[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2659446B2 - Treatment method for defective cells in fuel cells - Google Patents

Treatment method for defective cells in fuel cells

Info

Publication number
JP2659446B2
JP2659446B2 JP2022741A JP2274190A JP2659446B2 JP 2659446 B2 JP2659446 B2 JP 2659446B2 JP 2022741 A JP2022741 A JP 2022741A JP 2274190 A JP2274190 A JP 2274190A JP 2659446 B2 JP2659446 B2 JP 2659446B2
Authority
JP
Japan
Prior art keywords
cell
defective
cells
fuel
defective cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2022741A
Other languages
Japanese (ja)
Other versions
JPH03226973A (en
Inventor
英明 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2022741A priority Critical patent/JP2659446B2/en
Publication of JPH03226973A publication Critical patent/JPH03226973A/en
Application granted granted Critical
Publication of JP2659446B2 publication Critical patent/JP2659446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池において、不良セルが発生した
ときの処理法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a processing method when a defective cell occurs in a fuel cell.

〔従来の技術〕[Conventional technology]

第3図は例えば特開昭62−246268号公報に示された従
来の燃料電池の不良セル処理法を示す説明図であり、図
において、(1)は電池スタック、(2)は単位セル、
(2A)は不良セル、(3)はガス分離板、(7)、
(8)は反応ガス供給溝、(11)は反応ガス供給溝
(7)、(8)を閉塞するための耐熱性シール剤、(1
2)は耐食性線材(13)を埋込む穿孔である。
FIG. 3 is an explanatory diagram showing a conventional method for treating a defective cell of a fuel cell disclosed in Japanese Patent Application Laid-Open No. 62-246268, in which (1) is a cell stack, (2) is a unit cell,
(2A) is a defective cell, (3) is a gas separation plate, (7),
(8) is a reaction gas supply groove, (11) is a heat-resistant sealant for closing the reaction gas supply grooves (7) and (8), (1)
2) is a perforation for embedding the corrosion resistant wire (13).

次に動作について説明する。 Next, the operation will be described.

今不良セル(2A)が発生した場合、径約3mmのドリル
により不良セルに対応する反応ガス供給溝(7)(8)
の入口側及び出口側から、不良セル(2A)とこのセルに
隣接する一対のガス分離板(6)(6)の一部に亘って
穿孔(12)を施す。この穿孔はガス分離板(6)に所定
間隔をもって設けられ、その穿設長はガス分離板の中心
近くまで伸びている。尚セル及びガス分離板の切削層
は、反応ガス供給溝(7)(8)を逃げ場として溜る。
When a defective cell (2A) is generated, a reactive gas supply groove (7) (8) corresponding to the defective cell by a drill having a diameter of about 3 mm.
A hole (12) is formed from the inlet side and the outlet side of the defective cell (2A) and a part of the pair of gas separation plates (6) (6) adjacent to the defective cell (2A). The perforations are provided at predetermined intervals in the gas separation plate (6), and the perforation length extends to near the center of the gas separation plate. The cut layer of the cell and the gas separation plate accumulates in the reaction gas supply grooves (7) and (8) as an escape.

これら各穿孔(9)には、径3mmの耐食性導電線材(1
3)例えばステンレス、炭素などの線材を埋込み、この
線材(13)により不良セル(2A)に隣接する一対のガス
分離板(6)(6)間を短絡する。
Each of these perforations (9) has a corrosion-resistant conductive wire (3 mm in diameter) (1
3) A wire such as stainless steel or carbon is embedded, and the wire (13) short-circuits a pair of gas separation plates (6) and (6) adjacent to the defective cell (2A).

ついで不良セル(2A)に対応するすべての各反応ガス
供給溝(7)(8)の入口側及び出口側を耐熱性シール
材(11)により閉塞する。このシール材(11)として、
各反応ガス供給溝(7)(8)を充填するよう塗布する
フッ素系ゴムと、供給溝を含むセル端面に塗着するフッ
素系接着剤を併用する。
Next, the inlet side and the outlet side of all the reaction gas supply grooves (7) and (8) corresponding to the defective cell (2A) are closed with a heat-resistant sealing material (11). As this sealing material (11),
A fluorine-based rubber applied so as to fill the respective reaction gas supply grooves (7) and (8) and a fluorine-based adhesive applied to the end face of the cell including the supply grooves are used in combination.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の燃料電池の不良セル処理法は、ガス分離板
(6)に穿孔(12)を施すとともに、短絡用の耐食性導
電線材(13)を埋込むことが必要で、ガス分離板(6)
に割れ等が発生し、隣接セルに悪影響を及ぼすまでの問
題点があった。
The conventional method of treating a defective cell of a fuel cell requires making a hole (12) in the gas separator (6) and embedding a corrosion-resistant conductive wire (13) for short-circuiting.
There was a problem that cracks and the like occurred in the cell and adversely affected adjacent cells.

この発明は、上記のような課題を解決するためになさ
れたもので、短絡用線材を用いることなく不良セルを処
理することができる燃料電池の不良セル処理法を得るこ
とを目的とする。
The present invention has been made to solve the above-described problems, and has as its object to provide a method for treating a defective cell of a fuel cell, which can process a defective cell without using a short-circuit wire.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る燃料電池の不良セルにおいて、不良セ
ルに対応するセルへの酸化剤の充填を遮断し、この酸化
剤の充填が遮断された前記不良セルの酸化剤極で水素発
生反応を行わせることにより反応抵抗を低くし、この低
反応抵抗となった不良セルを介して上下にある正常セル
とを接続して実質的に短絡処理したものである。
In the defective cell of the fuel cell according to the present invention, the charging of the cell corresponding to the defective cell with the oxidant is interrupted, and the hydrogen generating reaction is performed at the oxidant electrode of the defective cell in which the charging of the oxidant has been interrupted. Thus, the reaction resistance is reduced, and the upper and lower normal cells are connected to each other via the defective cell having the reduced reaction resistance to substantially perform a short circuit process.

〔作用〕[Action]

この発明における酸化剤極における水素発生反応は、
酸化材の還元反応と比較して、反応抵抗が小さいため、
電流を流したときの電圧低下及び発熱を小さくできる。
The hydrogen generation reaction at the oxidant electrode in the present invention is:
Since the reaction resistance is smaller than the reduction reaction of the oxidizing material,
Voltage drop and heat generation when current flows can be reduced.

〔発明の実施例〕(Example of the invention)

以下、この発明の一実施例を図について説明する。本
例は、燃料として水素含有ガス、酸化剤として空気を用
いるリン酸型燃料電池についてである。
An embodiment of the present invention will be described below with reference to the drawings. This example relates to a phosphoric acid type fuel cell using a hydrogen-containing gas as a fuel and air as an oxidant.

第1図において、(1)は燃料電池スタック、(2)
は燃料極(3)、電解質マトリックス(4)及び酸化剤
極(5)からなる単位セル、(6)はガス分離板、
(7)、(8)は燃料供給溝及び酸化材供給溝、
(9)、(10)は燃料及び酸化材である。(11)は不良
セル(2A)に対応する酸化剤を遮断するための例えばフ
ッ素樹脂を主成分とする耐熱性シール材であり、酸化剤
供給溝(8)の入口側及び出口側(図示せず)に取付け
ている。
In FIG. 1, (1) is a fuel cell stack, (2)
Is a unit cell comprising a fuel electrode (3), an electrolyte matrix (4) and an oxidant electrode (5), (6) is a gas separator,
(7) and (8) are a fuel supply groove and an oxidant supply groove,
(9) and (10) are a fuel and an oxidizing material. (11) is a heat-resistant sealing material mainly composed of, for example, fluororesin for blocking the oxidizing agent corresponding to the defective cell (2A), and is provided on the inlet side and the outlet side (shown in the figure) of the oxidizing agent supply groove (8). )).

第2図は、電流−電圧特性を比較したもので、Aは正
常セル、Bは不良セル、Cは不良セルを上記の方法で処
理したセルを示す。
FIG. 2 shows a comparison of current-voltage characteristics. A shows a normal cell, B shows a defective cell, and C shows a cell obtained by processing a defective cell by the above method.

次に動作について説明する。正常セル(A)の場合、
開放電圧は約1V、150mA/cm2におけるセル電圧は、0.65V
を示す。不良セル(B)は、クロスオーバ等により、開
放電圧は0.75V、150mA/cm2におけるセル電圧は0.1Vと低
く、しかも経時的にも低下傾向を示す。本発明の方法で
処理したセル(C)は、開放電圧は0V、1500mA/cm2にお
けるセル電圧は、−0.05Vを示す。セル(C)の電流−
電圧特性は、次の反応によって説明できる。
Next, the operation will be described. In the case of a normal cell (A),
The open circuit voltage is about 1 V, and the cell voltage at 150 mA / cm 2 is 0.65 V
Is shown. The defective cell (B) has an open voltage of 0.75 V and a cell voltage at 150 mA / cm 2 as low as 0.1 V due to crossover or the like, and shows a tendency to decrease over time. The cell (C) treated by the method of the present invention has an open circuit voltage of 0 V and a cell voltage at 1500 mA / cm 2 of -0.05 V. Cell (C) current-
The voltage characteristic can be explained by the following reaction.

燃料極(3)では、水素の酸化反応H2→2H++2e-が起
り、酸化剤極(5)では、空気を遮断しているため、O2
の還元反応1/2O2+2H++2e-→H2Oの代りに、水素の発生
反応2H++2e-→H2が起る。白金触媒上での水素発生反応
の反応抵抗は小さいため、理論電圧(0V)からのずれ
は、約0.05Vと小さい。したがって、発熱量は、正常セ
ル(A)の場合0.07Kcal/H、不良セル(B)の場合0.15
Kcal/H・cm2に対し、本発明の方法で処理したセル
(C)の場合0.0065Kcal/H・cm2である。
In the fuel electrode (3), the oxidation reaction H 2 → 2H + + 2e hydrogen - is occurs, the oxidant electrode (5), because it blocks the air, O 2
Reduction reactions 1 / 2O 2 + 2H + + 2e - → instead of H 2 O, generation reaction 2H + + 2e hydrogen - → H 2 occurs. Since the reaction resistance of the hydrogen generation reaction on the platinum catalyst is small, the deviation from the theoretical voltage (0 V) is as small as about 0.05 V. Therefore, the calorific value is 0.07 Kcal / H for the normal cell (A) and 0.15 Kcal / H for the defective cell (B).
To Kcal / H · cm 2, a 0.0065Kcal / H · cm 2 in the case of a cell treated with the method of the present invention (C).

したがって、不良セル(B)を放置した場合、セル温
度上昇により、隣接セルに対する影響が出るが、本発明
の方法で処理することにより、セル温度上昇を防止でき
る。また、空気を遮断したため、クロスオーバに起因す
る電極の腐食による損傷等も防止できる。
Therefore, when the defective cell (B) is left unattended, the influence on the adjacent cells is caused by the increase in the cell temperature. However, the treatment according to the method of the present invention can prevent the increase in the cell temperature. Further, since the air is shut off, damage due to corrosion of the electrode due to crossover can be prevented.

なお、上記実施例では、不良セル(2A)が1セルのみ
の場合について示したが、2セル以上でもよい。また、
上記実施例では酸化剤の遮断はフッ素樹脂を主成分とす
る耐熱性シール材を、用いて行ったが、他の材料、例え
ばカーボン板等を用いてもよい。
In the above embodiment, the case where the number of defective cells (2A) is only one is shown, but two or more cells may be used. Also,
In the above-described embodiment, the blocking of the oxidizing agent is performed using a heat-resistant sealing material containing a fluororesin as a main component. However, another material such as a carbon plate may be used.

また、上記実施例では、リン酸型燃料電池の場合につ
いて説明したが、アルカリ型燃料電池でもよく、上記実
施例と同様の効果を奏する。
Further, in the above embodiment, the case of the phosphoric acid type fuel cell has been described. However, an alkaline type fuel cell may be used, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、不良セルに対応す
る酸化剤を遮断することにより、不良セルを処理できる
ので、短時間で処理できる効果があり、また、燃料電池
スッタクの寿命を延ばす効果がある。
As described above, according to the present invention, by shutting off the oxidizing agent corresponding to the defective cell, the defective cell can be processed, so that the processing can be performed in a short time, and the effect of extending the life of the fuel cell stack can be obtained. There is.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による燃料電池の不良セル
処理法を示す斜視図、第2図は、この発明の特性を示す
説明図、第3図は従来の不良セル処理法を示す断面図で
ある。 図において、(2)は単位セル、(2A)は不良セル、
(3)は燃料極、(4)は電解質マトリックス、(5)
は酸化剤極、(10)は酸化材である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a perspective view showing a method of treating a defective cell of a fuel cell according to one embodiment of the present invention, FIG. 2 is an explanatory view showing the characteristics of the present invention, and FIG. FIG. In the figure, (2) is a unit cell, (2A) is a defective cell,
(3) fuel electrode, (4) electrolyte matrix, (5)
Is an oxidizer electrode, and (10) is an oxidizer. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料極、電解質マトリックス、酸化剤極か
らなる単位セルを複数個積層した燃料電池スタックにお
いて、不良セルに対応するセルへの酸化剤の充填を遮断
し、この酸化剤の充填が遮断された前記不良セルの酸化
剤極で水素発生反応を行わせることにより反応抵抗を低
くし、この低反応抵抗となった不良セルを介して上下に
ある正常セルとを接続して実質的に短絡処理したことを
特徴とする燃料電池の不良セル処理法。
In a fuel cell stack in which a plurality of unit cells each comprising a fuel electrode, an electrolyte matrix, and an oxidant electrode are stacked, charging of cells corresponding to defective cells with an oxidant is interrupted. The reaction resistance is lowered by causing a hydrogen generation reaction at the oxidant electrode of the defective cell that has been cut off, and the normal cells above and below are connected to each other through the defective cell having the low reaction resistance to substantially reduce the reaction resistance. A method for treating a defective cell of a fuel cell, which has been subjected to a short circuit treatment.
JP2022741A 1990-02-01 1990-02-01 Treatment method for defective cells in fuel cells Expired - Lifetime JP2659446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022741A JP2659446B2 (en) 1990-02-01 1990-02-01 Treatment method for defective cells in fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022741A JP2659446B2 (en) 1990-02-01 1990-02-01 Treatment method for defective cells in fuel cells

Publications (2)

Publication Number Publication Date
JPH03226973A JPH03226973A (en) 1991-10-07
JP2659446B2 true JP2659446B2 (en) 1997-09-30

Family

ID=12091138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022741A Expired - Lifetime JP2659446B2 (en) 1990-02-01 1990-02-01 Treatment method for defective cells in fuel cells

Country Status (1)

Country Link
JP (1) JP2659446B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074034A1 (en) * 2009-12-16 2011-06-23 トヨタ自動車株式会社 Control for a fuel cell
JP6508351B2 (en) * 2015-10-05 2019-05-08 日産自動車株式会社 Fuel cell state determination method and state determination device

Also Published As

Publication number Publication date
JPH03226973A (en) 1991-10-07

Similar Documents

Publication Publication Date Title
JP3360318B2 (en) Fuel cell generator
US6764780B2 (en) Method and apparatus for increasing the temperature of a fuel cell
JPH06333586A (en) Method for stopping fuel cell
JPH08171928A (en) Laminated body of fuel cell
JP2501872B2 (en) Method for converting inert gas of fuel electrode when fuel cell is shut down
JP2924009B2 (en) How to stop fuel cell power generation
JP2008258120A (en) Device and method of aging fuel cell
JP2004039632A (en) Chemical sensor means in fuel cell system
US20110065013A1 (en) Fuel cell strack start method
JPH0824050B2 (en) Operation method of fuel cell power generation system
JPH0831320B2 (en) Fuel cell device for oxygen-containing fuel gas
JP2659446B2 (en) Treatment method for defective cells in fuel cells
JP2005259368A (en) Operation method of fuel cell
JP2011181383A (en) Fuel cell system
JP2009134987A (en) Fuel cell system
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
JP2598014B2 (en) Crossover detection method for stacked fuel cells
JPH09120830A (en) Starting method for fuel cell power-generating device
JP2006179389A (en) Fuel cell power generating device, stopping method and stopped-state keeping method of the same
JPH05335026A (en) Phosphoric acid fuel cell and method for stopping its operation
JPH03194863A (en) Method for stopping fuel cell
JP2004335448A (en) Operating method for polymer electrolyte fuel cell
JP2002042850A (en) Operation method for fuel cell generator
JP2007053020A (en) Method of controlling fuel cell, its control device, and vehicle loaded with its control device
JP2007128790A (en) Control method of fuel cell, and its controller