[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2646820B2 - Driving force distribution control device for four-wheel drive vehicle - Google Patents

Driving force distribution control device for four-wheel drive vehicle

Info

Publication number
JP2646820B2
JP2646820B2 JP2220752A JP22075290A JP2646820B2 JP 2646820 B2 JP2646820 B2 JP 2646820B2 JP 2220752 A JP2220752 A JP 2220752A JP 22075290 A JP22075290 A JP 22075290A JP 2646820 B2 JP2646820 B2 JP 2646820B2
Authority
JP
Japan
Prior art keywords
diameter
rear wheel
difference
tire
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2220752A
Other languages
Japanese (ja)
Other versions
JPH04103433A (en
Inventor
博樹 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2220752A priority Critical patent/JP2646820B2/en
Publication of JPH04103433A publication Critical patent/JPH04103433A/en
Application granted granted Critical
Publication of JP2646820B2 publication Critical patent/JP2646820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前後輪駆動力配分が変更可能な四輪駆動車
の駆動力配分制御装置、特に、前後輪異径タイヤ装着対
策に関する。
Description: TECHNICAL FIELD The present invention relates to a driving force distribution control device for a four-wheel drive vehicle in which the front and rear wheel driving force distribution can be changed, and more particularly, to a countermeasure for mounting front and rear wheels having different diameters.

(従来の技術) 従来、四輪駆動車の駆動力配分制御装置としては、例
えば、特開昭63−13331号公報に記載されているよう
に、前後輪回転速度差検出手段からの回転速度差検出値
に基づきクラッチ締結力を増減させ、エンジン駆動力の
前後輪配分の可変とする装置が知られていて、後輪駆動
車の長所である操縦性を生かしながら駆動輪スリップを
抑制して駆動性能を高める為、前後輪回転速度差(後輪
−前輪)とクラッチ締結力(前輪駆動トルク)との関係
を、前後輪回転速度差が小さい時には前輪駆動トルクを
小さく、前後輪回転速度差が大きくなるに従って前輪駆
動トルクが大きくなる特性が得られる設定とし、常に前
後輪回転速度差を零に収束させる方向の制御としてい
る。
2. Description of the Related Art Conventionally, as a driving force distribution control device for a four-wheel drive vehicle, for example, as disclosed in Japanese Patent Application Laid-Open No. 63-13331, the rotational speed difference from front and rear wheel rotational speed difference detecting means is known. There is known a device that increases / decreases a clutch engagement force based on a detected value and makes a distribution of front and rear wheels of an engine driving force variable, and suppresses a driving wheel slip while taking advantage of maneuverability which is an advantage of a rear wheel drive vehicle. In order to improve performance, the relationship between the front and rear wheel rotational speed difference (rear wheel-front wheel) and the clutch engagement force (front wheel drive torque) is determined. When the front and rear wheel rotational speed difference is small, the front wheel drive torque is reduced, and the front and rear wheel rotational speed difference is reduced. The setting is such that the characteristic that the front wheel drive torque increases as the value increases, and the control is such that the front and rear wheel rotational speed difference always converges to zero.

(発明が解決しようとする課題) しかしながら、このような従来の駆動力配分制御装置
にあっては、前後輪回転速度差検出値を駆動輪スリップ
による前後輪速度差とみなし、この検出値に基づきトル
ク配分用クラッチのクラッチ締結力を制御する装置であ
り、前後輪のタイヤ異径による回転速度差の影響が考慮
されていない為、このタイヤ異径分による前後輪回転速
度差だけ過剰にクラッチ締結力が付与される。
(Problems to be Solved by the Invention) However, in such a conventional driving force distribution control device, the detected value of the front and rear wheel rotational speed difference is regarded as the front and rear wheel speed difference due to the drive wheel slip, and based on this detected value. This is a device that controls the clutch engagement force of the torque distribution clutch, and does not take into account the effect of the rotational speed difference due to the tire diameter difference between the front and rear wheels. Power is applied.

即ち、第7図に示すように、前後輪回転速度差検出器
値ΔVWは、駆動輪スリップによる前後輪回転速度ΔV
S(クラッチ締結により縮小傾向)に、クラッチ締結と
は無関係に車速の上昇に応じて大きくなる前後輪のタイ
ヤ異径による回転速度差ΔVTを加えた値で出力され、車
速に応じて上昇するクラッチ締結力TM′が付与される。
That is, as shown in FIG. 7, the front and rear wheel rotational speed difference detector value ΔV W is equal to the front and rear wheel rotational speed ΔV due to the drive wheel slip.
The S (reduced by the clutch engagement tends), is output by the value obtained by adding the rotational speed difference [Delta] V T due to tire diameter difference between the front and rear wheels becomes larger in accordance with the independent increase of the vehicle speed and the clutch engagement, rises according to the vehicle speed A clutch engagement force T M ′ is provided.

その結果、特に、高速走行時において不快な上下振動
(ブルブル振動)が発生したり、クラッチ滑り(=ΔVS
+ΔVT)による激しい発熱でトランスファやディファレ
ンシャルの油温が上昇して耐久性が低下したり、燃費の
悪化をもたらす等の問題が生じる。
As a result, unpleasant vertical vibrations (bulble vibrations) occur especially during high-speed running, and clutch slippage (= ΔV S
+ ΔV T ) intense heat generation raises the oil temperature of the transfer and differential, causing problems such as a decrease in durability and deterioration of fuel efficiency.

尚、前後輪のタイヤが異径となる原因としては、テン
パータイヤ装着時や偏摩耗時やタイヤ空気圧が異なる場
合や乗員の増減により輪荷重が変化する場合等がある
が、走行時のタイヤ径をみた場合には大なり小なり異径
となっている。
Causes of the tires of the front and rear wheels having different diameters include, for example, when a tempered tire is mounted, uneven wear, when the tire pressure is different, and when the wheel load changes due to an increase or decrease in the number of occupants. When it is seen, the diameter is larger or smaller.

また、高速走行時における不快な振動は、実験によ
り確かめられたもので、その原因は明確ではないが少な
くともクラッチ締結力の変動ではなく、第8図に示すよ
うに、前後輪のタイヤ異径による回転速度差が加わるこ
とで大きな回転差のついたままの前後輪を強制的に滑り
締結した状態で走行させると駆動系で何らかの共振現象
が発生すると考えられる。
Further, the unpleasant vibration at the time of high-speed running was confirmed by an experiment, and although the cause is not clear, at least not the fluctuation of the clutch fastening force, but the variation of the tire diameter of the front and rear wheels as shown in FIG. It is considered that some resonance phenomenon occurs in the drive system when the front and rear wheels with a large difference in rotation are forcibly slid and fastened by the addition of the difference in rotation speed.

本発明は、上述のような問題に着目してなされたもの
で、前後輪のうち一方にはエンジン駆動力を直接伝達
し、他方にはトルク配分用クラッチを介して伝達するト
ルクスプリット式の四輪駆動車において、異径タイヤ装
着検出時に前後輪回転速度差対応制御の機能を失うこと
なく、トランスファやディファレンシャルの耐久性向上
や振動発生防止や燃費低下防止を図ることを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problem, and is directed to a torque split type four-wheel transmission system in which engine driving force is directly transmitted to one of front and rear wheels and transmitted to the other via a torque distribution clutch. It is an object of the present invention to improve the durability of a transfer and a differential, prevent vibrations from occurring, and prevent fuel consumption from lowering without losing the function of controlling the difference between front and rear wheel rotational speeds when detecting the mounting of different diameter tires in a wheel drive vehicle.

(課題を解決するための手段) 上記課題を解決するため本発明の四輪駆動車の駆動力
配分制御装置では、第1図のクレーム対応図に示すよう
に、前後輪の一方へのエンジン直結駆動系に対し前後輪
の他方への駆動系の途中に設けられ、伝達されるエンジ
ン駆動力を外部からの締結制御で変更可能とするトルク
配分用クラッチaと、 前後輪の回転速度差を検出する前後輪回転速度差検出
手段bと、 車速を検出する車速検出手段cと、 車体平均値が設定値を超える高速走行時に、設定トル
ク以上のクラッチトルク平均値が設定時間以上連続印加
されていることで異径タイヤ装着を検出する異径タイヤ
装着検出手段dと、 異径タイヤ装着を検出した時、車体速平均値とクラッ
チトルク平均値に基づいてタイヤ径差を演算するタイヤ
径差演算手段eと、 異径タイヤ装着の非検出時には、前後輪回転速度差検
出値が大きくなるほど高くなる締結力指令を前記トルク
配分用クラッチaへ出力し、異径タイヤ装着の検出時に
は、タイヤ径差と車速により求められるタイヤ径差分の
前後輪回転速度差を前後輪回転速度差検出値から除いた
前後輪回転速度差補正値に基づいて非検出時と同様に前
記トルク配分用クラッチaの締結力を制御する駆動力配
分制御手段fと、 を備えている事を特徴とする。
(Means for Solving the Problems) In order to solve the above problems, in the driving force distribution control device for a four-wheel drive vehicle according to the present invention, as shown in the claim correspondence diagram of FIG. 1, the engine is directly connected to one of the front and rear wheels. A clutch a for torque distribution, which is provided in the middle of the drive system to the other of the front and rear wheels to enable the transmitted engine drive force to be changed by external engagement control, and detects a rotational speed difference between the front and rear wheels. Front and rear wheel rotational speed difference detecting means b, vehicle speed detecting means c for detecting a vehicle speed, and a clutch torque average value equal to or greater than a set torque is continuously applied for a set time or more during high-speed running when the vehicle average value exceeds a set value. A different-diameter tire mounting detecting means d for detecting the mounting of a different-diameter tire, and a tire-diameter difference calculating means for calculating a tire-diameter difference based on an average value of a vehicle speed and an average value of a clutch torque when detecting the mounting of a different-diameter tire. When a different-diameter tire is not detected, a fastening force command that increases as the front and rear wheel rotational speed difference detection value increases is output to the torque distribution clutch a. When a different-diameter tire is detected, the tire diameter difference and the vehicle speed are detected. The engagement force of the torque distribution clutch a is controlled based on the front and rear wheel rotation speed difference correction value obtained by removing the front and rear wheel rotation speed difference of the tire diameter difference obtained from the tire diameter difference from the front and rear wheel rotation speed difference detection value, as in the case of non-detection. And a driving force distribution control means f.

(作用) 車体速平均値が設定値を超える高速走行時、異径タイ
ヤ装着検出手段dにおいて、設定トルク以上のクラッチ
トルク平均値が設定時間以上連続印加されていることで
異径タイヤが検出され、異径タイヤ装着が検出された
時、タイヤ径差演算手段eにおいて、車体速平均値とク
ラッチトルク平均値に基づいてタイヤ径差が演算され
る。
(Operation) During high-speed running in which the average vehicle speed exceeds the set value, the different-diameter tire mounting detecting means d detects the different-diameter tire because the clutch torque average of the set torque or more is continuously applied for the set time or more. When it is detected that the tires with different diameters are attached, the tire diameter difference calculating means e calculates the tire diameter difference based on the average vehicle speed and the average clutch torque.

そして、異径タイヤ装着の非難検出時には、駆動力配
分制御手段fにおいて、前後輪回転速度差検出値が大き
くなるほど高くなる締結力指令がトルク配分用クラッチ
aへ出力され、前後輪回転速度差検出値を駆動輪スリッ
プ情報とし、前後輪回転速度差検出値が大きいほど4輪
駆動側の駆動力配分とされ、駆動輪スリップが抑制され
る。
Then, at the time of detection of mounting of different diameter tires, the driving force distribution control means f outputs to the torque distributing clutch a a fastening force command that increases as the front and rear wheel rotational speed difference detection value increases, and detects the front and rear wheel rotational speed difference. The value is used as the drive wheel slip information, and the larger the detected value of the front and rear wheel rotational speed difference is, the more the drive force is distributed on the four-wheel drive side, so that the drive wheel slip is suppressed.

一方、異径タイヤ装着の検出時には、駆動力配分制御
手段fにおいて、タイヤ径差と車速により求められるタ
イヤ径差分の前後輪回転速度差を前後輪回転速度差検出
値から除いた前後輪回転速度差補正値に基づいて非検出
時と同様にトルク配分用クラッチaの締結力が制御され
る。
On the other hand, at the time of detecting the installation of different diameter tires, the driving force distribution control means f removes the front and rear wheel rotation speed difference from the front and rear wheel rotation speed difference of the tire diameter difference obtained from the tire diameter difference and the vehicle speed. The engaging force of the torque distribution clutch a is controlled based on the difference correction value in the same manner as in the non-detection state.

よって、前後輪回転速度差補正値は、前後輪回転速度
差検出値に含まれる異径タイヤによる前後輪回転速度差
影響分が取り除かれた値となり、異径タイヤ装着の非検
出時と同様に、前後輪回転速度差補正値が大きいほど4
輪駆動側の駆動力配分とされ、駆動輪スリップが抑制さ
れる。
Therefore, the front and rear wheel rotation speed difference correction value is a value in which the influence of the front and rear wheel rotation speed difference effect by the different diameter tire included in the front and rear wheel rotation speed difference detection value has been removed, and is the same as when non-detection of different diameter tire mounting is not performed. The larger the front and rear wheel rotational speed difference correction value,
The driving force is distributed on the wheel drive side, and the driving wheel slip is suppressed.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第2図は四輪駆動車のトルクスプリット制御システム
(駆動力配分制御装置)が適用された駆動系を含む全体
システム図であり、まず、構成を説明する。
FIG. 2 is an overall system diagram including a drive system to which a torque split control system (driving force distribution control device) of a four-wheel drive vehicle is applied. First, the configuration will be described.

実施例のトルクスプリット制御システムが適用される
車両は後輪ベースの四輪駆動車で、その駆動系には、エ
ンジン1,トランスミッション2,トランスファ入力軸3,リ
ヤプロペラシャフト4,リヤディファレンシャル5,後輪6,
トランスファ出力軸7,フロントプロペラシャフト8,フロ
ントディファレンシャル9,前輪10を備えていて、後輪6
へはトランスミッション2を経過してきたエンジン駆動
力が直接伝達され、前輪10へは前輪駆動系である前記ト
ランスファ入出力軸3,7間に設けてあるトランスファ11
を介して伝達される。
The vehicle to which the torque split control system of the embodiment is applied is a rear-wheel-based four-wheel drive vehicle, which includes an engine 1, a transmission 2, a transfer input shaft 3, a rear propeller shaft 4, a rear differential 5, and a rear differential 5. Wheel 6,
It has a transfer output shaft 7, a front propeller shaft 8, a front differential 9, and a front wheel 10, and a rear wheel 6
The engine driving force passing through the transmission 2 is directly transmitted to the front wheel 10, and the front wheel 10 is provided with a transfer 11 provided between the transfer input / output shafts 3 and 7, which is a front wheel drive system.
Is transmitted via

そして、駆動性能を操舵性能の両立を図りながら前後
輪の駆動力配分を最適に制御するトルクスプリット制御
システムは、湿式多板摩擦クラッチ11aを内蔵した前記
トラスファ11(例えば、洗願の特願昭63−325379号の明
細書及び図面を参照)と、クラッチ締結力となる制御油
圧Pcを発生する制御油圧発生装置20と、制御油圧発生装
置20に設けられたソレノイドバルブ28へ各種入力センサ
30からの情報に基づいて所定のディザー電流i*を出力す
るトルクスプリットコントローラ40とを備えている。
The torque split control system that optimally controls the distribution of the driving force between the front and rear wheels while achieving both the driving performance and the steering performance is based on the above-described truss 11 having a built-in wet multi-plate friction clutch 11a. 63-325379), a control oil pressure generator 20 for generating a control oil pressure Pc serving as a clutch engagement force, and various input sensors to a solenoid valve 28 provided in the control oil pressure generator 20.
And a torque split controller 40 that outputs a predetermined dither current i * based on the information from 30.

前記油圧制御装置20は、リリーフスイッチ21により駆
動または停止するモータ22と、該モータ22により作動し
てリザーバタンク23から吸い上げる油圧ポンプ24と、該
油圧ポンプ24からのポンプ吐出圧(一次圧)をチェック
バルブ25を介して蓄えるアキュムレータ26と、該アキュ
ムレータ26からのライン圧(二次圧)をトルクスプリッ
ト制御部40からのソレノイド駆動のディザー電流i*によ
り所定の制御油圧Pcに調整するソレノイドバルブ28とを
備え、制御油圧Pcの作動油は制御油圧パイプ29を経過し
クラッチポートに供給される。
The hydraulic control device 20 includes a motor 22 that is driven or stopped by a relief switch 21, a hydraulic pump 24 that is operated by the motor 22 and draws up from a reservoir tank 23, and a pump discharge pressure (primary pressure) from the hydraulic pump 24. An accumulator 26 stored via a check valve 25, and a solenoid valve 28 for adjusting a line pressure (secondary pressure) from the accumulator 26 to a predetermined control oil pressure Pc by a solenoid driven dither current i * from a torque split control unit 40. The hydraulic oil of the control oil pressure Pc passes through the control oil pressure pipe 29 and is supplied to the clutch port.

前記各種入力センサ30としては、第3図のシステム電
子制御系のブロック図に示すように、左前輪回転センサ
30a、右前輪回転センサ30b、左後輪回転センサ30c,右後
輪回転センサ30d,第1横加速度センサ30e,第2横加速度
センサ30fを有する。
As the various input sensors 30, as shown in the block diagram of the system electronic control system of FIG.
30a, a front right wheel rotation sensor 30b, a rear left wheel rotation sensor 30c, a rear right wheel rotation sensor 30d, a first lateral acceleration sensor 30e, and a second lateral acceleration sensor 30f.

前記トルクスプリット制御部40は、第3図のシステム
電子制御系のブロック図に示すように、左前輪速演算回
路40a,右前輪演算回路40b,左後輪速演算回路40c,右後輪
速演算回路40d,前輪速演算回路40e,後輪速演算回路40f,
回転速度差演算回路40g,締結力演算回路40h,T−i変換
回路40i,ディザー電流出力回路40j,横加速度演算回路40
l,ゲイン演算回路40m,異径タイヤ装着検出回路40n,タイ
ヤ径差演算回路40p,前後輪回転速度差不感帯設定回路40
q,フェイルセーフ回路40rを有する。
As shown in the block diagram of the system electronic control system of FIG. 3, the torque split control unit 40 includes a left front wheel speed calculation circuit 40a, a right front wheel calculation circuit 40b, a left rear wheel speed calculation circuit 40c, and a right rear wheel speed calculation circuit. Circuit 40d, front wheel speed calculation circuit 40e, rear wheel speed calculation circuit 40f,
Rotational speed difference calculation circuit 40g, fastening force calculation circuit 40h, Ti conversion circuit 40i, dither current output circuit 40j, lateral acceleration calculation circuit 40
l, gain calculation circuit 40m, different diameter tire mounting detection circuit 40n, tire diameter difference calculation circuit 40p, front and rear wheel rotational speed difference dead zone setting circuit 40
q, which has a fail-safe circuit 40r.

尚、図中、A/DはA/D変換器、D/AはD/A変換器である。In the figure, A / D is an A / D converter, and D / A is a D / A converter.

また、フェイルセーフ回路40rには警報ランプ50が接続
されている。
Further, an alarm lamp 50 is connected to the fail-safe circuit 40r.

次に、作用を説明する。 Next, the operation will be described.

第4図はトルクスプリットコントローラ40で行なわれ
る前後輪駆動力配分制御作動の流れを示すフローチャー
トで、以下、各ステップについて順に説明する。
FIG. 4 is a flowchart showing the flow of the front and rear wheel driving force distribution control operation performed by the torque split controller 40. Each step will be described below in order.

ステップ80では、左前輪速VWFL,右前輪速VWFR,左後
輪速VWRL,右後輪速VWRR,第1横加速度YG1が、第2横
加速度YG2が入力される。
In step 80, the left front wheel speed V WFL , the right front wheel speed V WFR , the left rear wheel speed V WRL , the right rear wheel speed V WRR , the first lateral acceleration Y G1 , and the second lateral acceleration Y G2 are input.

ステップ81では、入力処理として、上記左前輪速VWFL
と右前輪速VWFRとの平均値により前輪速VWFが演算さ
れ、上記左後輪速VWRLと右後輪速VWRRとの平均値により
後輪速VWRが演算され、第1横加速度YG1と第2横加速度
YG2との平均値により横加速度YGが演算され、前輪速VWF
がそのまま車体速Viとして設定される。
In step 81, as the input processing, the left front wheel speed V WFL
The front wheel speed V WF is calculated from the average value of the front right wheel speed V WFR and the right front wheel speed V WFR, and the rear wheel speed V WR is calculated from the average value of the left rear wheel speed V WRL and the right rear wheel speed V WRR. Acceleration Y G1 and second lateral acceleration
The lateral acceleration Y G is calculated from the average value of Y G2 and the front wheel speed V WF
There is as it is set as the vehicle speed V i.

ステップ82では、前輪速VWFと後輪速VWRとから前後輪
回転速度差検出値ΔV(=VWR−VWF;但し、ΔV≧0)
が演算される。
In step 82, the front wheel speed V WF and the rear wheel speed V WR front and rear and a wheel rotation speed difference detected value ΔV (= V WR -V WF; however, [Delta] V ≧ 0)
Is calculated.

ステップ83では、前後輪回転速度差検出値ΔVまたは
前後輪回転速度差補正値ΔV′に対するクラッチトルク
出力値TΔVOUTの制御ゲインKnが横加速度検出値YGの逆
数に基づいて下記の式で演算される。
In step 83, by the following equation based on the reciprocal of the control gain K n is the lateral acceleration detected value Y G of the clutch torque output value TiderutaV OUT for the front and rear wheel rotational speed difference detected value [Delta] V or the front and rear wheel rotational speed difference correction value [Delta] V ' Is calculated.

Kn=an/YG(但し、Kn≦βn) 例えば、αn=1でβn=10とする。 K n = a n / Y G ( where, K n β n) For example, the beta n = 10 in alpha n = 1.

ステップ84では、上記制御ゲインKnと前後輪回転速度
差検出値ΔVとによってクラッチトルクTΔVが演算さ
れる。
In step 84, the clutch torque TΔV is calculated by the above control gain K n and the front and rear wheel rotational speed difference detected value [Delta] V.

ステップ85では、異径タイヤ装着検出フラグFS3が異
径タイヤ装着検出を示すFS3=1か異径タイヤ装着非検
出を示すFS3=0かが判断される。
In step 85, it is determined whether the different-diameter tire attachment detection flag FS3 is FS3 = 1 indicating that the different-diameter tire is attached, or FS3 = 0 indicating that the different-diameter tire is not attached.

そして、FS3=0の場合には、ステップ86〜ステップ90
において、異径タイヤ装着の検出処理が行なわれる。
Then, when FS3 = 0, Step 86 to Step 90
In, a process of detecting the attachment of a different-diameter tire is performed.

即ち、ステップ86では、クラッチトルク平均値▲
▼と車体速平均値▲▼とが5secの周期平均により演
算され、ステップ87では、クラッチトルク平均値▲
▼が設定値xを超え、且つ、車体速平均値▲▼が
設定値VHTを超えているかどうかが判断される。そし
て、ステップ87でYESの場合には、ステップ88において
高クラッチトルク判別フラグHTFLG=1とされ、ステッ
プ89でHTFLG=1が5分連続しているかどうかが判断さ
れる。つまり、高クラッチトルク条件及び高車速条件を
同時に満足する状態が通常の加速走行ではあり得ない時
間である5分以上連続して生じた場合に異径タイヤ装着
時であると検出され、ステップ90で異径タイヤ装着検出
フラグFS3が異径タイヤ装着検出を示すFS3=1に書き換
えられる。
That is, in step 86, the clutch torque average value ▲
▼ and the average vehicle speed value ▲ ▼ are calculated by the average of the period of 5 sec.
It is determined whether ▼ exceeds the set value x and the vehicle speed average ▲ ▼ exceeds the set value VHT . If YES in step 87, the high clutch torque determination flag HTFLG is set to 1 in step 88, and in step 89, it is determined whether or not HTFLG = 1 continues for 5 minutes. In other words, when the condition that simultaneously satisfies the high clutch torque condition and the high vehicle speed condition occurs continuously for 5 minutes or more, which is a time period that cannot be achieved in normal acceleration running, it is detected that the tires of different diameters are being mounted. Then, the different-diameter tire attachment detection flag FS3 is rewritten to FS3 = 1 indicating the attachment of the different-diameter tire.

一方、ステップ87の条件を満足しない時には、ステッ
プ91で高クラッチトルク判別フラグHTFLGがHTFLG=0と
され、ステップ92で異径タイヤ装着検出フラグFS3がFS3
=0とされ、また、ステップ89での連続条件を満足しな
い時にもステップ92で異径タイヤ装着検出フラグFS3がF
S3=0とされる。
On the other hand, when the condition of step 87 is not satisfied, the high clutch torque discrimination flag HTFLG is set to HTFLG = 0 in step 91, and the different diameter tire attachment detection flag FS3 is set to FS3 in step 92.
= 0, and when the continuous condition in step 89 is not satisfied, in step 92, the different-diameter tire attachment detection flag FS3 is set to F
S3 = 0 is set.

そして、異径タイヤ装着の非検出時に、ステップ93に
おいて、ステップ84で求められたクラッチトルクTΔV
がクラッチトルク出力値TΔVOUTとして設定され、ステ
ップ94において、予め与えられたT−i特性テーブルに
基づいてクラッチトルク出力値TΔVOUTが得られるソレ
ノイド駆動電流iに変換され、ステップ95において、ソ
レノイドバルブ28に対しディザー電流i*(例えば、i±
0.1A 100Hz)が出力される。
Then, at the time of non-detection of the attachment of the different diameter tire, in step 93, the clutch torque TΔV obtained in step 84 is obtained.
Is set as a clutch torque output value TΔV OUT , and in step 94, the clutch torque output value TΔV OUT is converted into a solenoid drive current i which can be obtained based on a predetermined Ti characteristic table. For 28, the dither current i * (for example, i ±
0.1A 100Hz) is output.

異径タイヤ装着の検出時には、ステップ90からステッ
プ96以降の流れとなる。
At the time of detecting the attachment of the different diameter tire, the flow from Step 90 to Step 96 is performed.

ステップ96では、ステップ90での異径タイヤ装着検出
を受けて、異径タイヤ装着時であることをドライバーに
知らせるべく警報ランプ50を点滅させる。
At step 96, upon receiving the detection of the mounting of the different-diameter tire in step 90, the alarm lamp 50 is turned on and off to notify the driver that the different-diameter tire is being mounted.

ステップ97では、前後輪回転速度差検出値ΔVが正か
負か判断され、ΔV<0で駆動輪スリップを原因としな
いで前後輪回転速度差が発生している場合に、ステップ
93以降の減速側通常制御が行なわれる。
In step 97, it is determined whether the front and rear wheel rotation speed difference detection value ΔV is positive or negative. If ΔV <0 and the front and rear wheel rotation speed difference has occurred without causing a drive wheel slip, the process proceeds to step 97.
The deceleration-side normal control after 93 is performed.

ステップ98では、車体速平均値▲▼とクラッチト
ルク平均値▲▼に基づいてタイヤ径差Δrが第5
図に示すマップにより検索される。
In step 98, the tire diameter difference Δr is set to the fifth based on the vehicle speed average ▲ ▼ and the clutch torque average ▲ ▼.
The search is performed using the map shown in the figure.

尚、このマップは、車体速平均値▲▼が小さくて、
クラッチトルク平均値▲▼が大きい場合にタイヤ
径差Δrが大きく、逆の場合にタイヤ径差Δrが小さい
ことで計算や実験等で設定される。
In this map, the average vehicle speed ▲ ▼ is small,
The tire diameter difference Δr is large when the clutch torque average value ▼▼ is large, and the tire diameter difference Δr is small when the clutch torque average value ▼▼ is large.

ステップ99及びステップ100では、前後輪回転速度差
不感帯ΔVOFFの設定ゲインKOFFが横加速度検出値YGとタ
イヤ径差Δrに基づいて下記の式で演算される。
In steps 99 and 100, the set gain K OFF of the front and rear wheel rotational speed difference dead zone ΔV OFF is calculated by the following equation based on the lateral acceleration detection value Y G and the tire diameter difference Δr.

Ka=αi/YG(但し、YG=0の時はKa=βi) KOFF=Ka・Δr 即ち、設定ゲインKOFFは、横加速度検出値YGが大きいほ
ど小さく、タイヤ径差Δrが大きいほど大きな値に設定
される。
K a = α i / Y G (However, when Y G = 0, K a = β i ) K OFF = K a · Δr That is, the set gain K OFF decreases as the lateral acceleration detection value Y G increases. The larger the tire diameter difference Δr is, the larger the value is set.

ステップ101では、前後輪回転速度差不感帯ΔV
OFFが、設定ゲインKOFFと車体速Viにより下記の式で演
算される。
In step 101, the front and rear wheel rotational speed difference dead zone ΔV
OFF is calculated by the following equation by setting the gain K OFF and the vehicle speed V i.

ΔVOFF=KOFF・Vi ステップ102では、前後輪回転速度差補正値ΔV′が
前後輪回転速度差検出値ΔVと前後輪回転速度差不感帯
ΔVOFFにより下記の式で演算される。
In ΔV OFF = K OFF · V i step 102, is calculated by the following formula by the front and rear wheel rotational speed difference correction value [Delta] V 'and the front and rear wheel rotation speed difference detected value [Delta] V front and rear wheel rotational speed difference deadband [Delta] V OFF.

ΔV′=ΔV−ΔVOFF (但し、ΔV′≧0) ステップ103では、前後輪回転速度差補正値ΔV′に
基づいてユニット保護トルクTΔV′が下記の式で演算
される。
ΔV ′ = ΔV−ΔV OFF (where ΔV ′ ≧ 0) In step 103, the unit protection torque TΔV ′ is calculated by the following equation based on the front and rear wheel rotational speed difference correction value ΔV ′.

TΔV′=Kn・ΔV′ ステップ104では、異径タイヤ装着検出後にクラッチ
トルクTΔVのユニット保護トルクTΔV′への移行を
示すトルク移行フラグF1が移行完了を示すF1=1かどう
かが判断される。
In TΔV '= K n · ΔV' step 104, if F1 = 1 or showing a torque transition flag F1 migration completion indicating the transition to unit protection torque TiderutaV clutch torque TiderutaV 'after the different-diameter tires detection is determined .

そして、F1=0の時にはステップ105へ進み、クラッ
チトルク出力値TΔVOUTがユニット保護トルクTΔV′
以下かどうかが判断され、TΔVOUT>TΔV′である間
は、ステップ106へ進み、今回のクラッチトルク出力値
TΔVOUTから設定トルクTOを差し引いた値が次回のクラ
ッチトルク出力値TΔVOUTと設定される。
When F1 = 0, the routine proceeds to step 105, where the clutch torque output value TΔV OUT is changed to the unit protection torque TΔV ′.
Hereinafter whether it is determined set, while a TΔV OUT> TΔV ', the process proceeds to step 106, a value obtained by subtracting the set torque T O from current clutch torque output value TiderutaV OUT is the next clutch torque output value TiderutaV OUT Is done.

即ち、クラッチトルクTΔVが制御周期毎に設定トルク
TOづつ徐々に下げられる。
That is, the clutch torque TΔV is equal to the set torque for each control cycle.
T O at a time gradually lowered.

そして、ステップ106のトルク低下処理を繰り返すこ
とでクラッチトルク出力値TΔVOUTがユニット保護トル
クTΔV′以下になると、ステップ105からステップ107
へ進み、F1=0からF1=に書き換えられ、ステップ108
では、ユニット保護トルクTΔV′がそのままクラッチ
トルク出力値TΔVOUTとされる。
When the clutch torque output value TΔV OUT becomes equal to or less than the unit protection torque TΔV ′ by repeating the torque lowering process of step 106, steps 105 to 107 are performed.
The process proceeds to step 108 where F1 = 0 is rewritten to F1 =
, The unit protection torque TΔV ′ is directly used as the clutch torque output value TΔV OUT .

次に、走行時における駆動力配分作用を説明する 車体速平均値▲▼が設定値VHTを超える高速走行
時には、ステップ86〜ステップ89の異径タイヤ装着検出
処理において、設定トルクx以上のクラッチトルク平均
値▲▼が5分以上連続印加されたかどうかで異径
タイヤの装着時か非装着時かが検出される。
Then, the vehicle speed average value describing the driving force distribution acting during running ▲ ▼ When setting value high speed in excess of V HT, in the different-diameter tires detection processing in step 86 to step 89, set torque x more clutch Whether the different-diameter tire is mounted or not is detected based on whether the torque average value ▼ is continuously applied for 5 minutes or more.

そして、異径タイヤ装着の非検出時には、ステップ84で
求められた前後輪回転速度差検出値ΔVに応じたクラッ
チトルクTΔVが、ステップ93においてクラッチトルク
出力値TΔVOUTとされ、このTΔVOUTに応じた締結力に
より湿式多板クラッチ11aが締結される(第6図の異径
タイヤ装着非検出時特性)。
At the time of non-detection of the different-diameter tires, the clutch torque TiderutaV corresponding to the front and rear wheel rotational speed difference detection value ΔV calculated in step 84, is a clutch torque output value TiderutaV OUT in step 93, depending on the TiderutaV OUT The wet-type multi-plate clutch 11a is engaged by the applied engaging force (characteristics of FIG. 6 when non-diameter tires are not mounted).

従って、前輪10側には駆動輪スリップ情報である前後
輪回転速度差検出値ΔVに応じたエンジン駆動力が配分
される。
Accordingly, an engine driving force corresponding to the front and rear wheel rotational speed difference detection value ΔV, which is drive wheel slip information, is distributed to the front wheels 10.

一方、異径タイヤ装着の検出時には、ステップ98にお
いてタイヤ径差がΔrが演算され、ステップ101におい
て前後輪回転速度差不感帯ΔVOFFが設定され、ステップ
102において前後輪回転速度差検出値ΔVから前後輪回
転速度差不感帯ΔVOFFを差し引いた値が前後輪回転速度
補正値ΔV′とされ、ステップ103において前後輪回転
速度差補正値ΔV′に基づいてユニット保護トルクTΔ
V′が求められ、ステップ108においてこのユニット保
護トルクTΔV′がクラッチトルク出力値TΔVOUTとさ
れ、このTΔVOUTに応じた締結力により湿式多板クラッ
チ11aが締結される(第6図の異径タイヤ装着検出時特
性)。
On the other hand, at the time of detecting the attachment of the tire having the different diameter, the tire diameter difference Δr is calculated in step 98, and the dead zone ΔV OFF of the front and rear wheel rotational speed difference is set in step 101.
In 102, a value obtained by subtracting the front and rear wheel rotation speed difference dead zone ΔV OFF from the front and rear wheel rotation speed difference detection value ΔV is set as a front and rear wheel rotation speed correction value ΔV ′. In Step 103, based on the front and rear wheel rotation speed difference correction value ΔV ′, Unit protection torque TΔ
V 'is determined, and in step 108, this unit protection torque TΔV' is used as the clutch torque output value TΔV OUT, and the wet multi-plate clutch 11a is engaged with an engagement force corresponding to this TΔV OUT (the different diameter in FIG. 6). Characteristics when tire attachment is detected).

従って、前輪10側には異径タイヤによる前後輪回転速
度差影響が取り除かれ、異径タイヤ装着の非検出時と同
様に、駆動輪スリップ情報と一致する前後輪回転速度差
補正値ΔV′に応じてエンジン駆動力が配分される。
Therefore, the influence of the difference in front and rear wheel rotation speed due to the different diameter tires on the front wheel 10 side is removed, and the front and rear wheel rotation speed difference correction value ΔV ′ that matches the drive wheel slip information is removed, as in the case where the different diameter tire is not detected. The engine driving force is distributed accordingly.

尚、ステップ104〜ステップ108のクラッチトルク移行処
理では、ユニット保護トルクTΔV′が設定された場
合、不感帯設定前のクラッチトルクTΔVから不感帯設
定後のユニット保護トルクTΔV′に徐々に移行する指
令が出力される。
In the clutch torque transition process of steps 104 to 108, when the unit protection torque TΔV ′ is set, a command for gradually shifting from the clutch torque TΔV before the dead zone setting to the unit protection torque TΔV ′ after the dead zone setting is output. Is done.

以上説明してきたように実施例の四輪駆動車の駆動力
配分制御装置にあっては、下記に列挙する効果が発揮さ
れる。
As described above, in the driving force distribution control device for a four-wheel drive vehicle of the embodiment, the following effects are exhibited.

異径タイヤ装着検出時には、前後輪回転速度差検出値
ΔVからタイヤ径差Δrと車体速Viに応じた前後輪回転
速度差不感帯ΔVOFFを差し引いた前後輪回転速度差補正
値ΔV′により駆動力配分制御を行なう装置とした為、
異径タイヤ装着検出時に前後輪回転速度差対応制御の機
能を失うことなく、トランスファ11やディファレンシャ
ル5,9の耐久性向上や振動発生防止や燃費低下防止を図
ることが出来る。
During the different-diameter tires detected, driven by the tire diameter difference Δr and the vehicle speed V rear wheel rotational speed difference by subtracting the rear wheel rotational speed difference deadband [Delta] V OFF corresponding to i correction value [Delta] V 'from the front and rear wheel rotational speed difference detected value [Delta] V Because it is a device that performs power distribution control,
It is possible to improve the durability of the transfer 11, the differentials 5, 9 and prevent the generation of vibrations and the reduction of fuel consumption without losing the function of the front and rear wheel rotational speed difference control function when detecting the mounting of different diameter tires.

異径タイヤ装着検出の前後でのクラッチトルクTΔV
がユニット保護トルクTΔV′に急に低下するのを抑え
た為、異径タイヤ装着検出の前後での車両列挙の急変防
止を図ることが出来る。
Clutch torque TΔV before and after detecting the attachment of different diameter tires
Is suppressed from suddenly dropping to the unit protection torque TΔV ′, so that it is possible to prevent a sudden change in vehicle listing before and after the detection of the attachment of the different-diameter tire.

以上、実施例を図面に基づいて説明してきたが、具体
的な構成及び制御内容はこの実施例に限られるものでは
ない。
Although the embodiment has been described with reference to the drawings, the specific configuration and control contents are not limited to this embodiment.

例えば、本実施例では、後輪側をエンジン駆動直結に
した後輪ベースの四輪駆動車の駆動力配分制御装置への
適応例を示したが、前輪側をエンジン駆動直結した前輪
ベースの四輪駆動車の駆動力配分制御装置へも適用出来
る。
For example, in the present embodiment, an example of application to a driving force distribution control device of a rear wheel-based four-wheel drive vehicle in which the rear wheel side is directly connected to the engine drive has been described. The present invention can also be applied to a driving force distribution control device for a wheel drive vehicle.

(発明の効果) 以上説明してきたように、請求項1記載の本発明にあ
っては、前後輪の一方にはエンジン駆動力を直接伝達
し、他方にはトルク配分用クラッチを介して伝達するト
ルクスプリット式の四輪駆動車において、車体速平均値
が設定値を超える高速走行時に、設定トルク以上のクラ
ッチトルク平均値が設定時間以上連続印加されているこ
とで異径タイヤ装着を検出する異径タイヤ装着検出手段
と、異径タイヤ装着を検出した時、車体速平均値とクラ
ッチトルク平均値に基づいてタイヤ径差を演算するタイ
ヤ径差演算手段と、異径タイヤ装着の非検出時には、前
後輪回転速度差検出値が大きくなるほど高くなる締結力
指令をトルク配分用クラッチへ出力し、異径タイヤ装着
の検出時には、タイヤ径差と車速により求められるタイ
ヤ径差分の前後輪回転速度差を前後輪回転速度差検出値
から除いた前後輪回転速度差補正値に基づいて非検出時
と同様にトルク配分用クラッチの締結力を制御する駆動
力配分制御手段と、を備えた構成としたため、前後輪回
転速度差が大きいほど高いクラッチ締結力により前後輪
駆動力配分比を2輪駆動配分比から完全4輪駆動配分比
まで徐々に変化させる前後輪速駆動力配分制御を行なう
2輪駆動ベースの四輪駆動車で、前後輪速回転速度差対
応制御による駆動輪スリップ抑制機能を確保したまま
で、異径タイヤを装着しての高速走行時に問題となる不
快な上下振動やクラッチ滑りによる耐久性低下や不要な
駆動伝達ロスによる燃費の低下を防止することができる
という効果が得られる。
(Effects of the Invention) As described above, according to the first aspect of the present invention, the engine driving force is directly transmitted to one of the front and rear wheels, and the other is transmitted through the torque distribution clutch. In a torque split type four-wheel drive vehicle, when running at high speed where the average vehicle speed exceeds the set value, the abnormal application of different diameter tires is detected due to the continuous application of the clutch torque average exceeding the set torque for the set time. Diameter tire mounting detecting means, when detecting the mounting of different diameter tires, tire diameter difference calculating means for calculating the tire diameter difference based on the average value of the vehicle body speed and the average value of the clutch torque, at the time of non-detection of the mounting of different diameter tires, Outputs to the torque distribution clutch a fastening force command that increases as the front and rear wheel rotation speed difference detection value increases, and when the installation of different diameter tires is detected, the tire diameter difference calculated from the tire diameter difference and the vehicle speed Driving force distribution control means for controlling the engaging force of the torque distribution clutch based on the front and rear wheel rotation speed difference correction value obtained by removing the front and rear wheel rotation speed difference from the front and rear wheel rotation speed difference detection value as in the case of non-detection. The front and rear wheel speed driving force gradually changes the front and rear wheel driving force distribution ratio from the two-wheel drive distribution ratio to the complete four-wheel drive distribution ratio with a higher clutch engagement force as the front and rear wheel rotational speed difference increases. A two-wheel drive-based four-wheel drive vehicle that performs distribution control, which causes a problem when driving at high speed with different-diameter tires while maintaining the drive wheel slip suppression function by the front and rear wheel speed rotation speed difference control. It is possible to prevent the durability from being lowered due to the vertical vibration and the clutch slip and the fuel consumption from being reduced due to unnecessary drive transmission loss.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の四輪駆動車の駆動力配分制御装置を示
すクレーム対応図、第2図は実施例のトルクフプリット
制御装置(駆動力配分制御装置)を適応した四輪駆動車
の駆動系及び制御系を示す全体概略図、第3図は実施例
装置に用いられた電子制御系を示すブロック図、第4図
は前後輪駆動力配分制御作動を示すフローチャート、第
5図はタイヤ径差マップ図、第6図は実施例のトルクス
プリット制御装置でのクラッチトルク特性図、第7図は
車速に対するクラッチ締結力及び回転速度差特性図、第
8図はトルクスプリット式の四輪駆動車での走行状態を
示す図である。 a……トルク配分用クラッチ b……前後輪回転速度差検出手段 c……車速検出手段 d……異径タイヤ装着検出手段 e……タイヤ径差演算手段 f……駆動力配分制御手段
FIG. 1 is a claim correspondence diagram showing a driving force distribution control device for a four-wheel drive vehicle of the present invention, and FIG. 2 is a diagram of a four-wheel drive vehicle to which the torque split control device (drive force distribution control device) of the embodiment is applied. FIG. 3 is a block diagram showing an electronic control system used in the apparatus of the embodiment, FIG. 4 is a flowchart showing a front and rear wheel driving force distribution control operation, and FIG. 5 is a tire. FIG. 6 is a diagram showing a clutch torque characteristic in the torque split control device of the embodiment, FIG. 7 is a diagram showing a clutch engagement force and a rotational speed difference characteristic with respect to a vehicle speed, and FIG. 8 is a torque split type four-wheel drive. It is a figure showing the running state by car. a: Torque distribution clutch b: Front and rear wheel rotational speed difference detecting means c: Vehicle speed detecting means d: Different diameter tire mounting detecting means e: Tire diameter difference calculating means f: Driving force distribution controlling means

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前後輪の一方へのエンジン直結駆動系に対
し前後輪の他方への駆動系の途中に設けられ、伝達され
るエンジン駆動力を外部からの締結制御で変更可能とす
るトルク配分用クラッチと、 前後輪の回転速度差を検出する前後輪回転速度差検出手
段と、 車速を検出する車速検出手段と、 車体速平均値が設定値を超える高速走行時に、設定トル
ク以上のクラッチトルク平均値が設定時間以上連続印加
されていることで異径タイヤ装着を検出する異径タイヤ
装着検出手段と、 異径タイヤ装着を検出した時、車体速平均値とクラッチ
トルク平均値に基づいてタイヤ径差を演算するタイヤ径
差演算手段と、 異径タイヤ装着の非検出時には、前後輪回転速度差検出
値が大きくなるほど高くなる締結力指令を前記トルク配
分用クラッチへ出力し、異径タイヤ装着の検出時には、
タイヤ径差と車速により求められるタイヤ径差分の前後
輪回転速度差を前後輪回転速度差検出値から除いた前後
輪回転速度差補正値に基づいて非検出時と同様に前記ト
ルク配分用クラッチの締結力を制御する駆動力配分制御
手段と、 を備えている事を特徴とする四輪駆動車の駆動力配分制
御装置。
1. A torque distribution system which is provided in the drive system to the other of the front and rear wheels to the drive system to the other of the front and rear wheels so that the transmitted engine drive force can be changed by external engagement control. And a front and rear wheel rotational speed difference detecting means for detecting a rotational speed difference between front and rear wheels, a vehicle speed detecting means for detecting a vehicle speed, and a clutch torque which is equal to or greater than a set torque when the vehicle is running at a high speed where a vehicle speed average exceeds a set value. Different-diameter tire mounting detecting means for detecting mounting of different-diameter tires by continuously applying the average value for a set time or longer, and detecting tire mounting based on the average vehicle speed and the average clutch torque when detecting the mounting of different-diameter tires. A tire diameter difference calculating means for calculating a diameter difference, and outputting a fastening force command to the torque distribution clutch, which becomes higher as the detected value of the front and rear wheel rotational speed difference becomes larger, when non-detection of a different diameter tire is not detected. At the time of detection of the different-diameter tires,
The torque distribution clutch is used in the same manner as in the non-detection state based on the front and rear wheel rotation speed difference correction value obtained by removing the front and rear wheel rotation speed difference of the tire diameter difference obtained from the tire diameter difference and the vehicle speed from the front and rear wheel rotation speed difference detection value. A driving force distribution control device for a four-wheel drive vehicle, comprising: driving force distribution control means for controlling a fastening force.
【請求項2】上記駆動力配分制御手段は、異径タイヤ装
着の検出時には、タイヤ径差が大で車速が大きいほど大
きな前後輪回転速度差不感帯を設定し、前後輪回転速度
差検出値から該不感帯を差し引いた値を補正値とする事
を特徴とする請求項1記載の四輪駆動車の駆動力配分制
御装置。
2. The driving force distribution control means sets a front and rear wheel rotational speed difference dead zone as the tire diameter difference is large and the vehicle speed is large when detecting the installation of different diameter tires. The driving force distribution control device for a four-wheel drive vehicle according to claim 1, wherein a value obtained by subtracting the dead zone is used as a correction value.
JP2220752A 1990-08-21 1990-08-21 Driving force distribution control device for four-wheel drive vehicle Expired - Fee Related JP2646820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220752A JP2646820B2 (en) 1990-08-21 1990-08-21 Driving force distribution control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220752A JP2646820B2 (en) 1990-08-21 1990-08-21 Driving force distribution control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH04103433A JPH04103433A (en) 1992-04-06
JP2646820B2 true JP2646820B2 (en) 1997-08-27

Family

ID=16755988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220752A Expired - Fee Related JP2646820B2 (en) 1990-08-21 1990-08-21 Driving force distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2646820B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768134B2 (en) * 1992-05-20 1998-06-25 日産自動車株式会社 Driving force distribution control device for four-wheel drive vehicle
DE19706720A1 (en) * 1996-04-06 1997-10-09 Volkswagen Ag Controlling coupling between front and rear axles of motor vehicle with four wheel drive
JP3525879B2 (en) 2000-09-19 2004-05-10 日産自動車株式会社 Front and rear wheel torque distribution control device for four-wheel drive vehicle
US6769526B2 (en) 2000-09-19 2004-08-03 Nissan Motor Co., Ltd. Apparatus for estimating clutch temperature
JP3575429B2 (en) * 2000-09-19 2004-10-13 日産自動車株式会社 Front and rear wheel torque distribution control device for four-wheel drive vehicle
JP4120335B2 (en) 2002-09-26 2008-07-16 日産自動車株式会社 Driving force distribution control device for four-wheel drive vehicle
FR2958607B1 (en) 2010-04-12 2012-03-23 Renault Sa TORQUE DISTRIBUTION CONTROL METHOD FOR A MOTORIZED MOTOR VEHICLE WITH FOUR WHEELS AND CORRESPONDING VEHICLE
FR2958584B1 (en) * 2010-04-12 2015-02-20 Renault Sas METHOD FOR ALLOYING A SLIDE OF A COUPLER.
JP5837022B2 (en) 2013-03-28 2015-12-24 本田技研工業株式会社 Driving force distribution control device for four-wheel drive vehicle
JP5801839B2 (en) 2013-03-28 2015-10-28 本田技研工業株式会社 Driving force distribution control device for four-wheel drive vehicle
JP6122757B2 (en) 2013-10-17 2017-04-26 本田技研工業株式会社 Vehicle driving force distribution control device
JP6502984B2 (en) * 2017-03-16 2019-04-17 株式会社Subaru Vehicle control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518228B2 (en) * 1986-09-29 1996-07-24 トヨタ自動車株式会社 Control method of four-wheel drive device

Also Published As

Publication number Publication date
JPH04103433A (en) 1992-04-06

Similar Documents

Publication Publication Date Title
JP2768134B2 (en) Driving force distribution control device for four-wheel drive vehicle
JPH02279427A (en) Driving force distribution controller for four-wheel drive vehicle
US5740877A (en) Driving-torque distribution control system for four-wheel drive vehicles
JP2914040B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2903720B2 (en) Driving force distribution control device for four-wheel drive vehicle
JPH05131857A (en) Drive unit for vehicle
JP2001180318A (en) Driving force control system for four-wheel drive vehicle
JP2646820B2 (en) Driving force distribution control device for four-wheel drive vehicle
JPH0729558B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2002234355A (en) Control device for four-wheel drive vehicle
EP1400390A2 (en) Power distribution control apparatus for four wheel drive vehicle
JPS61191431A (en) Driving force distribution control device for 4-wheel-drive vehicle
JP2596196B2 (en) Driving force control device for four-wheel drive vehicle
JPH1029557A (en) Vehicular yaw-moment controller
JP2006528573A (en) Control device for a motor vehicle driven at least part-time in four wheels
JP2646764B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2936912B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP3140845B2 (en) Torque distribution control device for four-wheel drive vehicle
JPH02267028A (en) Driving power distribution controller of four-wheel drive vehicle
JP2934459B2 (en) Unequal torque distribution control device for four-wheel drive vehicle
JP2819835B2 (en) Driving force distribution control device for four-wheel drive vehicle
JPH0680035A (en) Driving force allocating integrated control device for front and rear wheel and left and right wheel
JP2720679B2 (en) Four-wheel control four-wheel drive vehicle
JPH09226558A (en) Hydraulic driving device for vehicle
JP2004131007A (en) Vehicle behavior controlling device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees