[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2670462B2 - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JP2670462B2
JP2670462B2 JP17877990A JP17877990A JP2670462B2 JP 2670462 B2 JP2670462 B2 JP 2670462B2 JP 17877990 A JP17877990 A JP 17877990A JP 17877990 A JP17877990 A JP 17877990A JP 2670462 B2 JP2670462 B2 JP 2670462B2
Authority
JP
Japan
Prior art keywords
group
nonlinear optical
substituent
formula
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17877990A
Other languages
Japanese (ja)
Other versions
JPH0470630A (en
Inventor
康政 須田
Original Assignee
東洋インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキ製造株式会社 filed Critical 東洋インキ製造株式会社
Priority to JP17877990A priority Critical patent/JP2670462B2/en
Publication of JPH0470630A publication Critical patent/JPH0470630A/en
Application granted granted Critical
Publication of JP2670462B2 publication Critical patent/JP2670462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,有機非線形光学材料に関するものであり,
更に詳しくは波長変換,光演算,光シャッター,光メモ
リー等の光学素子に使用される、フタロシアニン誘導体
からなる有機非線形光学材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an organic nonlinear optical material,
More specifically, the present invention relates to an organic nonlinear optical material made of a phthalocyanine derivative, which is used for optical elements such as wavelength conversion, optical calculation, optical shutter, optical memory and the like.

(従来技術) 光が物質を透過する際に誘起される分極Pは光の電界
がEの時, 式(1) P=χ(1)E+χ(2)E・E+χ(3)E・E・E+・・ の様に表わされ,第一項は線形分極,第二項以降は非線
形分極と呼ばれる。この際に誘起される分極の大きさの
尺度となる係数χ(n)(n≧2)はn次の非線形感受
率,χ(n)を含む項に基づく分極からの効果はn次の非
線形光学効果と呼ばれる。χ(n)は(n+1)階のテン
ソルで非線形光学効果を定量的に表現する係数である。
一般にχ(2)(3)などは微小量であり,光強度Eが小
さい場合には式(1)の第一項に基づく線形効果のみ認
められるが,χ(2)(3)の大きい材料の場合,レーザ
ー光の様な強電界の下では二次以上の項が無視出来なく
なり,その結果非線形光学応答が現われる。二次の非線
形光学効果としては,第二高調波発生(SHG),光整
流,パラメトリック増幅及びポッケルス効果などがあ
り,三次の非線形光学効果としては,第三高調波発生,
直流誘起SHG、カー効果および光双安定性などがある。
これらの現象を示す非線形光学材料は新しい光エレクト
ロニクス素子への応用が検討されている。これらの現象
のうち光双安定性は,光多重安定性の中で最も簡単な場
合である。光多重性とは,光学素子において入力光を
I1,出力光をI2とする時,両者の関係が,I2=F(I1)の
様な多価関数で表わされる場合を指し,そのうち入射光
の一つの状態に対して安定な値をとる出力光の状態が二
種類ある場合が光双安定性と呼ばれる。二種類のうちの
何れの状態を取るかは系の履歴によって決まる。即ち,
二つの状態の間にはヒステリシスが存在する。この現象
は光スイッチ,光記憶素子や光論理素子などへの応用が
考えられる。
(Prior art) The polarization P induced when light passes through a substance is given by the following equation when the electric field of light is E: P = ((1) E + χ (2) E · E + χ (3) E · E · It is expressed as E + ..., The first term is called linear polarization, and the second and subsequent terms are called non-linear polarization. The coefficient χ (n) (n ≧ 2), which is a measure of the magnitude of the polarization induced at this time, is the nth-order nonlinear susceptibility, and the effect from the polarization based on the term including χ (n) is the nth-order nonlinearity. Called the optical effect. χ (n) is a coefficient that quantitatively expresses the nonlinear optical effect by the (n + 1) th order tensor.
In general, χ (2) , χ (3), etc. are minute quantities, and when the light intensity E is small, only the linear effect based on the first term of Eq. (1) is recognized, but χ (2) , χ (3 In the case of a material with a large ), the second and higher order terms cannot be ignored under a strong electric field such as laser light, and as a result, a nonlinear optical response appears. The second-order nonlinear optical effects include second harmonic generation (SHG), optical rectification, parametric amplification, and the Pockels effect. The third-order nonlinear optical effects include third harmonic generation,
DC induced SHG, Kerr effect and optical bistability.
Nonlinear optical materials exhibiting these phenomena are being studied for application to new optoelectronic devices. Of these phenomena, optical bistability is the simplest case of optical multistability. Optical multiplicity means that the input light in an optical element
When I 1 is the output light and I 2 is the output light, the relation between them is expressed by a polyvalent function such as I 2 = F (I 1 ). The case where there are two types of output light states that take a value is called optical bistability. Which of the two types is taken depends on the history of the system. That is,
There is hysteresis between the two states. This phenomenon can be applied to optical switches, optical storage elements, optical logic elements, and the like.

以上に述べた様な性質を持つ非線形光学材料に関して
は,例えば次の文献等に詳しく記載されている。
Non-linear optical materials having the above-described properties are described in detail in, for example, the following literature.

D.S.CHEMLA,J.ZYSS「NONLINEAR OPTICAL PROPERTIES OF
ORGANIC MOLECULES AND CRYSTALS」ACADEMIC PRESS,I
NC.,1987年刊 加藤政雄,中西八郎監修「有機非線形光学材料」株式会
社シーエムシー,1985年刊 三次の非線形光学材料の探索は,無機及び有機化合物
の何れの領域においても盛んに行なわれている。無機材
料としてはガリウム砒素や第III族〜第V族化合物等の
半導体が知られている。有機材料でこれ迄に報告されて
いる材料は主にπ共役系高分子であり,ポリジアセチレ
ンをはじめとしてポリシラン,ポリイミド,ポリアセチ
レン,ポリチオフェンなどが知られている。特にPDA−P
TSと呼ばれるポリジアセチレンの一種は現在,三次非線
形光学定数の最も大きな有機系材料として知られてい
る。また,スチルベン誘導体(特開平1−273022号公
報)も知られており,分子内に陽イオンを有するπ共役
系化合物をイオン性ポリマー中に分散した材料(特開平
1−217328号公報,特開平1−217329号公報)も開示さ
れている。その他の有機系材料としては無置換あるいは
アルコキシ基を有する無金属あるいは金属フタロシアニ
ンが特開平1−237626号公報に開示されている。この有
機系材料は,波長1907nmの光を照射した時の第三高調波
強度はPDA−PTSよりも小さい値を示す。一般に有機系材
料では,非線形応答が分極し易い分子内のπ電子に起因
しているのに対して無機系材料では,格子結合に係わる
電子が光に応答している。この為、レーザー光に対する
破壊しきい値は有機系材料の方が無機系材料より大き
い。また,応答速度も無機系材料がピコ秒を越えること
が無いのに対して有機系材料ではフェムト秒と極めて高
速の応答が可能である。
DSCHEMLA, J.ZYSS `` NONLINEAR OPTICAL PROPERTIES OF
ORGANIC MOLECULES AND CRYSTALS ”ACADEMIC PRESS, I
NC., 1987, edited by Masao Kato and Hachiro Nakanishi, "Organic Nonlinear Optical Materials", CMC Co., Ltd., 1985. The search for tertiary nonlinear optical materials is being actively conducted in both inorganic and organic compound domains. Semiconductors such as gallium arsenide and Group III to Group V compounds are known as inorganic materials. Organic materials reported so far are mainly π-conjugated polymers, and polysilane, polyimide, polyacetylene, polythiophene and the like are known as well as polydiacetylene. Especially PDA-P
One type of polydiacetylene called TS is currently known as an organic material having the largest third-order nonlinear optical constant. Also, stilbene derivatives (JP-A-1-273022) are known, and materials in which a π-conjugated compound having a cation in a molecule is dispersed in an ionic polymer (JP-A-1-217328, JP-A-1-217328). No. 1-217329) is also disclosed. As other organic materials, a metal-free or metal phthalocyanine having no substituent or an alkoxy group is disclosed in JP-A-1-237626. This organic material exhibits a third harmonic intensity smaller than that of PDA-PTS when irradiated with light of wavelength 1907 nm. In general, in organic materials, the nonlinear response is caused by π electrons in molecules that are easily polarized, whereas in inorganic materials, electrons related to lattice bonds respond to light. Therefore, the breakdown threshold for laser light is larger in the organic material than in the inorganic material. The response speed of inorganic materials does not exceed picoseconds, whereas the response speed of organic materials is femtoseconds, which is extremely high.

無機系材料の場合,三次非線形感受率は10-2〜10-5es
uと大きいが応答が遅く,10GHz程度である。これに対し
て有機系材料では、三次非線形感受率は10-8esuを越え
るものは知られていないが,数十GHz以上の高速応答が
可能であるという利点がある。
In the case of inorganic materials, the third-order nonlinear susceptibility is 10 -2 to 10 -5 es
Although it is large as u, the response is slow and is about 10 GHz. On the other hand, as for organic materials, it is not known that the third-order nonlinear susceptibility exceeds 10 -8 esu, but there is an advantage that a high-speed response of several tens GHz or more is possible.

非線形光学材料を光スイッチ,光論理素子等として利
用する場合には高速応答性は必要不可欠な性質であり,
この意味で,これらの光学関連技術において有機非線形
光学材料に対する重要性は高い。
When nonlinear optical materials are used as optical switches, optical logic devices, etc., high-speed response is an indispensable property.
In this sense, the importance of organic nonlinear optical materials in these optical related technologies is high.

(発明が解決しようとする課題) これ迄に知られている三次の有機非線形光学材料は,
直線状あるいは環状にπ共役系の連なった構造を特徴と
している。しかしながら,非線形光学特性に関してはポ
リジアセチレンの一種である前記PDA−PTS以上の特性を
示すものは知られていない。
(Problems to be Solved by the Invention) The third-order organic nonlinear optical material known so far is
It is characterized by a linear or annular structure of π-conjugated systems. However, regarding the non-linear optical characteristics, no one is known that exhibits characteristics higher than those of the PDA-PTS, which is a kind of polydiacetylene.

PDA−PTSの場合にも非線形光学特性の発現に必要とさ
れるπ共役鎖長を制御することは困難であり,また空気
中での安定性に乏しいという欠点がある。更に非線形光
学材料の素子化にあたって極めて重要とされる薄膜形成
が困難であるという問題がある。
Even in the case of PDA-PTS, it is difficult to control the π-conjugated chain length required for the development of nonlinear optical properties, and it has the drawback of poor stability in air. Further, there is a problem that it is difficult to form a thin film, which is extremely important in making a non-linear optical material into an element.

本発明の目的は,既存の有機非線形光学材料を上回る
非線形光学特性を示し,且つ,実用化に際して,既存の
材料に付帯していた前記の諸問題点を持たない新規の有
機非線形光学材料を提供することにある。
An object of the present invention is to provide a novel organic nonlinear optical material which exhibits nonlinear optical characteristics exceeding that of existing organic nonlinear optical materials and does not have the above-mentioned problems associated with existing materials when put into practical use. To do.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は次の式[1]で表わされるフタロシアニンの
少なくとも1種を成分として含有する有機非線形光学材
料を提供する。
(Means for Solving the Problem) The present invention provides an organic nonlinear optical material containing at least one phthalocyanine represented by the following formula [1] as a component.

式[1] 〔式中、R1〜R22はそれぞれ独立に水素原子,ハロゲン
基,シアノ原子,ニトロ基,カルボキシ基,スルホ基,
置換基を有してもよい脂肪族炭化水素基,置換基を有し
てもよい芳香族炭化水素基,置換基を有してもよい芳香
族複素環基,−OR23,−SR24,−NR25R26,−SO2NR27R28,
−CONR29R30,−NHCOR31,−CO2R32,−N=NR33,−X(CH
2CH2Y)zR34を表わす。
Equation [1] [Wherein, R 1 to R 22 each independently represent a hydrogen atom, a halogen group, a cyano atom, a nitro group, a carboxy group, a sulfo group,
An aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group which may have a substituent, -OR 23 , -SR 24 , −NR 25 R 26 , −SO 2 NR 27 R 28 ,
-CONR 29 R 30 , -NHCOR 31 , -CO 2 R 32 , -N = NR 33 , -X (CH
2 CH 2 Y) Represents zR 34 .

R23〜R34は水素原子,置換基を有してもよい脂肪族炭
化水素基,置換基を有してもよい芳香族炭化水素基,置
換基を有してもよい芳香族複素環基を表わす。またXお
よびYはそれぞれ独立に酸素原子,あるいは硫黄原子を
表わし,zは正の整数を表わす。〕 本発明は,式[1]で表わされるフタロシアニンが既
存の有機非線形光学材料と同等以上の三次非線形感受率
を有し,かつ実用化に際して既存材料の有していた問題
点を全く持たないことを見出し完成されたものである。
R 23 to R 34 are a hydrogen atom, an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group which may have a substituent Represents X and Y each independently represent an oxygen atom or a sulfur atom, and z represents a positive integer. According to the present invention, the phthalocyanine represented by the formula [1] has a tertiary nonlinear susceptibility equal to or higher than that of an existing organic nonlinear optical material, and does not have any problems that the existing material has in practical use. Is completed.

本発明において,R1〜R22は水素原子またはフッ素原
子,塩素原子,臭素原子,沃素原子等のハロゲン原子,
シアノ基,ニトロ基,カルボキシ基,スルホ基またはメ
チル基,エチル基,tert−ブチル基,ヘキシル基,オク
チル基,ステアリル基,トリクロロメチル基,アミノメ
チル基,ヒドロキシメチル基等の置換基を有してもよい
脂肪族炭化水素基,フェニル基,ナフチル基,アントリ
ル基,フェナントリル基,2−メチルフェニル基等の置換
基を有してもよい芳香族炭化水素基,またはピリジル
基,カルバゾリル基,フルフリル基,ベンゾチアゾリル
基,4−メチルピリジル基等の置換基を有してもよい芳香
族複素環基,水酸基,メトキシ基,エトキシ基、ブトキ
シ基、ステアリルオキシ基、フェノキシ基,tert−ブチ
ルチオ基,ヘキシルチオ基,オクチルチオ基,フェニル
チオ基,アミノ基,ブチルアミノ基,ジエチルアミノ
基,ジフェニルアミノ基,ジベンジルアミノ基,ブチル
スルファモイル基,ジメチルスルファモイル基、フェニ
ルスルファモイル基,オクチルカルバモイル基,フェニ
ルカルバモイル基,ジエチルカルバモイル基,ブチルカ
ルボニルアミノ基,フェニルカルボニルアミノ基,−CO
2CH3,−CO2C2H5,−CO2Ph(Ph:フェニル基),フェニル
アゾ基,4−(ジブチルアミノ)フェニルアゾ基,1−ナフ
チルアゾ基等であるが,これらの置換基に限定されるも
のではない。
In the present invention, R 1 to R 22 are hydrogen atoms or halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom,
Has substituents such as cyano, nitro, carboxy, sulfo or methyl, ethyl, tert-butyl, hexyl, octyl, stearyl, trichloromethyl, aminomethyl, hydroxymethyl, etc. Aliphatic hydrocarbon group, phenyl group, naphthyl group, anthryl group, phenanthryl group, aromatic hydrocarbon group which may have a substituent such as 2-methylphenyl group, or pyridyl group, carbazolyl group, furfuryl Group, benzothiazolyl group, aromatic heterocyclic group which may have a substituent such as 4-methylpyridyl group, hydroxyl group, methoxy group, ethoxy group, butoxy group, stearyloxy group, phenoxy group, tert-butylthio group, hexylthio Group, octylthio group, phenylthio group, amino group, butylamino group, diethylamino group, diphenylamino group, di Njiruamino group, butylsulfamoyl group, dimethylsulfamoyl group, phenylsulfamoyl group, octylcarbamoyl group, phenylcarbamoyl group, diethylcarbamoyl group, butyl carbonyl group, phenylcarbonylamino group, -CO
2 CH 3 , -CO 2 C 2 H 5 , -CO 2 Ph (Ph: phenyl group), phenylazo group, 4- (dibutylamino) phenylazo group, 1-naphthylazo group, etc., but are not limited to these substituents It is not something that will be done.

本発明で用いる前記式[1]で表される化合物は,次
の式[2]および式[3]で表される化合物の反応によ
り製造される。
The compound represented by the above formula [1] used in the present invention is produced by reacting the compound represented by the following formula [2] and formula [3].

式[2]および式[3]においてr1〜r21はそれぞれ
式[1]におけるR1〜R21と同様であり,式[2]のA
はハロゲン原子を表す。
In the formula [2] and the formula [3], r 1 to r 21 are the same as R 1 to R 21 in the formula [1], respectively.
Represents a halogen atom.

式[2]で表される化合物でr1〜r12がいずれも水素
原子である化合物については,Monatshefte fr Chemi
e,103,150−155(1972)に合成方法が記載されている。
Regarding the compound represented by the formula [2] in which r 1 to r 12 are all hydrogen atoms, Monatshefte fr Chemi
e, 103, 150-155 (1972) describes a synthetic method.

式[1]の製造にあったて用いる溶媒は,式[1]お
よび式[2]で表される化合物の少なくとも一部をとも
に溶解し,かつ式[4]で表される反応を,反応温度内
で生ぜしめない性質を有するものでなければならない。
The solvent used in the production of the formula [1] dissolves at least a part of the compound represented by the formula [1] and the compound represented by the formula [2] and reacts with the reaction represented by the formula [4]. It must have the property that it does not occur at temperature.

即ち本発明での使用に適した溶媒としては、例えば1
−クロロナフタレンとジメチルスルホキシドを体積比1:
1〜1:2の比率で混合した溶媒、その他アミルアルコー
ル、ジメチルホルムアミド等上記条件を満足する溶媒で
あれば使用することができる。溶媒の使用量は式[2]
および式[3]で表わされる化合物の全部を溶解する量
が好ましいが、両者の一部づつを溶解する量であっても
よい。
That is, as a solvent suitable for use in the present invention, for example, 1
Volume ratio of chloronaphthalene and dimethyl sulfoxide 1:
Any solvent that satisfies the above conditions, such as a solvent mixed in a ratio of 1 to 1: 2, or amyl alcohol or dimethylformamide, can be used. The amount of solvent used is calculated by the formula [2]
And an amount that dissolves all of the compound represented by the formula [3] is preferable, but it may be an amount that dissolves a part of both.

反応温度は100℃以下が好ましく、更に好ましくは70
〜100℃であるが、この範囲に限定されるものではな
く、目的物の種類によって適宜選択することができる。
反応時間は、反応温度、原料の溶解状態により異なる
が、反応の終点は式[2]で表わされる化合物の色の消
失する時点によって判断できる。
The reaction temperature is preferably 100 ° C. or lower, more preferably 70
To 100 ° C., but is not limited to this range, and can be appropriately selected depending on the type of the object.
The reaction time varies depending on the reaction temperature and the dissolved state of the raw materials, but the end point of the reaction can be judged by the time when the color of the compound represented by the formula [2] disappears.

本発明で用いられる式[1]の化合物の非線形光学特
性の測定法を例示すると次の通りである。石英基板上に
この化合物の薄膜を形成させる。
The method for measuring the nonlinear optical properties of the compound of the formula [1] used in the present invention is as follows. A thin film of this compound is formed on a quartz substrate.

薄膜の厚さとしては1μm以下が好ましいが、必ずし
もこの範囲に限定されるものでない。
The thickness of the thin film is preferably 1 μm or less, but is not necessarily limited to this range.

得られた薄膜試料に対して入射角を変化させながらレ
ーザーを照射すると、出射光である第三高調波の強度変
化がメーカー・フリンジと呼ばれるパターンを形成す
る。このフリンジ・パターンから、非線形光学効果を定
量的に表現する三次非線形感受率χ(3)が求められる。
When the obtained thin film sample is irradiated with a laser while changing the incident angle, the intensity change of the emitted third harmonic wave forms a pattern called maker fringe. From this fringe pattern, a third-order nonlinear susceptibility χ (3) that quantitatively expresses the nonlinear optical effect is obtained.

薄膜の形成方法としては、キャスティング法、スピン
コーティング法、蒸着法等が例示される。キャスティン
グ法、スピンコーティング法等では、本発明のフタロシ
アニン誘導体の溶液が用いられる。使用に適した溶剤と
しては、次のものを例示できる。
Examples of the method of forming the thin film include casting method, spin coating method, vapor deposition method and the like. In the casting method, the spin coating method and the like, the solution of the phthalocyanine derivative of the present invention is used. Examples of solvents suitable for use include the following.

N−ヘキサン、N−ヘプタン、N−オクタン、シクロ
ヘキサン等の脂肪族飽和炭化水素類、アセトン、メチル
エチルケトン、メチルイソブチルケトン、シクロヘキサ
ノン等のケトン類、酢酸エチル、酢酸ブチル、メチルセ
ロソルブ、エチルセロソルブ等のエステル類、メチルア
ルコール、エチルアルコール、n−プロピルアルコー
ル、イソプロピルアルコール、N−ブチルアルコール等
のアルコール類、ベンゼン、トルエン、キシレン等の芳
香族炭化水素類、クロロベンゼン、オルソジクロロベン
ゼン等の塩素化芳香族炭化水素類、クロロホルム、ジク
ロロメタン、テトラクロロエチレン等の塩素化脂肪族炭
化水素類。
Aliphatic saturated hydrocarbons such as N-hexane, N-heptane, N-octane and cyclohexane, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, and esters such as ethyl acetate, butyl acetate, methyl cellosolve and ethyl cellosolve , Alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol and N-butyl alcohol; aromatic hydrocarbons such as benzene, toluene and xylene; chlorinated aromatic hydrocarbons such as chlorobenzene and orthodichlorobenzene , Chloroform, dichloromethane, tetrachlorethylene and other chlorinated aliphatic hydrocarbons.

以下に本発明で使用できる式[1]のフタロシアニン
誘導体の例として(A)〜(L)を例示する。
Hereinafter, (A) to (L) are illustrated as examples of the phthalocyanine derivative of the formula [1] that can be used in the present invention.

(実施例) 以下実施例に基づき、本発明を更に具体的に説明する
が、本発明はこれら実施例に限定されるものではない。
各例において、部は特に断わりの無い限り重量部を表わ
す。
(Examples) The present invention will be described in more detail based on the following examples, but the present invention is not limited to these examples.
In each example, "part" means "part by weight" unless otherwise specified.

実施例1 ジメチルスルホキシド117部及び1−クロロナフタレ
ン64部の混合物に下記の化合物(a)5.8部, およびイソインドリン1.5部を加え、80℃で4時間撹
拌した。室温まで冷却した後、生成する沈澱を濾過し、
ジメチルスルホキシド、メタノール及びアセトンで洗浄
した後乾燥して化合物(A)4.6部を得た。
Example 1 5.8 parts of the following compound (a) in a mixture of 117 parts of dimethyl sulfoxide and 64 parts of 1-chloronaphthalene, And 1.5 parts of isoindoline were added, and the mixture was stirred at 80 ° C. for 4 hours. After cooling to room temperature, the precipitate formed is filtered off,
It was washed with dimethyl sulfoxide, methanol and acetone and then dried to obtain 4.6 parts of the compound (A).

次に蒸着法により、縦1cm,横3cmの石英基板上に化合
物(A)の、厚さ0.58μmの薄膜を形成した。
Next, a thin film of the compound (A) having a thickness of 0.58 μm was formed on a quartz substrate having a length of 1 cm and a width of 3 cm by an evaporation method.

ND:YAGレーザーの基本波を、水素を充填したラマンセ
ルにより波長変換して得られる波長1909nmの光を、この
薄膜試料に対して−40度から40度まで入射角を変化させ
ながら照射し、発生した第三高調波の強度を測定するこ
とによりメーカー・フリンジを得た。
The fundamental wave of the ND: YAG laser is irradiated with light with a wavelength of 1909 nm obtained by wavelength conversion with a Raman cell filled with hydrogen, while changing the incident angle from -40 degrees to 40 degrees to this thin film sample, The maker fringe was obtained by measuring the intensity of the third harmonic.

このフリンジ・パターンから三次非線形感受率χ(3)
の値として2.1X10-10esuを得た。
From this fringe pattern, the third-order nonlinear susceptibility χ (3)
The value of 2.1X10 -10 esu was obtained.

実施例2 ジメチルスルホキシド147部及び1−クロロナフタレ
ン81部の混合物に下記の化合物(b)10.1部, および5−オクチルチオ−1,3−ジイミノイソインド
リン2.9部を加え、75℃で5時間撹拌した。室温まで冷
却した後メタノール228部を加え、生成する沈澱を濾過
し、ジメチスルホキシド、メタノールで洗浄した後、乾
燥して化合物(B)9.2部を得た。
Example 2 10.1 parts of the following compound (b) in a mixture of 147 parts of dimethyl sulfoxide and 81 parts of 1-chloronaphthalene, And 2.9 parts of 5-octylthio-1,3-diiminoisoindoline were added, and the mixture was stirred at 75 ° C. for 5 hours. After cooling to room temperature, 228 parts of methanol was added, the precipitate formed was filtered, washed with dimethysulfoxide and methanol, and then dried to obtain 9.2 parts of compound (B).

次にシリカゲルを充填剤としたカラムクロマトグラフ
ィーを用いて、クロロホルムで展開し流出させて化合物
(B)を精製した。
Next, using a column chromatography with silica gel as a packing material, the compound (B) was purified by developing with chloroform and allowing it to flow out.

縦1cm,横3cmの石英基板上に、スピンコーティング法
により化合物(B)のクロロホルム溶液を塗布して、厚
さ0.37μmの薄膜を形成した。
A chloroform solution of the compound (B) was applied onto a quartz substrate having a length of 1 cm and a width of 3 cm by a spin coating method to form a thin film having a thickness of 0.37 μm.

ND:YAGレーザーの基本波を、水素を充填したラマンセ
ルにより波長変換して得られる波長1909nmの光を、この
薄膜試料に対して−40度から40度まで入射角を変化させ
ながら照射し、発生した第三高調波の強度を測定するこ
とによりメーカー・フリンジを得た。
The fundamental wave of the ND: YAG laser is irradiated with light with a wavelength of 1909 nm obtained by wavelength conversion with a Raman cell filled with hydrogen, while changing the incident angle from -40 degrees to 40 degrees to this thin film sample, The maker fringe was obtained by measuring the intensity of the third harmonic.

このフリンジ・パターンから三次非線形感受率χ(3)
の値として8.1X10-10esuを得た。
From this fringe pattern, the third-order nonlinear susceptibility χ (3)
The value of 8.1X10 -10 esu was obtained.

実施例3 ジメチルスルホキシド141部及び1−クロロナフタレ
ン76部の混合物に下記の化合物(c)7.9部, および5,6−ビス(オクチルチオ)−1,3−ジイミノイ
ソインドリン4.3部を加え、80℃で5時間撹拌した。
Example 3 In a mixture of 141 parts of dimethyl sulfoxide and 76 parts of 1-chloronaphthalene, 7.9 parts of the following compound (c), Then, 4.3 parts of 5,6-bis (octylthio) -1,3-diiminoisoindoline was added, and the mixture was stirred at 80 ° C for 5 hours.

室温まで冷却した後メタノール217部を加え、生成す
る沈澱を濾過し、ジメチルスルホキシド、メタノールで
洗浄した後、乾燥して化合物(C)8.3部を得た。
After cooling to room temperature, 217 parts of methanol was added, the resulting precipitate was filtered, washed with dimethylsulfoxide and methanol, and then dried to obtain 8.3 parts of compound (C).

次にシリカゲルを充填剤としたカラムクロマトグラフ
ィーを用いて、クロロホルムで展開し流出させて化合物
(C)を精製した。
Next, by using column chromatography using silica gel as a packing material, the compound (C) was purified by developing with chloroform and allowing it to flow out.

縦1cm,横3cmの石英基板上に、スピンコーティング法
により化合物(C)のクロロホルム溶液を塗布して、厚
さ0.27μmの薄膜を形成した。
A chloroform solution of the compound (C) was applied onto a quartz substrate having a length of 1 cm and a width of 3 cm by a spin coating method to form a thin film having a thickness of 0.27 μm.

ND:YAGレーザーの基本波を、水素を充填したラマンセ
ルにより波長変換して得られる波長1909nmの光を、この
薄膜試料に対して−40度から40度まで入射角を変化させ
ながら照射し、発生した第三高調波の強度を測定するこ
とによりメーカー・フリンジを得た。
The fundamental wave of the ND: YAG laser is irradiated with light with a wavelength of 1909 nm obtained by wavelength conversion with a Raman cell filled with hydrogen, while changing the incident angle from -40 degrees to 40 degrees to this thin film sample, The maker fringe was obtained by measuring the intensity of the third harmonic.

このフリンジ・パターンから三次非線形感受率χ(3)
の値とし5.2X10-10esuを得た。
From this fringe pattern, the third-order nonlinear susceptibility χ (3)
The value of 5.2X10 -10 esu was obtained.

実施例4〜12 化合物(D)〜(L)に相当する式[2]及び式
[3]の化合物を用いた他は実施例1と同様に操作して
化合物(D)〜(L)を製造した。
Examples 4 to 12 Compounds (D) to (L) were prepared in the same manner as in Example 1 except that the compounds of formula [2] and formula [3] corresponding to compounds (D) to (L) were used. Manufactured.

製造に用いた原料化合物の構造、使用量および得られ
たフタロシアニン誘導体の量を表1に示す。
Table 1 shows the structure and amount of the starting compound used in the production and the amount of the obtained phthalocyanine derivative.

これらの化合物(D)〜(L)を実施例1と同様の操
作により、それぞれ第2表に示す厚さの薄膜を石英基板
上に形成し、実施例1と同様の方法で三次非線形感受率
χ(3)を測定した。
These compounds (D) to (L) were formed into thin films having the thicknesses shown in Table 2 on a quartz substrate by the same operation as in Example 1, and the third-order nonlinear susceptibility was obtained by the same method as in Example 1. χ (3) was measured.

測定結果を第2表に示す。 Table 2 shows the measurement results.

(発明の効果) 本発明によれば、従来の有機非線形光学材料に比し、
これらと同等以上の三次非線形感受率を有する有機非線
形光学材料が提供される。
(Effect of the Invention) According to the present invention, as compared with the conventional organic nonlinear optical material,
An organic nonlinear optical material having a third-order nonlinear susceptibility equal to or higher than these is provided.

本発明によれば空気中で極めて安定であり、かつ耐熱
安定性を有するため、保存及び取り扱いが容易な有機非
線形光学材料が提供される。
According to the present invention, an organic nonlinear optical material that is extremely stable in air and has heat resistance stability is provided, which is easy to store and handle.

本発明によれば、容易に薄膜形成ができ、かつ容易に
膜厚制御のできる有機非線形光学材料が提供される。
According to the present invention, there is provided an organic nonlinear optical material in which a thin film can be easily formed and the film thickness can be easily controlled.

さらに本発明によれば、応答速度の速い非線形光学材
料として、光エレクトロニクス分野における種々の素子
として適用できる有機非線形光学材料が提供される。
Further, according to the present invention, there is provided an organic nonlinear optical material applicable as various elements in the field of optoelectronics, as a nonlinear optical material having a high response speed.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記式[1]で表わされるフタロシアニン
誘導体の少なくとも1種類を成分として含有する有機非
線形光学材料。 式[1] 〔式中,R1〜R22はそれぞれ独立に水素原子,ハロゲン原
子,シアノ基,ニトロ基,カルボキシ基,スルホ基,置
換基を有してもよい脂肪族炭化水素基,置換基を有して
もよい芳香族炭化水素基,置換基を有してもよい芳香族
複素環基,−OR23,−SR24,−NR25R26,−SO2NR27R28,−C
ONR29R30,−NHCOR31,−CO2R32,−N=NR33,−X(CH2CH
2Y)zR34を表わす。 R23〜R34は水素原子,置換基を有してもよい脂肪族炭化
水素基,置換基を有してもよい芳香族炭化水素基,置換
基を有してもよい芳香族複素環基を表わす。またXおよ
びYはそれぞれ独立に酸素原子,あるいは硫黄原子を表
わし,zは正の整数を表わす。〕
1. An organic nonlinear optical material containing, as a component, at least one phthalocyanine derivative represented by the following formula [1]. Equation [1] [In the formula, R 1 to R 22 each independently have a hydrogen atom, a halogen atom, a cyano group, a nitro group, a carboxy group, a sulfo group, an optionally substituted aliphatic hydrocarbon group, or a substituent Aromatic hydrocarbon group, optionally substituted aromatic heterocyclic group, -OR 23 , -SR 24 , -NR 25 R 26 , -SO 2 NR 27 R 28 , -C
ONR 29 R 30 , -NHCOR 31 , -CO 2 R 32 , -N = NR 33 , -X (CH 2 CH
2 Y) Represents zR 34 . R 23 to R 34 are a hydrogen atom, an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, an aromatic heterocyclic group which may have a substituent Represents X and Y each independently represent an oxygen atom or a sulfur atom, and z represents a positive integer. ]
JP17877990A 1990-07-06 1990-07-06 Organic nonlinear optical material Expired - Lifetime JP2670462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17877990A JP2670462B2 (en) 1990-07-06 1990-07-06 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17877990A JP2670462B2 (en) 1990-07-06 1990-07-06 Organic nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH0470630A JPH0470630A (en) 1992-03-05
JP2670462B2 true JP2670462B2 (en) 1997-10-29

Family

ID=16054490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17877990A Expired - Lifetime JP2670462B2 (en) 1990-07-06 1990-07-06 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JP2670462B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182049B2 (en) * 2021-02-12 2022-12-02 東洋インキScホールディングス株式会社 Near-infrared absorbing dye, near-infrared absorbing composition, and optical filter

Also Published As

Publication number Publication date
JPH0470630A (en) 1992-03-05

Similar Documents

Publication Publication Date Title
Kulyk et al. Metal-induced efficient enhancement of nonlinear optical response in conjugated azo-based iminopyridine complexes
Wortmann et al. Design of optimized photorefractive polymers: a novel class of chromophores
Huijts et al. Length dependence of the second-order polarizability in conjugated organic molecules
Sudharsana et al. Growth and characterization of hydroxyethylammonium picrate single crystals for third-order nonlinear optical applications
Guichaoua et al. UV irradiation induce NLO modulation in photochromic styrylquinoline-based polymers: Computational and experimental studies
Bosshard et al. Second-order nonlinear optical organic materials: recent developments
AU2020202566A1 (en) Stable free radical chromophores and mixtures thereof, processes for preparing the same, nonlinear optic materials, and uses thereof in nonlinear optical applications
Marinotto et al. Photoswitching of the second harmonic generation from poled phenyl-substituted dithienylethene thin films and EFISH measurements
JP2670463B2 (en) Organic nonlinear optical material
JP2670462B2 (en) Organic nonlinear optical material
Ravi et al. Experimental and theoretical studies on various linear and non-linear optical properties of 3-aminopyridinium 3, 5-dinitrobenzoate for photonic applications
JPH07104536B2 (en) Non-linear optical element
Valarmathi et al. Growth and characterization of organic nonlinear optical material: hemikis (piperazine) 4-hydroxybenzoic acid monohydrate single crystal
Gandhimathi et al. Effect of substituent position on the properties of chalcone isomer single crystals
Mircea et al. Tuning NLO susceptibility in functionalized DNA
JP2584680B2 (en) Organic nonlinear optical material
Ranjith Emmanuel et al. Growth of 2-amino-5-chloropyridinium 5-sulfosalicylate (2A5CP5S) single crystals: investigation of physicochemical properties for nonlinear optical applications
Kamath et al. Preparation, characterization and study on the nonlinear optical parameters of novel biphenyl-4-carbohydrazide derivative
Rao et al. Third-order nonlinear optical interactions in Tetrabenzporphyrins
Yang et al. Enhanced electro-optic activity and thermal stability by introducing rigid steric hindrance groups into double-donor chromophore
JPH03211532A (en) Organic nonlinear optical material
JP2680795B2 (en) Nonlinear optical element and nonlinear optical material
Haleshappa et al. Structure and property relationship of methoxy substituted novel organic crystals for photonic applications
Li et al. Resonant third-order optical nonlinearities of 1, 3-bis [(3, 3-dimethylindolin-2-ylidene) methyl] croconine
Baageshri et al. Synthesis, growth and characterization of new organic 4-N, N-dimethylamino-4′-N′-methylstilbazolium 2, 4-dinitrobenzenesulfonate (DSDNS) single crystal for nonlinear optical applications