JP2656400B2 - Surface precision abrasive for hard and brittle materials - Google Patents
Surface precision abrasive for hard and brittle materialsInfo
- Publication number
- JP2656400B2 JP2656400B2 JP3156791A JP15679191A JP2656400B2 JP 2656400 B2 JP2656400 B2 JP 2656400B2 JP 3156791 A JP3156791 A JP 3156791A JP 15679191 A JP15679191 A JP 15679191A JP 2656400 B2 JP2656400 B2 JP 2656400B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- abrasive
- silicon dioxide
- hard
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、硬脆材料を仕上げ工程
で表面精密研磨するのに用いる研磨剤に関し、特にLi
TaO3(タンタル酸リチウム)のような機械摩耗的な
研磨機構(メカノ研磨)で研磨する、半導体材料,光学
材料,あるいは酸化物単結晶材料等の硬脆材料を、高能
率に無じょう乱鏡面に精密研磨するために用いられるメ
カノ研磨剤に関するものである。The present invention relates to a process for finishing hard and brittle materials.
Abrasives used for surface precision polishing with Si, especially Li
Polishing with TaO 3 mechanical wear specific <br/> polishing mechanisms such as (lithium tantalate) (mechanochemical polishing), semiconductor materials, optical
Material, or a hard and brittle material such as an oxide single crystal material, to a main <br/> Kano abrasive employed for precision polishing to no disturbances mirror with high efficiency.
【0002】[0002]
【従来の技術】近年、半導体材料あるいは光学材料は要
求特性に対応した多種類の材質が開発されている。この
製造加工工程はそれぞれの技術によるものの、最終仕上
げ工程は高度に鏡面加工が施されるのが一般的で、材質
に応じた研磨機構に準拠した方法によって研磨加工がな
されている。2. Description of the Related Art In recent years, various types of semiconductor materials or optical materials have been developed corresponding to required characteristics. Although this manufacturing process is based on each technique, the final finishing process is generally highly mirror-finished, and is polished by a method based on a polishing mechanism according to the material.
【0003】ここで例としてLiTaO3の場合の平面
精密研磨の工業的実例を掲げる。As an example, an industrial example of planar precision polishing in the case of LiTaO 3 will be described.
【0004】このような材料の平面精密研磨は、パッド
(合成繊維製または合成樹脂製の研磨布)を表面に貼り
付けた回転する定盤上に、研磨剤液を供給しながら被研
磨材料を押圧することによってなされるが、研磨能率お
よび研磨仕上がり面の鏡面化品位は、加工の機械的条件
及び供給使用される研磨剤液の組成によって大きく異な
った結果をもたらす。[0004] plane precision polishing of such timber fees, pad (made of synthetic fibers or synthetic resin polishing pad) to a platen that rotates adhered to the surface, the polishing object while supplying a polishing agent solution The polishing efficiency and the mirror finished quality of the polished surface have greatly different results depending on the mechanical conditions of the processing and the composition of the supplied abrasive liquid.
【0005】使用する研磨剤液は、主に経済的理由か
ら、供給、回収の繰り返しによる循環使用、更に同じ研
磨剤液によって数回の被研磨材料を加工するのが一般的
に行われている方法である。[0005] The polishing liquid to be used is generally used mainly for economical reasons, in which the supply and recovery of the polishing liquid are repeated, and the material to be polished is processed several times with the same polishing liquid. Is the way.
【0006】ところで、前述したLiTaO3 で代表的
に説明する半導体、光学材料などの高硬質の硬脆材料
は、化学的には非常に安定な材質であり、また一般的な
メカノケミカルないしメカノ精密研磨剤によっては殆ど
研磨が進行しない性質を有する材料である。 Incidentally, the above-mentioned LiTaO 3 is a typical example.
Hard and brittle materials such as semiconductors and optical materials described in
Is chemically is a very stable material and a material having a property of polishing hardly proceeds via General mechanochemical or mechano precision polishing agent.
【0007】このような材料も、ダイヤモンド、アルミ
ナ、窒化硼素、窒化ケイ素などの超硬微粉研磨材によっ
て研磨すれば研磨は進むが、しかしこの方法では研磨面
品位が粗く実用できない。[0007] If such a material is polished with a super-hard fine abrasive such as diamond, alumina, boron nitride or silicon nitride, polishing proceeds, but this method has a rough polished surface and cannot be used practically.
【0008】研磨仕上げ面精度の要求から考えると、微
細状二酸化ケイ素の水スラリー分散液によって最も高品
位面が得られるのであるが、一般的な2〜5%の濃度の
該スラリー分散液では研磨力が弱いため能率が低いとい
う欠点がある。In view of the requirement for the accuracy of the polished surface, the highest quality surface can be obtained with a water slurry dispersion of fine silicon dioxide. There is a disadvantage that efficiency is low due to weak power.
【0009】そこで工業的実例では、例えば30%の二
酸化ケイ素を含む高濃度のコロイド状二酸化ケイ素の原
液を研磨液として使用しているのが現状の技術である。Therefore, in the industrial practice, the current state of the art uses a stock solution of high-concentration colloidal silicon dioxide containing, for example, 30% silicon dioxide as a polishing liquid.
【0010】[0010]
【発明が解決しようとする課題】前記した従来の研磨技
術により、硬脆材料の高品位な鏡面が得られ、研磨能率
も新鮮な研磨剤液の使用によって効率に確保できるので
あるが、しかし、この方法では、研磨剤液を循環供給す
る場合には経過時間と共に研磨力(研磨能率)が低下
し、あるいは被研磨材料を交換して加工を繰り返すと短
期間で研磨力が低下するという問題がある。According to the above-mentioned conventional polishing technique, a high-quality mirror surface of a hard and brittle material can be obtained, and the polishing efficiency can be efficiently secured by using a fresh polishing liquid. This method has a problem that the polishing power (polishing efficiency) decreases with the lapse of time when the abrasive liquid is supplied in a circulating manner, or the polishing power decreases in a short period of time when the material to be polished is replaced and the processing is repeated. is there.
【0011】このため研磨加工の繰り返しの都度、研磨
剤液を新しいものに交換するとか、あるいは新研磨剤液
を補給しながら作業を続けている状況にあり、その結果
として作業に手数が掛かるだけに止まらず、一定研磨量
の維持管理が繁雑で、作業の再現性を損ない、更に大き
な欠点として、高濃度の研磨剤を使用し、しかも頻繁に
交換、補給を要するために大量の研磨剤液を必要とし
て、資源の浪費や経済的な問題がある。For this reason, each time the polishing process is repeated, the abrasive liquid is replaced with a new one, or the work is continued while replenishing the new abrasive liquid, and as a result, the work is troublesome. Not only that, the maintenance and management of a fixed amount of polishing is complicated, the reproducibility of work is impaired, and as a further disadvantage, a large amount of abrasive liquid is used because high-concentration abrasives are used and frequent replacement and replenishment are required. Need, waste of resources and economic problems.
【0012】そこで本発明者は、以上のような従来の硬
脆材料用の表面精密研磨剤の問題点を解消し、効率のよ
い優れた研磨作用を有しつつ、研磨剤液を循環供給しな
がら研磨加工を繰り返しても研磨性能の低下が少ない新
規な表面研磨剤を提供することを目的として本発明を完
成するに至ったものである。The present inventor has solved the above-mentioned problems of the conventional surface precision abrasive for hard and brittle materials, and circulates and supplies the abrasive liquid while having an efficient and excellent polishing action. The present invention has been completed for the purpose of providing a novel surface polishing agent in which the polishing performance is less reduced even when the polishing process is repeated.
【0013】[0013]
【課題を解決するための手段】かかる目的を実現するた
めになされた本発明よりなる表面精密研磨剤の特徴は、
半導体材料,光学材料,酸化物単結晶材料の表面を鏡面
加工するメカノ研磨に用いられる表面精密研磨剤であっ
て、沈澱法によって製造され、BET比表面積が10〜
60m2/g、及びコールターカウンター法で測定した
時の二次粒子の平均粒径が0.5〜5μmの微粒状二酸
化ケイ素を、1〜20%の濃度で水に分散した水性スラ
リー分散液であることを特徴とする。The feature of the surface precision abrasive according to the present invention, which has been made to achieve this object, is that:
Mirror surface of semiconductor material, optical material, oxide single crystal material
This is a surface precision abrasive used for mechanic polishing.
And produced by a precipitation method, and has a BET specific surface area of 10 to 10.
60 m 2 / g, and an average particle diameter of 0.5~5μm finely divided silicon dioxide secondary particles as measured by a Coulter counter method, 1-20% of the concentration in the aqueous slurry dispersion dispersed in water There is a feature .
【0014】前記した本発明の表面精密研磨剤に比べ
て、同じ沈澱法により製造された微粒状二酸化ケイ素を
用いる場合であっても、BET比表面積が60m2/g
より高い二酸化ケイ素のスラリー分散液を用いた研磨の
場合には、後述する実施例、比較例の対比で分かるよう
に、高品位鏡面は得られるものの、研磨能率が低く、実
用上好ましい性能を得ることができず、また二次粒子が
微細でBET比表面積が10〜60m2/gの範囲であ
っても、乾式法など他の製法によって製造された二酸化
ケイ素のスラリー分散液では、研磨剤液を循環供給する
と短期間で研磨能率が低下する結果となり、いずれも望
ましい性能が得られない。[0014] Compared to the above surface precision abrasive of the present invention
Te, the particulate silicon dioxide, which is produced Ri by the same precipitation method
Even when used , the BET specific surface area is 60 m 2 / g
In the case of polishing using a higher silicon dioxide slurry dispersion, as will be seen from the comparison of Examples and Comparative Examples described later.
In addition, although a high-quality mirror surface can be obtained, the polishing efficiency is low, so that practically preferable performance can not be obtained. Further, even when the secondary particles are fine and the BET specific surface area is in the range of 10 to 60 m 2 / g, In a silicon dioxide slurry dispersion manufactured by another manufacturing method such as a dry method, when the abrasive solution is supplied in a circulating manner, the polishing efficiency is reduced in a short period of time, and any desired performance is not obtained. No.
【0015】研磨剤の水性スラリー分散液中の微粒状沈
澱二酸化ケイ素濃度は、1〜20%の濃度範囲におい
て、濃度が高い程、研磨能率が高くなる傾向がある。The fine particulate precipitated silicon dioxide concentration of the aqueous slurry dispersion of abrasive is 1-20% of the concentration range odor
Te, the higher the concentration, there is a tendency that the polishing efficiency is high.
【0016】本発明による研磨剤が適用される被研磨材
料としては、代表的に酸化物単結晶が例示されるが、特
にこれに限定されるものではなく、多くの研磨剤に使用
される微粒物質としても高い摩耗研磨性が利用できる。
また用途あるいは性能改善のために、アルカリ剤、酸化
剤を併用したりあるいは界面活性剤などの剤を加えても
よく、本発明はこれを制限するものではない。The material to be polished to which the abrasive according to the present invention is applied is typically an oxide single crystal, but is not particularly limited thereto. High wear-polishing properties can be used as a substance.
Further, in order to improve use or performance, an alkali agent or an oxidizing agent may be used in combination, or an agent such as a surfactant may be added, and the present invention is not limited thereto.
【0017】[0017]
【発明の効果】本発明の研磨剤は、前記の構成をなすこ
とによって、硬脆材料である半導体材料,光学材料,酸
化物単結晶材料の表面を鏡面加工する研磨剤として優れ
た作用を発揮すると共に、従来の研磨剤では達成し得な
かった低濃度二酸化ケイ素分によって高研磨能率を得る
ことができ、更にこの性能を長期間維持することができ
る。The abrasive of the present invention has the above-mentioned structure, and can be used as a semiconductor material, an optical material, and an acid, which are hard and brittle materials.
Abrasive that mirror-processes the surface of a single-crystal material, and exhibits a high polishing efficiency with low-concentration silicon dioxide that could not be achieved with conventional abrasives. Can be maintained for a long time.
【0018】[0018]
【実施例】以下本発明を、より具体的に実施例及び比較
例を挙げて説明する。なお研磨剤液に用いた二酸化ケイ
素の各物性値、研磨剤液の調製および研磨試験は次に示
す方法により行なった。The present invention will be described below more specifically with reference to examples and comparative examples. The physical properties of the silicon dioxide used in the polishing slurry, the preparation of the polishing slurry and the polishing test were carried out by the following methods.
【0019】二酸化ケイ素の物性値 BET比表面積はカンターソープ(米国 Quantachrome
社製)を用いて1点法により測定した。また二次粒子の
平均粒径(体積平均径)はコールターカウンターTA−
II(Coulter ElectronicsIns.製)を用いて、30μア
パーチャーチューブにより測定した。 Physical properties of silicon dioxide BET specific surface area is determined by Cantersoap (Quantachrome, USA).
Was measured by the one-point method. The average particle diameter (volume average diameter) of the secondary particles was measured using a Coulter Counter TA-
Using II (manufactured by Coulter Electronics Ins.), The measurement was performed with a 30 μ aperture tube.
【0020】研磨剤液の調製 二酸化ケイ素の一定量を純水の一定量に加え、よく撹拌
して均一スラリー分散液として研磨剤液とした。Preparation of Abrasive Liquid A certain amount of silicon dioxide was added to a certain amount of pure water, and the mixture was stirred well to obtain a slurry liquid as a uniform slurry dispersion.
【0021】研磨試験 研磨試験は、厚さ0.7mmのLiTaO3単結晶基盤
を15mm角に切断し、直径100mmの接着プレート
(2700g)に3枚を等間隔に接着した。また研磨機
(小型平面研磨装置;コパル電子社製 FPM−30)
の定盤(直径300mm)表面にポリウレタン含浸ポリ
エステル不織布製パッドを貼り、上記接着プレートを該
パッド上に設置した。次に各々の研磨剤液を1時間0.
5リットルの割合で滴下しながら修正輪型研磨機によ
り、定盤回転数60rpm、研磨圧力400g/cm2
の条件で、上記LiTaO3の表面を1時間研磨した。
この間に使用した研磨剤液は全量回収し、次に上記と同
様の条件でLiTaO3の研磨を5回繰り返し、長期間
使用による研磨液の性能変化を求めた。 Polishing Test In the polishing test, a 0.7 mm thick LiTaO 3 single crystal substrate was cut into 15 mm squares, and three substrates were bonded at equal intervals to an adhesive plate (2700 g) having a diameter of 100 mm. Polishing machine (small surface polishing machine; FPM-30 manufactured by Copal Electronics)
A pad made of a polyurethane-impregnated polyester non-woven fabric was attached to the surface of a platen (diameter: 300 mm), and the adhesive plate was placed on the pad. Next, each abrasive solution was applied for 0.1 hour to 0.1 mL.
While the solution was dropped at a rate of 5 liters, the rotating speed of the platen was 60 rpm, and the polishing pressure was 400 g / cm 2 by a modified wheel type polishing machine.
Under the conditions described above, the surface of the LiTaO 3 was polished for 1 hour.
The entire amount of the polishing liquid used during this period was recovered, and then polishing of LiTaO 3 was repeated five times under the same conditions as above, and the performance change of the polishing liquid due to long-term use was determined.
【0022】研磨性能の測定 研磨レートは上記研磨試験による前後の被研磨材質Li
TaO3の厚さをマイクロメーターによって計測し、そ
の厚さの差より1時間に研磨された速度を求めた。また
研磨による仕上がり面の鏡面化度品位を目視により判断
した。 Measurement of polishing performance The polishing rate is determined based on the material to be polished Li before and after the polishing test.
The thickness of TaO 3 was measured with a micrometer, and the polishing speed per hour was determined from the difference in the thickness. In addition, the degree of specularity of the finished surface by polishing was visually judged.
【0023】実施例1〜3 実施例1,2では沈澱法によって製造されたBET比表
面積42m2/g、二次粒子の平均粒子径1.5μmの
二酸化ケイ素(ニップシールE−743)の10%及び
15%の水スラリー分散液を研磨剤液とし、更に実施例
3では同様の製造法によるそれぞれの物性値50m2/
g、1.8μmの二酸化ケイ素(ニップシールE−7
5;いづれも日本シリカ工業製)の15%水スラリー分
散液を研磨剤液として、LiTaO3の研磨試験を行
い、結果を下記の第1表に示した。Examples 1 to 3 In Examples 1 and 2, 10% of silicon dioxide (nip seal E-743) having a BET specific surface area of 42 m 2 / g and an average secondary particle size of 1.5 μm produced by the precipitation method. And a 15% aqueous slurry dispersion as an abrasive liquid, and in Example 3, the respective physical property values of 50 m 2 /
g, 1.8 μm silicon dioxide (Nip Seal E-7)
5; a polishing test of LiTaO 3 was performed using a 15% aqueous slurry dispersion of Nippon Silica Kogyo Co., Ltd. as an abrasive solution, and the results are shown in Table 1 below.
【0024】実施例1,2の結果からは、研磨剤液スラ
リー中の二酸化ケイ素は高濃度ほど速い研磨レートを示
し、15%濃度においては比較例との対比で速く、そし
て繰り返し研磨によって安定した研磨レートを保つこと
を示した。なお仕上がり面の鏡面化は比較例を含めてい
づれも同様の高品位鏡面が得られた。From the results of Examples 1 and 2, the higher the concentration of silicon dioxide in the slurry of the polishing slurry, the faster the polishing rate. At a concentration of 15%, the polishing rate was higher than that of the comparative example, and was stabilized by repeated polishing. It was shown that the polishing rate was maintained. Regardless of the mirror finish of the finished surface including the comparative example, the same high quality mirror surface was obtained.
【0025】比較例1,2 比較例1では沈澱法によって製造されたBET比表面積
130m2/g、二次粒子の平均粒子径1.4μmの二
酸化ケイ素(ニップシールE−220A)を用い、更に
比較例2では同様の製造法による各物性値95m2/
g、4.0μmの二酸化ケイ素(ニップシールE−15
0J;いづれも日本シリカ工業製)のそれぞれ15%水
スラリー分散液を研磨剤液とした場合について同様の研
磨試験を行い、結果を下記第1表に併記した。これらの
例では、高いBET比表面積を持つ沈澱法二酸化ケイ素
が二次粒子の粒子径によらず低い研磨レートを示す結果
となった。Comparative Examples 1 and 2 In Comparative Example 1, silicon dioxide (nip seal E-220A) having a BET specific surface area of 130 m 2 / g and an average secondary particle diameter of 1.4 μm produced by the precipitation method was used. In Example 2, each physical property value was 95 m 2 /
g, 4.0 μm silicon dioxide (Nip Seal E-15)
The same polishing test was carried out for the case where a 15% aqueous slurry dispersion (0J; both manufactured by Nippon Silica Kogyo Co., Ltd.) was used as an abrasive liquid, and the results are shown in Table 1 below. In these examples, the precipitated silicon dioxide having a high BET specific surface area resulted in a low polishing rate regardless of the particle diameter of the secondary particles.
【0026】比較例3 粒子径0.08μmの二酸化ケイ素30%を含むコロイ
ド状分散液(コロイダルシリカ)を、希釈など行わない
原液を使用して研磨試験した。結果は併せて第1表に比
較表示した。Comparative Example 3 A colloidal dispersion (colloidal silica) containing 30% of silicon dioxide having a particle diameter of 0.08 μm was subjected to a polishing test using a stock solution which was not diluted. The results are shown in Table 1 for comparison.
【0027】製法形状の異なるコロイド状二酸化ケイ素
の場合の研磨レートは、高いスラリー濃度にも拘らず濃
度効果は無く、特に繰り返し研磨によって性能が大きく
低下することを示した。The polishing rate in the case of colloidal silicon dioxide having different production shapes showed no concentration effect irrespective of the high slurry concentration, and it was shown that the performance was greatly reduced especially by repeated polishing.
【0028】[0028]
【表1】 [Table 1]
【0029】上記表1の結果から明らかであるように、
本発明の研磨剤を使用した場合には、比較的低濃度の二
酸化ケイ素スラリー分散液によって高い研磨レートが得
られ、しかも研磨剤液の繰り返し使用によっても性能低
下が少なく、多数回、被研磨材料の研磨加工が安定して
行えるという効果をも併せ持った研磨剤が提供できるこ
とを示している。As is clear from the results in Table 1 above,
When the abrasive of the present invention is used, a high polishing rate can be obtained by a silicon dioxide slurry dispersion having a relatively low concentration, and the performance is reduced little by repeated use of the abrasive liquid. This shows that an abrasive having the effect of stably performing the polishing process can be provided.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/304 321 H01L 21/304 321P 21/463 21/463 Continued on the front page (51) Int.Cl. 6 Identification code Reference number in the agency FI Technical display location H01L 21/304 321 H01L 21/304 321P 21/463 21/463
Claims (1)
料の表面を鏡面加工するメカノ研磨に用いられる表面精
密研磨剤であって、沈澱法により製造され、BET比表
面積が10〜60m2/g、コールターカウンター法で
測定した時の二次粒子の平均粒子径が0.5〜5μmの
微粒状二酸化ケイ素を、1〜20%の濃度で水に分散し
た水性スラリー分散液であることを特徴とする表面精密
研磨剤1. Semiconductor material, optical material, oxide single crystal material
Surface refinement used for mechano-polishing for mirror-finish
A fine abrasive which is produced by a precipitation method , has a BET specific surface area of 10 to 60 m 2 / g, and has an average secondary particle diameter of 0.5 to 5 μm as measured by a Coulter counter method. In water at a concentration of 1-20%
Table surface precision abrasive you characterized in that an aqueous slurry dispersion
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3156791A JP2656400B2 (en) | 1991-06-27 | 1991-06-27 | Surface precision abrasive for hard and brittle materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3156791A JP2656400B2 (en) | 1991-06-27 | 1991-06-27 | Surface precision abrasive for hard and brittle materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH051279A JPH051279A (en) | 1993-01-08 |
JP2656400B2 true JP2656400B2 (en) | 1997-09-24 |
Family
ID=15635389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3156791A Expired - Lifetime JP2656400B2 (en) | 1991-06-27 | 1991-06-27 | Surface precision abrasive for hard and brittle materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2656400B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI605112B (en) * | 2011-02-21 | 2017-11-11 | Fujimi Inc | Polishing composition |
JP6559410B2 (en) * | 2014-09-30 | 2019-08-14 | 株式会社フジミインコーポレーテッド | Polishing composition |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS544919A (en) * | 1977-06-14 | 1979-01-16 | Tiger Vacuum Bottle Ind | Method of making enamel products |
JPS6116732A (en) * | 1984-07-03 | 1986-01-24 | 株式会社東芝 | X-ray diagnostic apparatus |
-
1991
- 1991-06-27 JP JP3156791A patent/JP2656400B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH051279A (en) | 1993-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW503216B (en) | Improved ceria powder | |
TWI260342B (en) | Working liquids and methods for modifying structured wafers suited for semiconductor fabrication | |
TW526259B (en) | Polishing composition | |
EP0121706B1 (en) | Method for polishing titanium carbide containing surfaces | |
TWI364450B (en) | Polishing composition | |
JPH11302634A (en) | Polishing composition and method for polishing | |
JP6107669B2 (en) | Abrasive recycling method | |
JP4211952B2 (en) | Composite particles for abrasives and slurry abrasives | |
JP2656400B2 (en) | Surface precision abrasive for hard and brittle materials | |
US3877183A (en) | Method of polishing semiconductor surfaces | |
JPWO2014017531A1 (en) | Abrasive recycling method | |
JP2783330B2 (en) | Abrasive for glass polishing | |
JPH06330025A (en) | Polishing material for glass | |
CN109913133B (en) | Efficient high-quality chemical mechanical polishing solution for yttrium aluminum garnet crystals | |
JP2003211351A (en) | Method of reducing micro projections | |
JP2783329B2 (en) | Abrasive for glass polishing | |
JP4396963B2 (en) | Polishing composition, method for preparing the same, and method for polishing a wafer using the same | |
JP2006326787A (en) | Grinding/polishing tool with fixed abrasive grains | |
JPS63114866A (en) | Method of processing glass | |
JP2000038572A (en) | Glass or quartz abrasive composition and preparation thereof | |
JP4247955B2 (en) | Abrasive composition for hard and brittle materials and polishing method using the same | |
JPH10204417A (en) | Processing aid composition, abrasive composition, surface processing and production of substrate | |
JP2001035819A (en) | Polishing slurry and polishing method using the same | |
JP2002292556A (en) | Slurry, grindstone, pad and abrasive fluid for mirror polishing of silicon wafer, and mirror polishing method using these materials | |
JP2005512833A (en) | New use of alkaline earth metal salts |