[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2663819B2 - Manufacturing method of silicon carbide fiber - Google Patents

Manufacturing method of silicon carbide fiber

Info

Publication number
JP2663819B2
JP2663819B2 JP4347064A JP34706492A JP2663819B2 JP 2663819 B2 JP2663819 B2 JP 2663819B2 JP 4347064 A JP4347064 A JP 4347064A JP 34706492 A JP34706492 A JP 34706492A JP 2663819 B2 JP2663819 B2 JP 2663819B2
Authority
JP
Japan
Prior art keywords
fiber
silicon carbide
fibers
heating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4347064A
Other languages
Japanese (ja)
Other versions
JPH06192917A (en
Inventor
薫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OJI SEISHI KK
Original Assignee
OJI SEISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OJI SEISHI KK filed Critical OJI SEISHI KK
Priority to JP4347064A priority Critical patent/JP2663819B2/en
Priority to EP19930120803 priority patent/EP0603888B1/en
Priority to DE1993625350 priority patent/DE69325350T2/en
Publication of JPH06192917A publication Critical patent/JPH06192917A/en
Priority to US08/745,206 priority patent/US5676918A/en
Application granted granted Critical
Publication of JP2663819B2 publication Critical patent/JP2663819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化珪素繊維の製造法
に関するものである。さらに詳しくは、本発明は、複合
材料の強化繊維あるいは断熱材などとして有用な炭化珪
素繊維の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silicon carbide fibers. More specifically, the present invention relates to a method for producing a silicon carbide fiber useful as a reinforcing fiber of a composite material or a heat insulating material.

【0002】[0002]

【従来の技術】従来からの炭化珪素繊維の製造法として
は、有機珪素化合物を前駆体とする方法、および直径数
μmの炭素繊維やタングステン線にCVDや蒸着などに
よって炭化珪素を被覆する方法がある。
2. Description of the Related Art Conventional methods for producing silicon carbide fibers include a method using an organic silicon compound as a precursor, and a method in which carbon fibers or tungsten wires having a diameter of several μm are coated with silicon carbide by CVD or vapor deposition. is there.

【0003】前者の方法の例としては、特開昭59−3
3681に記載されているように、ジメチルジクロルシ
ランから金属ナトリウムを用いて脱塩素反応によりポリ
ジメチルシランを合成し、さらに熱分解反応によりポリ
カルボシランを合成する。得られたポリマーを溶融紡糸
し、空気中100〜190℃で加熱して熱酸化不融化処
理を行った後、不活性ガス気流中で1200〜1500
℃で焼成する方法が挙げられる。
[0003] An example of the former method is disclosed in
As described in No. 3681, polydimethylsilane is synthesized from dimethyldichlorosilane using sodium metal by a dechlorination reaction, and polycarbosilane is synthesized by a thermal decomposition reaction. The obtained polymer is melt-spun and heated in air at 100 to 190 ° C. to perform a thermal oxidation infusibility treatment, and then in an inert gas stream at 1200 to 1500.
And a method of baking at ℃.

【0004】また、後者の方法の例としては、特開昭6
0−231820に記載されるように、炭素繊維を一酸
化珪素(SiO)ガスと加熱,反応させる方法が挙げら
れるが、しかしながら、この方法では炭素繊維のごく表
面にしか炭化珪素が被覆されず、内部まで完全に炭化珪
素化された炭化珪素繊維は得られないという問題があっ
た。
An example of the latter method is disclosed in
As described in Japanese Patent Publication No. 0-231820, there is a method of heating and reacting carbon fibers with silicon monoxide (SiO) gas. However, in this method, only the very surface of the carbon fibers is coated with silicon carbide. There is a problem that silicon carbide fibers completely siliconized to the inside cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】炭化珪素被覆処理した
炭素繊維は、繊維のごく表面にしか炭化珪素が存在しな
いため、酸化雰囲気中で高温処理すると、繊維内部の炭
素が酸化されて中空となり、重量が減少し強度が急激に
低下するという問題点があった。本発明は、上記の問題
点を解決し、酸化雰囲気中で高温処理しても酸化されて
繊維が中空になることなく、あるいは重量が減少したり
強度が低下することのない、高温における強度および耐
熱性にすぐれ、内部まで緻密に炭化珪素化された炭化珪
素繊維を製造する方法を提供しようとするものである。
Since the carbon fiber coated with silicon carbide has silicon carbide only on the very surface of the fiber, when the carbon fiber is treated at high temperature in an oxidizing atmosphere, the carbon inside the fiber is oxidized and becomes hollow. There was a problem that the weight was reduced and the strength was rapidly reduced. The present invention solves the above-mentioned problems, the fiber is not oxidized even when treated at a high temperature in an oxidizing atmosphere, so that the fiber does not become hollow, or the weight does not decrease or the strength does not decrease. An object of the present invention is to provide a method for producing silicon carbide fibers having excellent heat resistance and densely siliconized to the inside.

【0006】[0006]

【課題を解決するための手段】本発明の第一は、繊維径
が5〜100μmで比表面積が100〜2500m 2
gの多孔質炭素繊維と一酸化珪素(SiO2)ガスと
を、800〜2000℃で反応させることを特徴とする
炭化珪素繊維の製造法である。本発明の第二は、前記多
孔質炭素繊維が繊維径5〜20μmで比表面積が700
〜2000m 2 /gの活性炭繊維であることを特徴とす
る本発明第一に記載の炭化珪素繊維の製造法である。
SUMMARY OF THE INVENTION The first aspect of the present invention relates to a fiber diameter.
Is 5 to 100 μm and the specific surface area is 100 to 2500 m 2 /
g of porous carbon fiber and silicon monoxide (SiO 2) gas at a temperature of 800 to 2000 ° C.
This is a method for producing silicon carbide fibers . The second aspect of the present invention is that
Porous carbon fiber having a fiber diameter of 5 to 20 μm and a specific surface area of 700
20002000 m 2 / g activated carbon fiber
1 is a method for producing a silicon carbide fiber according to the first aspect of the present invention.

【0007】本発明に用いる多孔質炭素繊維の種類は、
特に限定されないが、細孔径が数オングストロームから
数百オングストロームの均一な細孔を繊維内部に多量に
含み、100〜2500m2 /gの比表面積値を有す
る、繊維径が5〜100μmである炭素繊維を有利に用
いることができる。炭素繊維の比表面積が100m2
g未満では、内部まで完全に炭化珪素化されずに、表面
が炭化珪素で被覆されるだけであり、一方、2500m
2 /gを越えると、得られる炭化珪素繊維の強度が弱く
なり取扱いが難しくなる。さらに、強度の大きい炭化珪
素繊維を得るために、多孔質炭素繊維は直線状であり、
しかも繊維表面が滑らかで欠陥がないもの、できるなら
ば繊維内部にも欠陥のないものを用いるのが望ましい。
The type of the porous carbon fiber used in the present invention is as follows.
Although not particularly limited, carbon fibers having a large diameter of several angstrom to several hundred angstroms in a large amount inside the fiber, having a specific surface area of 100 to 2500 m 2 / g, and having a fiber diameter of 5 to 100 μm. Can be advantageously used. Specific surface area of carbon fiber is 100 m 2 /
If it is less than g, the inside is not completely siliconized and the surface is merely covered with silicon carbide.
If it exceeds 2 / g, the strength of the obtained silicon carbide fiber becomes weak, and handling becomes difficult. Further, in order to obtain a silicon carbide fiber having high strength, the porous carbon fiber is linear,
In addition, it is desirable to use a fiber whose surface is smooth and free from defects, and if possible, a material free from defects inside the fiber.

【0008】本発明に用いる多孔質炭素繊維のなかで
、とりわけ炭素繊維を賦活することによって得られる
活性炭繊維が好適である。活性炭繊維としては、例えば
セルロース系繊維、アクリロニトリル系繊維、石油ピッ
チ系繊維、ポリイミド系繊維およびフェノール系繊維を
原料とした炭素繊維を、水蒸気等を接触させながら、脱
水炭化処理温度より高い450〜1000℃まで加熱す
公知の賦活処理によって得られ、内部まで緻密な炭化
珪素繊維を得るためには繊維径が5〜20μm比表面
積が700〜2000m2/gの活性炭繊維でなければ
ならない。活性炭繊維の比表面積が700m2/g未満
では、繊維内部まで完全に炭化珪素化されずに、表面が
炭化珪素で被覆されるだけであり、一方、2000m2
/gを超えると、得られる炭化珪素の強度が弱くなり、
取扱いが難しくなる。
Among the porous carbon fibers used in the present invention, activated carbon fibers obtained by activating the carbon fibers are particularly preferable . Examples of activated carbon fibers include cellulosic fibers, acrylonitrile fibers, petroleum pitch fibers, polyimide fibers and phenol fibers.
Raw material and the carbon fibers, while contacting the water vapor or the like, obtained by the known activation treatment of heating up to 450-1,000 ° C. higher than the dehydration carbonizing temperatures, the fiber diameter in order to obtain a dense silicon carbide fibers to the inside Unless the activated carbon fiber has a specific surface area of 5 to 20 μm and a specific surface area of 700 to 2000 m 2 / g.
No. If the specific surface area is less than 700 meters 2 / g of activated carbon fibers, without being fully silicon carbide of the interior fibers, only the surface is coated with silicon carbide, whereas, 2000 m 2
/ G, the strength of the obtained silicon carbide becomes weak,
Handling becomes difficult.

【0009】本発明に用いる一酸化珪素(SiO)ガス
の供給源は特に限定されないが、一酸化珪素,二酸化珪
素の塊または粉末、あるいは珪素と一酸化珪素,珪素と
二酸化珪素の微粒子をよく混合したものを、10-6〜1
0Paの減圧下で500℃以上に加熱して発生するSi
Oガスを用いるのが特に好適である。
The supply source of the silicon monoxide (SiO) gas used in the present invention is not particularly limited, but silicon monoxide, silicon dioxide lump or powder, or silicon and silicon monoxide, or silicon and silicon dioxide fine particles are well mixed. 10-6 to 1
Si generated by heating to 500 ° C. or more under reduced pressure of 0 Pa
It is particularly preferable to use O gas.

【0010】加熱は内熱式,外熱式または誘導加熱式の
減圧下またはガス雰囲気あるいは気流中で試料の焼成が
可能な縦型あるいは横型の加熱炉を用いる。炉はアルミ
ナ,マグネシア,ジルコニア,ムライトまたは炭素など
の材質からなる管状または箱型炉を用いるのが好適であ
る。
For the heating, a vertical or horizontal heating furnace capable of sintering a sample under reduced pressure of an internal heating type, an external heating type or an induction heating type, or in a gas atmosphere or an air stream is used. It is preferable to use a tubular or box furnace made of a material such as alumina, magnesia, zirconia, mullite or carbon.

【0011】さらに炭化珪素は、SiOガスが多孔質炭
素繊維の細孔内に入り込み、細孔壁の炭素と反応して生
成するため、細孔内にガスが拡散しやすいように周囲の
SiOガス濃度は高いほうが望ましい。特に好適なガス
濃度は真空度にして10-3〜102 Paであり、この様
にSiOガスをより多く発生させるためには、発生源と
なる物質として粒径が0.1〜5000μmの微粉末あ
るいは粒状のものを用いることが望ましく、中でも1〜
100μmの微粒子が好適であり、かつ加熱炉内を10
Pa以上のできるだけ高い真空度にし、500〜170
0℃、中でも1000〜1400℃に加熱するのが特に
望ましい。
[0011] Further, silicon carbide is generated when SiO gas enters the pores of the porous carbon fiber and reacts with carbon on the pore walls, so that the surrounding SiO gas is diffused so that the gas is easily diffused into the pores. The higher the concentration, the better. A particularly preferable gas concentration is 10 −3 to 10 2 Pa in terms of vacuum. In order to generate more SiO gas as described above, a fine particle having a particle size of 0.1 to 5000 μm is used as a source material. It is desirable to use powder or granular ones,
Fine particles of 100 μm are preferable, and 10 μm
Vacuum degree as high as Pa or higher, 500-170
It is particularly desirable to heat to 0 ° C, especially 1000 to 1400 ° C.

【0012】細孔内に拡散したSiOガスが細孔壁の炭
素と反応するためには、外からエネルギーを与える必要
があり、温度が低いと炭化珪素が生成しない。従って炭
化珪素生成のためには、SiOガスが細孔内に拡散した
後、多孔質炭素繊維および細孔内部のSiOガスを加熱
する必要がある。
In order for the SiO gas diffused into the pores to react with the carbon on the pore walls, it is necessary to apply energy from the outside. If the temperature is low, silicon carbide is not generated. Therefore, in order to generate silicon carbide, it is necessary to heat the porous carbon fiber and the SiO gas inside the pores after the SiO gas diffuses into the pores.

【0013】加熱方法としては内熱式,外熱式または誘
導加熱式の減圧下またはガス雰囲気あるいは気流中で試
料の焼成が可能な、アルミナ,マグネシア,ジルコニ
ア,ムライトまたは炭素などの材質からなる管状または
箱型の縦型あるいは横型の加熱炉を用い、真空中あるい
はアルゴン,窒素などの不活性ガス雰囲気中で800〜
2000℃に加熱するのが望ましい。加熱温度が800
℃未満では、反応が不十分で内部まで完全に炭化珪素化
されず、一方、2000℃を越えると、生成した炭化珪
素の微粒子が成長し、折れやすく強度が低下する。特
に、内部まで完全に緻密な炭化珪素を生成するために
は、加熱温度は1000〜1400℃が好適であり、ウ
ィスカーの生成を押さえるためには、10Pa以下の真
空下で反応させることが望ましい。
As a heating method, a tube made of a material such as alumina, magnesia, zirconia, mullite, or carbon, which can sinter a sample under reduced pressure of an internal heating type, an external heating type, or an induction heating type, or in a gas atmosphere or a gas stream. Alternatively, using a box-shaped vertical or horizontal heating furnace, in a vacuum or in an atmosphere of an inert gas such as argon or nitrogen, 800 to
It is desirable to heat to 2000 ° C. Heating temperature is 800
If the temperature is lower than ℃, the reaction is insufficient and silicon carbide is not completely converted into the interior. On the other hand, if the temperature is higher than 2,000 ° C, the generated silicon carbide fine particles grow, break easily, and the strength is lowered. In particular, the heating temperature is preferably from 1000 to 1400 ° C. in order to generate silicon carbide that is completely dense inside, and it is desirable to carry out the reaction under a vacuum of 10 Pa or less to suppress the generation of whiskers.

【0014】加熱処理時の昇温速度は、特に限定しない
が、50〜1500℃/hrが望ましい。また、加熱処
理における保持時間は1分〜2時間が好ましく、特に3
0分〜1時間30分が最適である。加熱処理が1分未満
では、反応が不十分で内部まで完全に炭化珪素化され
ず、一方、2時間を越えると、生成した炭化珪素の微粒
子が成長し、強度が低下し、折れやすくなる。
The heating rate during the heat treatment is not particularly limited, but is preferably from 50 to 1500 ° C./hr. Further, the holding time in the heat treatment is preferably 1 minute to 2 hours, particularly 3 hours.
0 minutes to 1 hour 30 minutes is optimal. If the heat treatment is performed for less than 1 minute, the reaction is insufficient and silicon carbide is not completely converted into the interior. On the other hand, if the heat treatment is performed for more than 2 hours, the generated fine particles of silicon carbide grow, the strength decreases, and the silicon carbide is easily broken.

【0015】多孔質炭素繊維とSiOガスを接触させる
方法としては、加熱炉中で上記の方法に従ってSiOガ
ス発生物質を加熱することによりSiOガスを発生さ
せ、反応炉中に導いて繊維と反応させてもよく、あるい
は、SiOガス発生物質と繊維を同じ炉内におき、双方
を同時に加熱することによってガス発生と炭化珪素生成
を同時に行ってもよい。
As a method of bringing the porous carbon fiber into contact with the SiO gas, the SiO gas-generating substance is heated in a heating furnace in accordance with the above-described method to generate a SiO gas, which is introduced into a reaction furnace to react with the fiber. Alternatively, the gas generation and the silicon carbide generation may be performed simultaneously by placing the SiO gas generating material and the fiber in the same furnace and heating both at the same time.

【0016】同じ炉内に置く方法で行う場合には、繊維
周囲のSiOガス濃度を高くするために、SiO発生物
質は上記で述べたような微粉末あるいは粒状であること
が望ましく、その重量は多孔質炭素繊維の質量に対して
2〜30倍量の過剰量で、双方の距離をなるべく小さく
するために粉末あるいは粒状のSiO発生物質の上に繊
維をのせる方法、あるいは粉末の中に繊維を埋め込み、
加熱炉内を10Pa以上のできるだけ高い真空度にし、
800〜1700℃、より好ましくは1000〜140
0℃に加熱する方法が望ましい。この場合、SiOガス
を多孔質炭素繊維に高い濃度で長時間接触させるため
に、SiOガス発生温度における昇温速度はなるべく遅
い方が望ましいが、50〜1500℃/hr、より好ま
しくは200〜1000℃/hrであり、加熱処理にお
ける保持時間も1分〜2時間、より好ましくは30分〜
1時間30分である。
In the case of the method of placing in the same furnace, in order to increase the concentration of SiO gas around the fiber, it is desirable that the SiO generating substance is in the form of fine powder or granules as described above, and its weight is A method of placing fibers on a powder or granular SiO generating substance in order to make the distance between them as small as possible with an excess of 2 to 30 times the mass of the porous carbon fibers, Embed,
Make the inside of the heating furnace as high as possible 10 Pa or more,
800 to 1700 ° C, more preferably 1000 to 140
A method of heating to 0 ° C. is desirable. In this case, in order to bring the SiO gas into contact with the porous carbon fiber at a high concentration for a long time, it is desirable that the rate of temperature rise at the SiO gas generation temperature be as low as possible, but 50 to 1500 ° C./hr, more preferably 200 to 1000 ° C. ° C / hr, and the holding time in the heat treatment is also 1 minute to 2 hours, more preferably 30 minutes to 2 hours.
1 hour and 30 minutes.

【0017】また、強度の大きい炭化珪素繊維を製造す
るためには、多孔質炭素繊維をSiOガスと接触させて
炭化珪素を生成させる際に、繊維を緊張状態にしておく
ことが望ましい。例えば、長繊維を緊張させたままその
両端を接着剤やおもりで留めたり、あるいは長繊維の一
端を固定し、他端におもりをつけて鉛直方向に下げるな
どの方法をとることが望ましい。
In order to produce silicon carbide fibers having high strength, it is desirable that the fibers be kept in tension when the porous carbon fibers are brought into contact with SiO gas to generate silicon carbide. For example, it is desirable to take a method of fixing both ends of the long fiber with an adhesive or a weight while keeping the long fiber in tension, or fixing one end of the long fiber and attaching a weight to the other end and lowering it in the vertical direction.

【0018】このようにして得られた炭化珪素繊維は、
表面が滑らかで硬く、内部まで完全に緻密に炭化珪素化
されているため、酸化雰囲気中において800〜150
0℃の高温で処理しても重量減少および強度の減少が見
られない。
The silicon carbide fiber thus obtained is
Since the surface is smooth and hard and silicon carbide is completely and densely formed to the inside, 800 to 150 in an oxidizing atmosphere.
No loss in weight and strength is observed when treated at a high temperature of 0 ° C.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0020】実施例1 一酸化珪素微粉末(粒径5〜50μm)2gの上に、フ
ェノール系炭素繊維を賦活することによって得られた活
性炭繊維(繊維径10μm,比表面積1500m2
g、繊維長100mm)の長繊維束0.1gをのせ、繊
維の両端をおもりをのせることによって固定した。固定
した繊維と一酸化珪素粉末を、内熱式の管状炭素炉の中
に入れ、1Paまで減圧し、3000℃/hrの昇温速
度で1000℃まで昇温し、その後1200℃まで20
0℃/hrの昇温速度で昇温した後、1時間保持して焼
成を行った後、再び200℃/hrの速度で1000℃
まで降温した後、室温まで自然冷却した。
Example 1 Activated carbon fiber (fiber diameter 10 μm, specific surface area 1500 m 2 / g) obtained by activating phenolic carbon fiber on 2 g of silicon monoxide fine powder (particle size 5 to 50 μm)
g, fiber length 100 mm), and 0.1 g of a long fiber bundle was placed thereon, and both ends of the fiber were fixed by placing weights. The fixed fiber and the silicon monoxide powder are put into an internally heated tubular carbon furnace, the pressure is reduced to 1 Pa, the temperature is raised to 1000 ° C. at a rate of 3000 ° C./hr, and then the temperature is increased to 1200 ° C.
After the temperature was raised at a rate of 0 ° C./hr, the temperature was maintained for 1 hour, and the firing was performed, and then 1000 ° C. again at a rate of 200 ° C./hr.
After cooling to room temperature, the mixture was naturally cooled to room temperature.

【0021】得られた繊維を、臭化カリウム錠剤法によ
って赤外吸収スペクトルを調べたところ、900cm-1
付近に炭化珪素の吸収がみられ、またX線回折装置を用
いて結晶の回折角度を調べたところ、CuKα2θ=3
5.7度付近に緩やかなピークが見られたことから、こ
の繊維は微結晶質の炭化珪素繊維であることがわかっ
た。さらに得られた繊維を、酸化雰囲気中で1000
℃,1時間加熱したが、重量減少は全く見られなかった
ことから、繊維は炭素を含まず、内部まで完全に炭化珪
素化していることがわかった。この繊維の束約100〜
300本を、引張試験機を用いて2mm/minの引張
速度で引張試験を行い、10回の平均を求めたところ、
引張強度は1100MPa、また弾性率は120GPa
であった。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, it was 900 cm -1.
The absorption of silicon carbide was observed in the vicinity, and the diffraction angle of the crystal was examined using an X-ray diffractometer. CuKα2θ = 3
Since a gentle peak was observed at around 5.7 degrees, this fiber was found to be a microcrystalline silicon carbide fiber. Further, the obtained fiber was put in an oxidizing atmosphere at 1000
After heating at 1 ° C. for 1 hour, no weight loss was observed, indicating that the fibers contained no carbon and were completely siliconized to the inside. This bundle of fibers is about 100 ~
300 pieces were subjected to a tensile test at a tensile speed of 2 mm / min using a tensile tester, and an average of 10 times was obtained.
Tensile strength is 1100 MPa and elastic modulus is 120 GPa
Met.

【0022】実施例2 外熱型加熱炉内において一酸化珪素微粉末(粒径5〜5
0μm)5gを、真空度10-1Paの高真空下で、10
00℃まで昇温速度3000℃/hrで加熱し、さらに
1500℃まで1000℃/hrの昇温速度で加熱し、
SiOガスを発生させた。これとは別に、フェノール系
炭素繊維を賦活することによって得られた活性炭繊維
(繊維径10μm、比表面積1500m2 /g、長さ5
00mm)の束0.5gの一端を固定し、他端におもり
をつけて鉛直方向に緊張させたものを外熱式の管状炉内
に置き、10-2Paまで減圧し、1000℃まで加熱
し、この中に上記で発生させたSiOガスを導き、20
0℃/hrの昇温速度で1200℃まで昇温し、1時間
保持して焼成を行った後、200℃/hrの速度で10
00℃まで降温し、その後、室温まで自然冷却した。な
お、加熱炉内において炭化珪素生成反応が終了するま
で、一酸化珪素の加熱を続けて加熱炉内にガスを供給
し、反応終了後、一酸化珪素は自然冷却した。
Example 2 In an external heating furnace, silicon monoxide fine powder (particle size: 5 to 5) was used.
0 μm) under high vacuum at a degree of vacuum of 10 −1 Pa.
Heating to 00 ° C at a heating rate of 3000 ° C / hr, and further heating to 1500 ° C at a heating rate of 1000 ° C / hr,
An SiO gas was generated. Separately, activated carbon fibers obtained by activating phenolic carbon fibers (fiber diameter 10 μm, specific surface area 1500 m 2 / g, length 5
A bundle of 0.5 g (00 mm) is fixed at one end, and the other end is attached to a weight and tensioned in the vertical direction, placed in an externally heated tubular furnace, reduced in pressure to 10 -2 Pa, and heated to 1000 ° C. Then, the SiO gas generated as described above is introduced into the
The temperature was raised to 1200 ° C. at a temperature rising rate of 0 ° C./hr, held for 1 hour and calcined, and then fired at a rate of 200 ° C./hr.
The temperature was lowered to 00 ° C., and then naturally cooled to room temperature. The heating of silicon monoxide was continued to supply gas into the heating furnace until the silicon carbide generation reaction was completed in the heating furnace, and after the reaction was completed, the silicon monoxide was naturally cooled.

【0023】得られた繊維を、臭化カリウム錠剤法によ
って赤外吸収スペクトルを調べたところ、900cm-1
付近に炭化珪素の吸収がみられ、またX線回折装置を用
いて結晶の回折角度を調べたところ、CuKα2θ=3
5.7度付近に緩やかなピークが見られたことから、こ
の繊維は微結晶質の炭化珪素繊維であることがわかっ
た。さらに得られた繊維を、酸化雰囲気中で1000
℃,1時間加熱したが、重量減少が10%程度見られ
た。この繊維の束約100〜300本を、引張試験機を
用いて2mm/minの引張速度で引張試験を行い、1
0回の平均を求めたところ、引張強度は1400MP
a、また弾性率は150GPaであった。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, it was found to be 900 cm -1.
The absorption of silicon carbide was observed in the vicinity, and the diffraction angle of the crystal was examined using an X-ray diffractometer. CuKα2θ = 3
Since a gentle peak was observed at around 5.7 degrees, this fiber was found to be a microcrystalline silicon carbide fiber. Further, the obtained fiber was put in an oxidizing atmosphere at 1000
After heating at ℃ for 1 hour, a weight loss of about 10% was observed. Approximately 100 to 300 bundles of the fibers were subjected to a tensile test at a tensile speed of 2 mm / min using a tensile tester.
When the average of 0 times was determined, the tensile strength was 1400MP.
a, and the elastic modulus was 150 GPa.

【0024】比較例1 フェノール系炭素繊維の活性炭繊維の代わりに、賦活を
行っていないフェノール系炭素繊維を用いた以外は、実
施例1と同様にして焼成を行った。
Comparative Example 1 Firing was carried out in the same manner as in Example 1 except that phenol-based carbon fibers not activated were used instead of activated carbon fibers of the phenol-based carbon fibers.

【0025】得られた繊維を、臭化カリウム錠剤法によ
って赤外吸収スペクトルを調べたところ、900cm-1
付近に吸収がみられ炭化珪素の存在が確認されたが、酸
化雰囲気中で1000℃,1時間加熱したところ、95
%の重量減少が見られ、さらに断面のSEM観察を行っ
たところ、繊維のごく表面にのみ炭化珪素が被覆してお
り、内部は全く炭化珪素化されず炭素のままであること
がわかった。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, it was found to be 900 cm -1.
Absorption was observed in the vicinity, and the presence of silicon carbide was confirmed. However, when heated at 1000 ° C. for one hour in an oxidizing atmosphere, 95%
% And a cross section was observed by SEM. As a result, it was found that only the very surface of the fiber was coated with silicon carbide, and the inside was not carbonized at all but remained carbon.

【0026】この比較例1と実施例1および2の結果か
ら明らかなように、SiOガスと炭素繊維を反応させる
場合、多孔質炭素繊維を用いることにより、繊維の内部
まで緻密で完全に炭化珪素化された繊維を得ることがで
きる。
As is clear from the results of Comparative Example 1 and Examples 1 and 2, when the SiO gas is reacted with the carbon fiber, the porous carbon fiber is used to make the inside of the fiber dense and completely silicon carbide. Fibers can be obtained.

【0027】比較例2 実施例1と全く同じ方法で、ただし、焼成温度を600
℃および2100℃として焼成を行った。
Comparative Example 2 In the same manner as in Example 1, except that the firing temperature was 600
C. and 2100.degree. C. for baking.

【0028】得られた繊維を、臭化カリウム錠剤法によ
って赤外吸収スペクトルを調べたところ、焼成温度60
0℃のものは、900cm-1付近に吸収がみられず、炭
化珪素の存在が確認されなかった。一方、焼成温度21
00℃のものは、900cm-1付近に吸収がみられ、炭
化珪素の存在が確認されたが、X線回折装置を用いて結
晶の回折角度を調べたところ、CuKα2θ=35.7
度付近に鋭いピークが見られたことから、この繊維はか
なり結晶の成長した結晶質の炭化珪素繊維であることが
わかった。また、得られた繊維を、酸化雰囲気中で10
00℃で1時間加熱したところ、焼成温度600℃のも
のは何も残らなかったが、焼成温度2100℃のもの
は、重量減少は全く見られなかったことから、繊維は内
部まで完全に炭化珪素化していることがわかった。さら
に、焼成温度2100℃で得られた繊維の束約100〜
300本を、引張試験機を用いて2mm/minの引張
速度で引張試験を行ったところ、強度が弱く測定不能で
あった。
The obtained fiber was examined for infrared absorption spectrum by potassium bromide tablet method.
At 0 ° C., no absorption was observed at around 900 cm −1 , and the presence of silicon carbide was not confirmed. On the other hand, firing temperature 21
In the case of 00 ° C., absorption was observed at around 900 cm −1 and the presence of silicon carbide was confirmed. However, when the diffraction angle of the crystal was examined using an X-ray diffractometer, CuKα2θ = 35.7.
Since a sharp peak was observed in the vicinity of the degree, it was found that this fiber was a crystalline silicon carbide fiber in which crystals had grown considerably. Further, the obtained fiber is oxidized in an oxidizing atmosphere for 10 minutes.
After heating at 00 ° C for 1 hour, none of those with a sintering temperature of 600 ° C remained, but those with a sintering temperature of 2100 ° C did not show any weight loss. It turns out that it is becoming. Furthermore, a bundle of fibers obtained at a firing temperature of 2100 ° C.
When 300 pieces were subjected to a tensile test at a tensile speed of 2 mm / min using a tensile tester, the strength was weak and measurement was impossible.

【0029】[0029]

【発明の効果】本発明によって、繊維の中心部まで緻密
で、完全に炭化珪素化された、耐熱性に優れ、強度の大
きい炭化珪素繊維を得ることができる。
According to the present invention, it is possible to obtain a silicon carbide fiber which is dense and completely siliconized up to the center of the fiber, has excellent heat resistance and high strength.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 11/12 C04B 35/56 101U D06M 11/77 D06M 11/00 B ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location D01F 11/12 C04B 35/56 101U D06M 11/77 D06M 11/00 B

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊維径が5〜100μmで比表面積が1
00〜2500m 2 /gの多孔質炭素繊維と一酸化珪素
(SiO2)ガスとを、800〜2000℃で反応させ
ることを特徴とする炭化珪素繊維の製造法。
1. A fiber having a fiber diameter of 5 to 100 μm and a specific surface area of 1
A method for producing a silicon carbide fiber, comprising reacting a porous carbon fiber of 00 to 2500 m 2 / g with a silicon monoxide (SiO 2) gas at 800 to 2000 ° C.
【請求項2】 前記多孔質炭素繊維が繊維径5〜20μ
mで比表面積が700〜2000m 2 /gの活性炭繊維
であることを特徴とする請求項1記載の炭化珪素繊維の
製造法
2. The porous carbon fiber has a fiber diameter of 5 to 20 μm.
m and activated carbon fiber having a specific surface area of 700 to 2000 m 2 / g
The silicon carbide fiber according to claim 1,
Manufacturing method .
JP4347064A 1992-12-25 1992-12-25 Manufacturing method of silicon carbide fiber Expired - Fee Related JP2663819B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4347064A JP2663819B2 (en) 1992-12-25 1992-12-25 Manufacturing method of silicon carbide fiber
EP19930120803 EP0603888B1 (en) 1992-12-25 1993-12-23 Method of producing silicon carbide fibers
DE1993625350 DE69325350T2 (en) 1992-12-25 1993-12-23 Process for the production of silicon carbide fibers
US08/745,206 US5676918A (en) 1992-12-25 1996-11-08 Method of producing silicon carbide fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4347064A JP2663819B2 (en) 1992-12-25 1992-12-25 Manufacturing method of silicon carbide fiber

Publications (2)

Publication Number Publication Date
JPH06192917A JPH06192917A (en) 1994-07-12
JP2663819B2 true JP2663819B2 (en) 1997-10-15

Family

ID=18387676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4347064A Expired - Fee Related JP2663819B2 (en) 1992-12-25 1992-12-25 Manufacturing method of silicon carbide fiber

Country Status (1)

Country Link
JP (1) JP2663819B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042297B2 (en) * 1994-04-12 2000-05-15 王子製紙株式会社 Method for producing silicon carbide material
US5922300A (en) * 1997-01-23 1999-07-13 Oji Paper Co., Ltd. Process for producing silicon carbide fibers
JPH11200158A (en) 1997-12-26 1999-07-27 Oji Paper Co Ltd Production of silicon carbide fiber
JP2004307299A (en) * 2003-04-10 2004-11-04 Japan Atom Energy Res Inst Nano-size silicon carbide tube and its manufacturing method
US8940391B2 (en) 2010-10-08 2015-01-27 Advanced Ceramic Fibers, Llc Silicon carbide fibers and articles including same
US9803296B2 (en) 2014-02-18 2017-10-31 Advanced Ceramic Fibers, Llc Metal carbide fibers and methods for their manufacture
US9275762B2 (en) 2010-10-08 2016-03-01 Advanced Ceramic Fibers, Llc Cladding material, tube including such cladding material and methods of forming the same
US10954167B1 (en) 2010-10-08 2021-03-23 Advanced Ceramic Fibers, Llc Methods for producing metal carbide materials
US9199227B2 (en) 2011-08-23 2015-12-01 Advanced Ceramic Fibers, Llc Methods of producing continuous boron carbide fibers
US10208238B2 (en) 2010-10-08 2019-02-19 Advanced Ceramic Fibers, Llc Boron carbide fiber reinforced articles
JP5730075B2 (en) * 2011-02-28 2015-06-03 株式会社 シリコンプラス Photocatalyst-carrying carbon fiber and photocatalyst-carrying carbon fiber filter
US9010841B1 (en) 2013-12-03 2015-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle door trim panel assembly
US10793478B2 (en) 2017-09-11 2020-10-06 Advanced Ceramic Fibers, Llc. Single phase fiber reinforced ceramic matrix composites

Also Published As

Publication number Publication date
JPH06192917A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JP3042297B2 (en) Method for producing silicon carbide material
US5676918A (en) Method of producing silicon carbide fibers
JP2663819B2 (en) Manufacturing method of silicon carbide fiber
KR101041208B1 (en) Silicon carbide fibers essentially devoid of whiskers and method for preparation thereof
Vix-Guterl et al. Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation
EP0603888B1 (en) Method of producing silicon carbide fibers
JPH11200158A (en) Production of silicon carbide fiber
Wang et al. Preparation and characterization of SiC nanowires and nanoparticles from filter paper by sol–gel and carbothermal reduction processing
JPH0718520A (en) Production of silicon carbide fiber
JPH1161573A (en) Production of silicon carbide fiber
JPH08295565A (en) Production of silicon carbide material
JPH0797281A (en) Production of silicon carbide material
JPH10266022A (en) Production of silicon carbide fiber
JP3300938B2 (en) Method for producing hollow fiber consisting essentially of silicon carbide and hollow fiber
SU680639A3 (en) Composition material
JPS5959976A (en) Production of silicon carbide coated carbon fiber
JP3921541B2 (en) Boron nitride coated aluminum borate nanocable and method for producing the same
Bernard et al. Polyborosilazane‐Derived Ceramic Fibers in the Si‐B‐C‐N Quaternary System for High‐Temperature Applications
CN107338508B (en) Method for synthesizing ultralong solid carbon fiber by autocatalysis chemical vapor deposition
JP3417459B2 (en) Crystalline silicon carbide fiber having good alkali resistance and method for producing the same
Shimizu et al. The Effect of Heat Treatment on Thermal and Strength Properties of SiC Fiber Prepared from Activated Carbon Fiber
JP2931648B2 (en) Method for producing silicon nitride coated fiber
JP3381589B2 (en) Crystalline silicon carbide fiber and method for producing the same
JP2535261B2 (en) Inorganic long fiber and method for producing the same
JPH0733561A (en) Method for modifying surface of carbon material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees