、高温酸化を受けに
くい、Co合金を使用する。具体的には、コクラリー
(Co−Cr−Al-Y系合金)またはステライト(Co
−Cr−W系合金)、等があげられる。コクラリーの組
成は、Cr:20〜30wt%、Al :10〜20wt%、
Y:0.5 〜2.0wt % Co:残部、また、ステライトの
組成は、Cr:20〜30wt%、W:3〜10wt%、C
o:残部、の各範囲が好ましい。
As the above-mentioned high temperature oxidation resistant alloy, a Co alloy is usually used which is not easily corroded by a high temperature molten alloy and is resistant to high temperature oxidation. Specifically, co-clary (Co-Cr-Al-Y based alloy) or stellite (Co
-Cr-W type alloy), and the like. The composition of coklarie is Cr: 20-30 wt%, Al: 10-20 wt%,
Y: 0.5 to 2.0 wt% Co: balance, and the composition of stellite is Cr: 20 to 30 wt%, W: 3 to 10 wt%, C
Each range of o: balance is preferable.

【0019】(4) ジルコニア系溶射皮膜の形成は、前記
高融点溶射皮膜3の場合と同様に行なう。当該ジルコニ
ア系溶射皮膜7の膜厚は、120〜180μmとする。
120μm未満では、溶融金属に対する非付着性の向上
効果を奏し難く、また、180μmを越えると、効果の
それ以上の増大を望めず、経済的に不利となる。
(4) The zirconia-based sprayed coating is formed in the same manner as the high melting point sprayed coating 3. The film thickness of the zirconia-based thermal spray coating 7 is 120 to 180 μm.
If it is less than 120 μm, the effect of improving the non-adhesiveness to the molten metal is difficult to be obtained, and if it exceeds 180 μm, further increase in the effect cannot be expected, which is economically disadvantageous.

【0020】ここで、ジルコニア系材料としては、ジル
コニア(ZrO2 )主成分のものばかりでなく、アルミ
ナリッチのアルミナ−ジルコニア(Al23 /ZrO
2 )も含まれる。またジルコニアは、本来フラックスア
タックに強いものであるが、変態による膨張を抑えるた
め、Y23 、CaO、CeO、Al23 、MgO等を
スタビライザーとして2.0 〜15.0wt%添加した、いわゆ
る安定化ジルコニアを使用することが望ましい。
Here, as the zirconia-based material, not only those having a zirconia (ZrO 2 ) main component but also alumina-rich alumina-zirconia (Al 2 O 3 / ZrO) are used.
2 ) is also included. Zirconia is originally strong against flux attack, but in order to suppress expansion due to transformation, Y 2 O 3 , CaO, CeO, Al 2 O 3 , MgO, etc. are added as stabilizers in the amount of 2.0 to 15.0 wt%, so-called stable. It is desirable to use zirconia oxide.

【0021】(5) 上記ジルコニア系溶射皮膜7に対する
有機ケイ素ポリマーによる含浸・焼成処理は、有機ケイ
素ポリマー粉末を有機溶媒に分散させたものを、当該溶
射皮膜表面にはけ塗り、スプレ等で塗布し乾燥した後、
500 ℃以上に加熱焼成してジルコニア皮膜と一体化させ
る。。上記有機ケイ素ポリマーの塗布量は、固形分換算
で5〜25g/m2 とする。
(5) In the impregnation and firing treatment of the zirconia-based thermal spray coating 7 with an organic silicon polymer, a dispersion of an organic silicon polymer powder in an organic solvent is applied to the surface of the thermal spray coating by brushing or spraying. And after drying,
It is heated and baked at 500 ℃ or more to be integrated with the zirconia coating. . The coating amount of the organosilicon polymer is 5 to 25 g / m 2 in terms of solid content.

【0022】この封孔処理は、ジルコニア系溶射皮膜が
もともと有する微小ポアーを封止して該部からの溶湯の
侵入を防止すると共に、ジルコニア系溶射皮膜の組織結
合力を強化させて、熱衝撃によるクラック発生を防止す
ることにある。
This sealing treatment seals the fine pores originally possessed by the zirconia-based sprayed coating to prevent the intrusion of the molten metal from the area, and also strengthens the tissue bonding force of the zirconia-based sprayed coating, resulting in thermal shock. The purpose is to prevent the occurrence of cracks.

【0023】上記有機ケイ素系高分子化合物としては、
ラダー型シリコンオリゴマー等を挙げることができる。
As the above-mentioned organosilicon polymer compound,
Ladder type silicon oligomers and the like can be mentioned.

【0024】このような方法により形成されたジルコニ
ア皮膜は耐酸化性に優れ、溶湯アタック、フラックスア
タックにも良く耐えるので金属溶湯処理設備部材に使用
した場合、耐久性が著しく向上したものが得られる。
The zirconia film formed by such a method has excellent oxidation resistance and can withstand molten metal attack and flux attack well, so that when it is used for metal molten metal treatment equipment members, a product with significantly improved durability can be obtained. .

【0025】[0025]

【作用】本発明では耐熱衝撃性に優れた窒化ケイ素質成
形体表面に、フラックスアタックに強いジルコニア皮膜
を形成するにあたり、先ず窒化ケイ素と反応し易いM
o、Nb、W等の高融点金属を溶射し、且つ、該溶射皮
膜にガラス質物質を含浸させ焼成して、アンカーの役割
を持たせ、次いで窒化ケイ素とジルコニアの熱膨張差を
緩和させ、しかも金属溶湯やフラックスのアタックにも
耐える耐高温酸化合金の溶射皮膜を形成し、その上にジ
ルコニア系溶射皮膜を形成し、さらに、ジルコニア系溶
射皮膜に有機ケイ素ポリマーを含浸させ焼成し、ジルコ
ニア層に発生する微小ポアーを封止するとともにジルコ
ニア系溶射皮膜の皮膜内結合力を強化させて熱衝撃によ
るクラック発生を防止する。
In the present invention, in forming a zirconia film which is resistant to flux attack on the surface of a silicon nitride molded article having excellent thermal shock resistance, first, M which easily reacts with silicon nitride.
o, Nb, W and other high melting point metals are sprayed, and the sprayed coating is impregnated with a vitreous substance and fired to serve as an anchor, and then the thermal expansion difference between silicon nitride and zirconia is relaxed, Moreover, a spray coating of high temperature oxidation resistant alloy that can withstand the attack of molten metal or flux is formed, a zirconia spray coating is formed on it, and the zirconia spray coating is impregnated with an organic silicon polymer and baked to form a zirconia layer. The micropores generated at the same time are sealed and the bond strength within the coating of the zirconia-based thermal spray coating is strengthened to prevent the occurrence of cracks due to thermal shock.

【0026】[0026]

【実施例】【Example】

A.窒化ケイ素製温度計保護管(外径30φ×長さ 400m
m)の表面をブラスト処理により粗面化した後、下記に
示す各工程を、表1に示す組み合わせで行ない、最表面
にジルコニア系溶射皮膜を形成して、各実施例・比較例
のセラミック積層体を製造した。なお、以下の説明で組
成を示す「%」及び「比」は、とくに断らない限り重量
単位である。
A. Silicon nitride thermometer protection tube (outer diameter 30φ x length 400m
After roughening the surface of m) by blasting, the following steps are performed in the combinations shown in Table 1 to form a zirconia-based sprayed coating on the outermost surface, and the ceramic laminate of each of the examples and comparative examples is formed. Manufactured body. In the following description, “%” and “ratio” indicating the composition are by weight unless otherwise specified.

【0027】(1) 高融点金属溶射…Mo粉末(粒径:1
0〜53μm)またはNb(粒径:10〜53μm)を
使用して、下記条件でプラズマ溶射を膜厚10〜20
μmとなるように行なった。
(1) High melting point metal spraying ... Mo powder (particle size: 1
0 to 53 μm) or Nb (particle diameter: 10 to 53 μm), and plasma spraying is performed at a film thickness of 10 to 20 under the following conditions.
It performed so that it might be set to micrometer.

【0028】プラズマガス:Ar/H2 、電流:50
0A、溶射距離:120mm (2) ガラス質含浸・焼成処理 下記平均粒径、組成のガラス微粉末の10wt%分散
液(分散媒:水/エタノール=1/1)を、高融点溶射
皮膜の上から刷毛塗り塗装し(塗布量:固形分換算20
g/m2 )、乾燥させた後、N2 ガス雰囲気炉中で、1
50〜200℃×2h保持→1hかけて850℃まで昇
温後15分以上保持して、焼成を行なった。
Plasma gas: Ar / H 2 , current: 50
0A, spraying distance: 120 mm (2) Glass impregnation / calcination treatment 10 wt% dispersion liquid (dispersion medium: water / ethanol = 1/1) of fine glass powder having the following average particle size and composition was applied on the high melting point sprayed coating. Brush applied from (coating amount: solid content conversion 20
g / m 2 ), and after drying, 1 in an N 2 gas atmosphere furnace
Holding at 50 to 200 ° C. for 2 hours → heating to 850 ° C. over 1 hour, holding for 15 minutes or more, and firing.

【0029】 5μm、Na2 O 3.5%、Si O2
52% Al 22%、Fe13%、Co13% (3) 耐高温酸化合金溶射 下記各組成、のコクラリー粉末(粒径10〜45μ
m)またはステライト粉末(10〜45μm)を使用し
て、下記条件でプラズマ溶射を膜厚80〜100μm
となるように行なった。
5 μm, Na 2 O 3.5%, SiO 2
52% Al 22%, Fe 13%, Co 13% (3) High temperature oxidation resistant alloy spraying Coclary powder (particle size 10-45μ)
m) or stellite powder (10 to 45 μm), and plasma spraying under the following conditions to a film thickness of 80 to 100 μm.
It was done so that

【0030】Cr:23%、Al :13%、Y:0.6
% Co:残部、 Cr:28%、W:4%、C:1.0 %、Mo:1.0
%、Co:残部、 プラズマガス:Ar/H2 、電流:500A、溶射距
離:120mm (4) 安定化ジルコニア溶射 下記各組成、の安定化ジルコニア粉末(粒径:10
〜45μm)を使用して、下記条件でプラズマ溶射を
膜厚80〜100μmとなるように行なった。
Cr: 23%, Al: 13%, Y: 0.6
% Co: balance, Cr: 28%, W: 4%, C: 1.0%, Mo: 1.0
%, Co: balance, plasma gas: Ar / H 2 , current: 500 A, spraying distance: 120 mm (4) Stabilized zirconia spraying Stabilized zirconia powder with the following compositions (particle size: 10
.About.45 .mu.m) and plasma spraying was performed under the following conditions to a film thickness of 80 to 100 .mu.m.

【0031】Zr O2 :91%、Y23 :8.4 %、
SiO2 :0.3 %、 Al23 :30%、Zr O2 :70%、 プラズマガス:Ar/H2 、電流:500A、溶射距
離:70mm、 (5) 有機ケイ素ポリマー含浸・焼成処理 ラダー型シリコンオリゴマー粉末(フレーク状)の10
wt%分散液(分散媒:エタノール)を、安定化ジルコニ
ア系溶射皮膜の上から刷毛塗り塗装し(塗布量:固形分
換算13g/m2 )、乾燥させた後、大気炉中で、1h
かけて300℃まで昇温後30min 保持→1hかけて5
00℃まで昇温後30分保持して、焼成を行なった。
Zr O 2 : 91%, Y 2 O 3 : 8.4%,
SiO 2: 0.3%, Al 2 O 3: 30%, Zr O 2: 70%, plasma gas: Ar / H 2, current: 500A, spraying distance: 70mm, (5) an organic silicon polymer impregnation and calcination treatment ladder 10 of silicon oligomer powder (flakes)
A wt% dispersion liquid (dispersion medium: ethanol) was applied by brushing on the stabilized zirconia-based sprayed coating (application amount: 13 g / m 2 in terms of solid content), dried, and then in an atmospheric furnace for 1 h.
After raising the temperature to 300 ° C over 30 minutes, hold for 5 hours over 5 hours
After the temperature was raised to 00 ° C., the temperature was maintained for 30 minutes to perform firing.

【0032】B.各実施例及び比較例のセラミック積層
体(被試験体)を下記組成のアルミニウム合金溶湯中
で使用して、保護管の耐用寿命を測定した。
B. The ceramic laminates (test samples) of the respective examples and comparative examples were used in an aluminum alloy melt having the following composition, and the service life of the protective tube was measured.

【0033】Si 16.0 % Fe 0.3% Cu 4.5
% Mg 0.5% Al残部 耐用寿命は、シルコニア系溶射皮膜のクラック発生状況
で判断し、また、剥離態様は、付着したノロを強制的に
剥離させた場合について剥離状態で判定した。
Si 16.0% Fe 0.3% Cu 4.5
% Mg 0.5% Al balance The service life was judged by the crack occurrence state of the zirconia-based sprayed coating, and the peeling mode was judged by the peeled state when the adhered noro was forcibly peeled off.

【0034】表1に試験結果を示すが、各実施例は、ノ
ロが付着した複合保護皮膜の剥離が見られず、また、耐
用時間も格段に長いことが分かる。
The test results are shown in Table 1. In each of the examples, it can be seen that the composite protective film with no slag did not peel off and the service life was remarkably long.

【0035】[0035]

【効果】本発明の方法によれば、耐熱衝撃性に優れた窒
化ケイ素母材の表面に、耐溶湯・耐フラックスアタック
性に優れ、且つ、耐熱衝撃性・耐高温酸化性に優れた複
合保護皮膜を形成することができる。即ち、本発明の方
法で形成した複合保護皮膜は、有機ケイ素ポリマーを含
浸させしたジルコニア系溶射皮膜が、ガラス質で含浸さ
せ焼成した高融点金属溶射皮膜、及び、高融点金属溶射
皮膜とジルコニア系溶射皮膜との熱膨張差を吸収する耐
高温酸化合金溶射層を介して窒化ケイ素母材に接合して
いるので熱衝撃に強く、繰り返しの加熱冷却に際しても
損傷を受けることが少なく、溶湯取扱装置に付随する部
材の寿命を著しく延長する効果をもたらす。
[Effect] According to the method of the present invention, the composite protection of the surface of the silicon nitride base material, which has excellent thermal shock resistance, has excellent resistance to molten metal / flux attack, and excellent thermal shock resistance / high temperature oxidation resistance. A film can be formed. That is, the composite protective coating formed by the method of the present invention is a zirconia-based thermal spray coating impregnated with an organosilicon polymer, a high-melting-point metal thermal-spray coating impregnated with glass and fired, and a high-melting-point metal thermal spray coating and zirconia-based coating. Since it is bonded to the silicon nitride base material through the high temperature oxidation resistant alloy sprayed layer that absorbs the difference in thermal expansion from the thermal spray coating, it is resistant to thermal shock and is less likely to be damaged during repeated heating and cooling. Has the effect of significantly extending the life of the components associated with the.

【0036】[0036]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の複合保護皮膜の形成方法を適用した
溶湯用温度計保護管のの構成を説明する図である。
FIG. 1 is a diagram illustrating a configuration of a molten metal thermometer protection tube to which a method for forming a composite protective film of the present invention is applied.

【符号の説明】 1 窒化ケイ素母材(セラミック成形体) 3 高融点溶射皮膜 5 耐高温酸化合金溶射皮膜 7 安定化ジルコニア系溶射皮膜[Explanation of symbols] 1 Silicon nitride base material (ceramic molded body) 3 High melting point thermal spray coating 5 High temperature oxidation resistant alloy thermal spray coating 7 Stabilized zirconia thermal spray coating

フロントページの続き (72)発明者 升田 隆一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 林 芳郎 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 森 誠 長野県塩尻市宗賀一番地 昭和電工株式 会社塩尻工場内 (72)発明者 西原 義夫 山口県宇部市藤山区文京台(無番地)Front Page Continuation (72) Inventor Ryuichi Masuda, 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Co., Ltd. (72) Inventor, Yoshiro Hayashi, 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation (72) Invention Mori Makoto Soka Ichiba, Shiojiri City, Nagano Prefecture Showa Denko Co., Ltd. Shiojiri Plant (72) Inventor Yoshio Nishihara Bunkyodai, Fujiyama-ku, Ube City, Yamaguchi Prefecture

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化ケイ素質成形体の表面に高融点金属
の溶射皮膜を形成し、該溶射皮膜にガラス質物質を含浸
させ焼成した後、耐高温酸化合金の溶射皮膜及びジルコ
ニア系溶射皮膜を順次形成し、最後に前記ジルコニア系
溶射皮膜に有機ケイ素ポリマーを含浸させ焼成すること
を特徴とするセラミック成形体の複合保護皮膜形成方
法。
1. A thermal spray coating of a refractory metal is formed on the surface of a silicon nitride molded body, and the thermal spray coating is impregnated with a glassy substance and baked, and then a thermal spray coating of a high temperature oxidation resistant alloy and a zirconia thermal spray coating are formed. A method for forming a composite protective coating on a ceramic molded body, which comprises sequentially forming and finally impregnating the zirconia-based sprayed coating with an organic silicon polymer and baking the same.
【請求項2】 高融点金属がモリブデン、ニオブ、タン
グステンのうちから選択される1種の金属であることを
特徴とする請求項1記載のセラミック成形体の複合保護
皮膜形成方法。
2. The method for forming a composite protective coating on a ceramic molded body according to claim 1, wherein the refractory metal is one kind of metal selected from molybdenum, niobium and tungsten.
【請求項3】 ガラス質物質がケイ酸ナトリウムを主成
分とするものであることを特徴とする請求項1記載のセ
ラミック成形体の複合保護皮膜形成方法。
3. The method for forming a composite protective film on a ceramic molded body according to claim 1, wherein the vitreous substance contains sodium silicate as a main component.
【請求項4】耐高温酸化合金が、Cr : 20 〜30wt%、
Al : 10〜20wt%、Y:0.5 〜 2.0wt%、残部:Coの
組成を有する合金、又は Cr: 20〜30wt%、W: 3〜
10wt%、残部:Coの組成を有する合金のいずれかであ
ることを特徴とする請求項1記載のセラミック成形体の
複合保護皮膜形成方法。
4. The high temperature oxidation resistant alloy comprises Cr: 20 to 30 wt%,
Al: 10 to 20 wt%, Y: 0.5 to 2.0 wt%, balance: alloy having a composition of Co, or Cr: 20 to 30 wt%, W: 3 to
2. The method for forming a composite protective film on a ceramic molded body according to claim 1, wherein the alloy is an alloy having a composition of 10 wt% and the balance: Co.
【請求項5】 ジルコニアが酸化イットリウム、酸化カ
ルシウム、酸化セリウム、酸化アルミニウムまたは酸化
マグネシウムのうち少なくとも1種を含む安定化ジルコ
ニアであることを特徴とする請求項1記載のセラミック
成形体の複合保護皮膜形成方法。
5. The composite protective film for a ceramic molded body according to claim 1, wherein the zirconia is a stabilized zirconia containing at least one of yttrium oxide, calcium oxide, cerium oxide, aluminum oxide and magnesium oxide. Forming method.
JP4296158A 1992-11-05 1992-11-05 Method for forming composite protective coating on ceramic compact Expired - Fee Related JP2673330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296158A JP2673330B2 (en) 1992-11-05 1992-11-05 Method for forming composite protective coating on ceramic compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296158A JP2673330B2 (en) 1992-11-05 1992-11-05 Method for forming composite protective coating on ceramic compact

Publications (2)

Publication Number Publication Date
JPH06144973A JPH06144973A (en) 1994-05-24
JP2673330B2 true JP2673330B2 (en) 1997-11-05

Family

ID=17829914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296158A Expired - Fee Related JP2673330B2 (en) 1992-11-05 1992-11-05 Method for forming composite protective coating on ceramic compact

Country Status (1)

Country Link
JP (1) JP2673330B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238807B1 (en) * 1997-07-25 2001-05-29 Chubu Sukegawa Enterprise Co., Ltd. Thermal spraying composite material containing molybdenum boride and a coat formed by thermal spraying

Also Published As

Publication number Publication date
JPH06144973A (en) 1994-05-24

Similar Documents

Publication Publication Date Title
KR100390291B1 (en) Silicon based substrate with yttrium silicate environmental/thermal barrier layer
EP0134769B1 (en) Oxidation prohibitive coatings for carbonaceous articles
US5420084A (en) Coatings for protecting materials against reactions with atmosphere at high temperatures
JP2004345353A (en) Article containing silicon base material, bond layer and protective layer
JP3723753B2 (en) Method for producing a coating on a fire-resistant component and use of such a coating
JP2673330B2 (en) Method for forming composite protective coating on ceramic compact
KR100190912B1 (en) Casting apparatus for low-melting metals having two or more coating layers
JP3461990B2 (en) Temperature sensor for molten metal
JP2001152308A (en) Method of forming corrosion resisting combined coating standing long use, and member having the composite coating
JP2981806B2 (en) Ceramic laminate and manufacturing method thereof
WO2001027048A1 (en) Carbon-containing refractory article having a protective coating
JPS5841782A (en) Oxidation prevention for graphite-containing refractories
JP2626672B2 (en) Immersion tube for non-ferrous molten metal
JP2588554B2 (en) Member for molten aluminum and method for producing the same
JPH06144971A (en) Ceramic laminate and its production
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JP2585548B2 (en) Hermetic ceramic coating and method for producing the same
JPH1053479A (en) Coating material for refractory material containing carbon
JPS6230681A (en) Non-gas-permeable ceramic sintered body and manufacture
JP2005131656A (en) Member for molten aluminum
JP3587493B2 (en) Composite sintered body of boron nitride and spinel
JP3060590B2 (en) High temperature heat resistant material
JPS593083A (en) Graphite crucible
JPH0238391A (en) Member for dipping in molten metal and production thereof
JPS62241874A (en) Immersion protective pipe for molten metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970520

LAPS Cancellation because of no payment of annual fees