[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2641456B2 - SQUID magnetometer and inspection apparatus using nuclear magnetic resonance using the same - Google Patents

SQUID magnetometer and inspection apparatus using nuclear magnetic resonance using the same

Info

Publication number
JP2641456B2
JP2641456B2 JP62208110A JP20811087A JP2641456B2 JP 2641456 B2 JP2641456 B2 JP 2641456B2 JP 62208110 A JP62208110 A JP 62208110A JP 20811087 A JP20811087 A JP 20811087A JP 2641456 B2 JP2641456 B2 JP 2641456B2
Authority
JP
Japan
Prior art keywords
squid
coil
terminals
input
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62208110A
Other languages
Japanese (ja)
Other versions
JPS6452446A (en
Inventor
宏一 横澤
剛 宮島
笹渕  仁
俊昭 有富
和俊 樋口
利博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62208110A priority Critical patent/JP2641456B2/en
Publication of JPS6452446A publication Critical patent/JPS6452446A/en
Application granted granted Critical
Publication of JP2641456B2 publication Critical patent/JP2641456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多核種の共鳴信号を同時に検出するのに好適
な、核磁気共鳴を用いた検査装置に関する。
Description: TECHNICAL FIELD The present invention relates to an inspection apparatus using nuclear magnetic resonance, which is suitable for simultaneously detecting resonance signals of multiple nuclides.

〔従来の技術〕[Conventional technology]

従来の核磁気共鳴(以下NMRの略す)信号をSQUIDを用
いて検出する例として特開昭60−143752号がある。この
方法ではSQUIDの出力とアンプの間に共振回路が設けら
れている。
JP-A-60-143752 discloses an example of detecting a conventional nuclear magnetic resonance (hereinafter abbreviated as NMR) signal using SQUID. In this method, a resonance circuit is provided between the output of the SQUID and the amplifier.

またSQUIDを用いない公知のNMR装置でもNMR信号の受
信コイルとアンプとの間は共振回路を設けたものが一般
的である。
Further, even in a known NMR apparatus that does not use a SQUID, a resonance circuit is generally provided between an NMR signal receiving coil and an amplifier.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術では共振回路を設けているために他の核
種の検出を行う場合、共振回路を交換し、調整をやりな
おさなければならなかった。
In the above prior art, since a resonance circuit is provided, when another nuclide is detected, the resonance circuit must be replaced and the adjustment must be performed again.

本発明の目的は簡易に多核種の測定を行えるようにす
ることにある。
An object of the present invention is to make it possible to easily measure polynuclear species.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的はNMR装置の検出に複数個のSQUIDを用いるこ
とによって、共振回路を設けない構成とし、SQUID出力
を、中心周波数可変のバンドパスフィルタを通してアン
プを導入するかまたは複数個のバンドパスフィルタ及び
アンプに導入することによって達成される。
The above-mentioned object is to use a plurality of SQUIDs for the detection of the NMR apparatus, so that no resonance circuit is provided, and the SQUID output is introduced through an amplifier through a center frequency variable band-pass filter, or a plurality of band-pass filters and Achieved by introducing into the amplifier.

〔作用〕[Action]

SQUIDの後段に設けられた複数個のバンドパスフィル
タの中心周波数は、各々検出したい核種の共鳴周波数に
一致している。したがって複数核種の信号を同時に検出
することができる。また中心周波数可変のバンドパスフ
ィルタを用いた構成ではフィルタの中心周波数を適当に
設定することにより任意の核種の信号検出が可能であ
る。
The center frequencies of a plurality of bandpass filters provided after SQUID coincide with the resonance frequencies of the nuclides to be detected, respectively. Therefore, signals of a plurality of nuclides can be detected simultaneously. In a configuration using a band-pass filter with a variable center frequency, a signal of an arbitrary nuclide can be detected by appropriately setting the center frequency of the filter.

〔実施例〕 以下、本発明の実施例を第1図により説明する。この
実施例では本発明をNMRイメージング装置に応用した例
を示している。NMRの受信系は、受信コイル1、磁束伝
達回路2、SQUIDへの入力コイル3、可変抵抗4.より成
り可変抵抗部分を除いてはすべて超伝導体でできてい
る。また直列に接続されたSQUID5全体の出力電圧は複数
のフィルタ6を通して各々のアンプ7で増幅され、位相
検波器8に導入される。9はSQUIDのバイアス電源であ
る。また、一点鎖線100は超伝導壁等の磁気シールドを
表す。被験体に接触する部分を除く点線200の内部は、
使用した超伝導体の臨界温度に応じて必要な寒材内に浸
漬する。室温で動作する超伝導体を用いればこれは不要
であり、このときは受信コイル1を被験体の極めて近く
に置けるので信号量を多くとれる。
Embodiment An embodiment of the present invention will be described below with reference to FIG. This embodiment shows an example in which the present invention is applied to an NMR imaging apparatus. The NMR receiving system is composed of a receiving coil 1, a magnetic flux transmission circuit 2, an input coil 3 for a SQUID, and a variable resistor 4. Except for the variable resistance part, all are made of a superconductor. The output voltage of the entire SQUID 5 connected in series is amplified by each amplifier 7 through a plurality of filters 6 and is introduced into a phase detector 8. Reference numeral 9 denotes a SQUID bias power supply. The dashed line 100 indicates a magnetic shield such as a superconducting wall. The inside of the dotted line 200 excluding the part in contact with the subject,
It is immersed in the required cold material according to the critical temperature of the used superconductor. This is unnecessary if a superconductor that operates at room temperature is used. In this case, the receiving coil 1 can be placed very close to the subject, so that a large amount of signal can be obtained.

次に本実施例の動作をより詳細に説明する。公知のNM
Rの原理によって発生した信号を受信コイル1によって
受信した磁束伝達回路2を通して入力コイル3によりSQ
UID5に導入する。入力コイル3の個数はSQUIDの個数に
一致している。ここで4は超伝導−常伝導転移を利用し
た可変抵抗であり、NMRイメージングに不可欠な傾斜磁
場等により信号以外の電流が2を流れた時は常伝導とな
ってすみやかに減衰させ、信号電流が流れている時は超
伝導状態となって熱雑音を発生しないように動作する。
さて、SQUIDの個数は、その全体のインピーダンスが次
段のフィルタ6の入力インピーダンスに等しくなるよう
な個数Nに選んでいる。したがってインピーダンス整合
のための共振回路は不要である。SQUID全体の出力はSQU
ID1個の場合に比べ出力電圧レベルがN倍、 になり、直接各々のフィルタ6に入力される。このよう
に受信された信号はフィルタに入力されるまでの間、帯
域を制限する回路を全く通らずにフィルタに入力される
ため、あらゆる核種の情報を含んでいる。例えばNMR装
置の静磁場が1テスラであれば、42.5769MHz付近に水素
の共鳴信号があり、3.076MHz付近に窒素の共鳴信号があ
り、17.237MHz付近にリンの共鳴信号がある。したがっ
てフィルタとして各々の共鳴周波数を中心周波数とする
バンドパスフィルタを用いれば、これらの核種の共鳴信
号を同時に得ることができる。言うまでもなくアンプは
各々の周波数で特性のよいものを接続する。図ではフィ
ルタ、アンプ及び位相検波器は各々3個づつしか記して
いないが、必要に応じて何個づつ設置してもよい。また
フィルタとアンプの順序は入れかえてもよいが、その、
場合SQUIDは、その全インピーダンスがアンプの雑音指
数を最小にするような個数設置するものとする。(SQUI
Dのアンプの間をケーブルでつなぐ場合は、SQUIDの全イ
ンピーダンスがケーブルの特性インピーダンスに合うよ
うな個数設置する。) また実施例として第2図のような構成も考えられる。
この実施例ではSQUID列の出力電圧を中心周波数可変の
フィルタ10を通してアンプ11に導入する。フィルタとし
てディジタルフィルタのようなものを用い、アンプは帯
域の広いものを用いればフィルタの中心周波数を適当に
合わせることにより任意の核種の信号が受信できる。ア
ンプとフィルタの順序を入れかえてもよいことは最初の
実施例と同じである。
Next, the operation of this embodiment will be described in more detail. Known NM
The signal generated according to the principle of R is received by the input coil 3 through the magnetic flux transmission circuit 2 received by the receiving coil 1 and the SQ is applied.
Introduce to UID5. The number of input coils 3 matches the number of SQUIDs. Here, reference numeral 4 denotes a variable resistor utilizing a superconducting-normal conducting transition. When a current other than a signal flows through 2 due to a gradient magnetic field or the like which is indispensable for NMR imaging, the current becomes normal conducting and is immediately attenuated. When it is flowing, it operates in a superconducting state so as not to generate thermal noise.
The number of SQUIDs is selected to be N such that the total impedance is equal to the input impedance of the filter 6 at the next stage. Therefore, a resonance circuit for impedance matching is not required. The output of the entire SQUID is SQU
The output voltage level is N times higher than the case of one ID, , And are directly input to each filter 6. The signal thus received is input to the filter without passing through any band limiting circuit until it is input to the filter, and thus contains information on all nuclides. For example, if the static magnetic field of the NMR apparatus is 1 Tesla, there is a resonance signal of hydrogen near 42.5769 MHz, a resonance signal of nitrogen near 3.076 MHz, and a resonance signal of phosphorus near 17.237 MHz. Therefore, if a band-pass filter having each resonance frequency as a center frequency is used as a filter, resonance signals of these nuclides can be obtained at the same time. Needless to say, the amplifiers are connected with good characteristics at each frequency. Although only three filters, amplifiers, and three phase detectors are shown in the figure, any number of filters, amplifiers, and phase detectors may be provided as necessary. The order of the filter and the amplifier may be changed,
In such a case, the number of SQUIDs shall be set so that the total impedance thereof minimizes the noise figure of the amplifier. (SQUI
When connecting the amplifiers of D with a cable, install the number so that the total impedance of the SQUID matches the characteristic impedance of the cable. Further, a configuration as shown in FIG. 2 is also conceivable as an embodiment.
In this embodiment, the output voltage of the SQUID string is introduced into the amplifier 11 through the filter 10 having a variable center frequency. If a filter such as a digital filter is used as the filter and a wide band amplifier is used, signals of arbitrary nuclides can be received by appropriately adjusting the center frequency of the filter. As in the first embodiment, the order of the amplifier and the filter may be changed.

上記のいずれの実施例においても入力コイルとSQUID
は必要に応じ第3図のような構成にしてもよい。この構
成では外来雑音の影響を除くためSQUIDを2個ずつ組に
し、一方を上下逆に構成し、入力コイルもこれに伴って
逆巻に構成している。この方法では出力電圧レベルやS/
Nを変化させずに空間的に一様な外来雑音だけを打ち消
すことができる。また第4図のように全体のインピーダ
ンスを次段のフィルタにあわせた状態で直列と並列を組
みあわせた構成にすれば直列N列並列M列として出力電
圧をN倍、 にすることができる。
In any of the above embodiments, the input coil and the SQUID
May be configured as shown in FIG. 3 if necessary. In this configuration, in order to eliminate the influence of extraneous noise, SQUIDs are grouped in groups of two, one of which is configured upside down, and the input coil is also configured with reverse winding. In this method, the output voltage level and S /
It is possible to cancel only the spatially uniform external noise without changing N. Further, as shown in FIG. 4, if the overall impedance is adjusted to the next-stage filter and a combination of series and parallel is used, the output voltage is increased by N times as N rows and M rows in series. Can be

さらにここでも上記のようにSQUID2個づつの組をつく
って外来雑音を打ち消すことが可能である。
Further, here, it is possible to cancel external noise by forming a set of two SQUIDs as described above.

以上のように本実施例によればNMRイメージングにお
いて多核種の断層像を同時に、あるいは従来に比べ極め
て簡易な操作によって得ることができる。
As described above, according to the present embodiment, tomographic images of multiple nuclides can be obtained at the same time in NMR imaging or by extremely simple operations as compared with conventional techniques.

〔発明の効果〕〔The invention's effect〕

本発明によればNMRを用いた検査装置において多核種
の信号を検出したい場合、これが同時にあるいは極めて
簡易な操作で得ることができる効果である。
According to the present invention, when it is desired to detect signals of multiple nuclides in an inspection apparatus using NMR, this is an effect that can be obtained simultaneously or by an extremely simple operation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明をNMRイメージング装置に応用し、多核
種の共鳴信号を同時に検出するようにした実施例、第2
図はNMRイメージング装置に応用し、中心周波数可変の
フィルタの操作によって多核種の共鳴信号を簡易に検出
するようにした実施例である。また第3図、第4図はSQ
UIDと入力コイルの構成法の例である。 1……信号受信コイル、2……磁束伝達回路、3……SQ
UIDへの信号入力コイル、4……超伝導、常伝導転移を
利用した可変抵抗、5……SQUID、6……バンドパスフ
ィルタ、7……アンプ、8……位相検波器、9……SQUI
D駆動用バイアス電流源、10……中心周波数可変のフィ
ルタ、11……アンプ、100……磁気シールド、200……寒
材浸漬領域
FIG. 1 shows an embodiment in which the present invention is applied to an NMR imaging apparatus to detect resonance signals of multiple nuclides simultaneously.
The figure shows an embodiment applied to an NMR imaging apparatus, in which a resonance signal of a multinuclide is easily detected by operating a center frequency variable filter. Figures 3 and 4 show SQ
It is an example of a configuration method of a UID and an input coil. 1 ... signal receiving coil, 2 ... magnetic flux transmission circuit, 3 ... SQ
Signal input coil to UID, 4 ... Variable resistance using superconductivity and normal conduction transition, 5 ... SQUID, 6 ... Band pass filter, 7 ... Amplifier, 8 ... Phase detector, 9 ... SQUI
D drive bias current source, 10: Filter with variable center frequency, 11: Amplifier, 100: Magnetic shield, 200: Cold material immersion area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有富 俊昭 茨城県勝田市市毛882番地 株式会社日 立製作所那珂工場内 (72)発明者 樋口 和俊 茨城県勝田市市毛882番地 株式会社日 立製作所那珂工場内 (72)発明者 石塚 利博 茨城県勝田市市毛882番地 株式会社日 立製作所那珂工場内 (56)参考文献 特開 昭61−284679(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiaki Yuritomi 882 Ma, Katsuta-shi, Ibaraki Pref.Naka Plant, Nichi Works Co., Ltd. Inside the factory Naka factory (72) The inventor Toshihiro Ishizuka 882 Ma, Katsuta-shi, Ibaraki prefecture Inside the Hitachi factory Naka factory (56) References JP-A-61-284679 (JP, A)

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1のSQUID素子と第2のSQUID素子とが逆
順に接続されてなるSQUID素子の組と、前記第1のSQUID
素子へ信号を入力する第1方向の巻線をもつ第1の入力
コイルと前記第2のSQUID素子へ信号を入力する第2方
向の巻線をもつ第2の入力コイルとが接続されてなる入
力コイルの組とを有し、前記SQUID素子の組が複数個直
列に接続され第1及び第2の端子を有するSQUID素子配
列と、前記入力コイルの組が複数個直列に接続され第1
及び第2の端子を有する入力コイル配列と、前記SQUID
素子配列の第1の端子に接続され、前記各SQUID素子を
駆動するバイアス電源と、前記入力コイル配列の第1、
第2の端子と磁気信号を受信する受信コイルとを接続す
る超伝導−常伝導転移を有する可変抵抗を含む磁束伝達
回路とからなり、前記受信コイル、前記磁束伝達回路、
前記入力コイルは超伝導体から構成され、前記SQUID素
子配列の第1、第2の端子から出力信号を得ることを特
徴とするSQUID磁束計。
A first SQUID element comprising a first SQUID element and a second SQUID element connected in reverse order;
A first input coil having a first direction winding for inputting a signal to the element and a second input coil having a second direction winding for inputting a signal to the second SQUID element are connected. An SQUID element array having a set of input coils, a plurality of sets of the SQUID elements connected in series and having first and second terminals, and a first set of a plurality of sets of the input coils connected in series.
And an input coil array having a second terminal and the SQUID
A bias power supply connected to a first terminal of the element array and driving each of the SQUID elements;
A magnetic flux transmission circuit including a variable resistor having a superconducting-normal conduction transition for connecting a second terminal and a receiving coil for receiving a magnetic signal, wherein the receiving coil, the magnetic flux transmitting circuit,
The input coil is formed of a superconductor, and an output signal is obtained from first and second terminals of the SQUID element array.
【請求項2】直列に接続される複数個のSQUID素子が、
複数個並列に接続されるSQUID素子配列の第1、第2の
端子を有し、前記SQUID素子配列の第1の端子に接続さ
れ、前記各SQUID素子を駆動するバイアス電源と、前記S
QUID素子のそれぞれに対応して入力コイルが直列に接続
され、第1、第2の端子をもつ入力コイル配列と、前記
入力コイル配列の第1、第2の端子と磁気信号を受信す
る受信コイルとを接続する超伝導−常伝導転移を有する
可変抵抗を含む磁束伝達回路とからなり、前記受信コイ
ル、前記磁束伝達回路、前記入力コイルは超伝導体から
構成され、前記SQUID素子配列の第1、第2の端子から
出力信号を得ることを特徴とするSQUID磁束計。
2. A plurality of SQUID elements connected in series,
A bias power supply having first and second terminals of a plurality of SQUID element arrays connected in parallel, connected to a first terminal of the SQUID element array, and driving each of the SQUID elements;
An input coil is connected in series corresponding to each of the QUID elements, an input coil array having first and second terminals, and a receiving coil for receiving a magnetic signal with the first and second terminals of the input coil array. And a magnetic flux transmission circuit including a variable resistor having a superconducting-normal conduction transition, wherein the receiving coil, the magnetic flux transmitting circuit, and the input coil are formed of a superconductor, and the first of the SQUID element array is And obtaining an output signal from a second terminal.
【請求項3】前記受信コイルは核磁気共鳴信号を検出す
ることを特徴とする特許請求の範囲第1項に記載のSQUI
D磁束計。
3. The SQUI according to claim 1, wherein said receiving coil detects a nuclear magnetic resonance signal.
D magnetometer.
【請求項4】前記受信コイルは核磁気共鳴信号を検出す
ることを特徴とする特許請求の範囲第2項に記載のSQUI
D磁束計。
4. The SQUI according to claim 2, wherein said receiving coil detects a nuclear magnetic resonance signal.
D magnetometer.
【請求項5】核磁気共鳴信号を検出する受信コイルと、
中心周波数が可変であるバンドパスフィルタを備え前記
受信コイルからの信号を受信する、前記受信コイルと非
共振的に結合される受信回路とを具備し、複数核種の核
磁気共鳴信号を検出することを特徴とする核磁気共鳴を
用いた検査装置。
5. A receiving coil for detecting a nuclear magnetic resonance signal,
A band-pass filter having a variable center frequency for receiving a signal from the receiving coil; a receiving circuit coupled to the receiving coil in a non-resonant manner; detecting a nuclear magnetic resonance signal of a plurality of nuclides; An inspection apparatus using nuclear magnetic resonance characterized by the above-mentioned.
【請求項6】前記受信コイルは超伝導体から構成され、
前記受信回路はSQUID磁束計を含み、核SQUID磁束計は、
第1のSQUID素子と第2のSQUID素子とが逆順に接続され
てなるSQUID素子の組と、前記第1のSQUID素子へ信号を
入力する第1方向の巻線をもつ第1の入力コイルと前記
第2のSQUID素子へ信号を入力する第2方向の巻線をも
つ第2の入力コイルとが接続されてなる入力コイルの組
とを有し、前記SQUID素子の組が複数個直列に接続され
第1及び第2の端子を有するSQUID素子配列と、前記入
力コイルの組が複数個直列に接続され第1及び第2の端
子を有する入力コイル配列と、前記SQUID素子配列の第
1の端子に接続され、前記各SQUID素子を駆動するバイ
アス電源と、前記入力コイル配列の第1、第2の端子と
前記受信コイルとを接続する超伝導−常伝導転移を有す
る可変抵抗を含む磁束伝達回路とからなり、該磁束伝達
回路、前記入力コイルが超伝導体から構成される磁束計
であり、前記SQUID素子配列の第1、第2の端子が前記
バンドパスフィルタに接続されることを特徴とする特許
請求の範囲第5項に記載の核磁気共鳴を用いた検査装
置。
6. The receiving coil comprises a superconductor,
The receiving circuit includes a SQUID magnetometer, and the nuclear SQUID magnetometer includes:
A set of SQUID elements in which a first SQUID element and a second SQUID element are connected in reverse order, and a first input coil having a winding in a first direction for inputting a signal to the first SQUID element. A set of input coils connected to a second input coil having a winding in a second direction for inputting a signal to the second SQUID element, wherein a plurality of sets of the SQUID elements are connected in series. An SQUID element array having first and second terminals, an input coil array having a plurality of sets of input coils connected in series and having first and second terminals, and a first terminal of the SQUID element array. And a bias power supply for driving each of the SQUID elements, and a flux transfer circuit including a variable resistor having a superconducting-normal conducting transition connecting the first and second terminals of the input coil array and the receiving coil. Wherein the magnetic flux transmission circuit and the input coil are made of a superconductor. The inspection using nuclear magnetic resonance according to claim 5, wherein the first and second terminals of the SQUID element array are connected to the band-pass filter. apparatus.
【請求項7】前記受信コイルは超伝導体から構成され、
前記受信回路はSQUID磁束計を含み、核SQUID磁束計は、
直列に接続される複数個のSQUID素子が、複数個並列に
接続されるSQUID素子配列の第1、第2の端子を有し、
前記SQUID素子配列の第1の端子に接続され、前記各SQU
ID素子を駆動するバイアス電源と、前記SQUID素子のそ
れぞれに対応して入力コイルが直列に接続され、第1、
第2の端子をもつ入力コイル配列と、前記入力コイル配
列の第1、第2の端子と前記受信コイルとを接続する超
伝導−常伝導転移を有する可変抵抗を含む磁束伝達回路
とからなり、核磁束伝達回路、前記入力コイルが超伝導
体から構成される磁束計であり、前記SQUID素子配列の
第1、第2の端子が前記バンドパスフィルタに接続され
ることを特徴とする特許請求の範囲第5項に記載の核磁
気共鳴を用いた検査装置。
7. The receiving coil comprises a superconductor,
The receiving circuit includes a SQUID magnetometer, and the nuclear SQUID magnetometer includes:
A plurality of SQUID elements connected in series have first and second terminals of a plurality of SQUID element arrays connected in parallel,
Each of the SQUIDs is connected to a first terminal of the SQUID element array.
A bias power supply for driving the ID element, and input coils corresponding to each of the SQUID elements are connected in series.
An input coil array having a second terminal, and a magnetic flux transmission circuit including a variable resistor having a superconducting-normal conduction transition connecting the first and second terminals of the input coil array and the receiving coil, The nuclear magnetic flux transmission circuit, wherein the input coil is a magnetometer composed of a superconductor, and the first and second terminals of the SQUID element array are connected to the band-pass filter. An inspection apparatus using nuclear magnetic resonance according to claim 5.
【請求項8】前記受信コイルは超伝導体から構成され、 前記受信回路はSQUID磁束計を含み、該SQUID磁束計は、
複数個のSQUID素子が直列に接続された第1、第2の端
子をもつSQUID素子列と、前記SQUID素子配列の第1の端
子に接続され、前記各SQUID素子を駆動するバイアス電
源と、前記SQUID素子のそれぞれに対応して入力コイル
が直列に接続され、第1、第2の端子をもつ入力コイル
配列と、前記入力コイル配列の第1、第2の端子と前記
受信コイルとを接続する超伝導−常伝導転移を有する可
変抵抗を含む磁束伝達回路とからなり、核磁束伝達回
路、前記入力コイルが超伝導体から構成される磁束計で
あり、前記SQUID素子配列の第1、第2の端子が前記バ
ンドパスフィルタに接続されることを特徴とする特許請
求の範囲第5項に記載の核磁気共鳴を用いた検査装置。
8. The receiving coil includes a superconductor, the receiving circuit includes a SQUID magnetometer, and the SQUID magnetometer includes:
A plurality of SQUID elements having first and second terminals connected in series, and a bias power supply connected to the first terminal of the SQUID element array and driving each of the SQUID elements; An input coil is connected in series corresponding to each of the SQUID elements, and an input coil array having first and second terminals is connected to the first and second terminals of the input coil array and the receiving coil. A magnetic flux transmission circuit including a variable resistor having a superconducting-normal conduction transition, a nuclear magnetic flux transmission circuit, wherein the input coil is a magnetometer including a superconductor, and the first and second SQUID element arrays 6. The inspection apparatus using nuclear magnetic resonance according to claim 5, wherein the terminal of (1) is connected to the band-pass filter.
【請求項9】核磁気共鳴信号を検出する受信コイルと、
中心周波数の異なるバンドパスフィルタをそれぞれ備
え、前記受信コイルからの信号を受信し、前記受信コイ
ルと非共振的に結合される複数の並列接続される受信回
路とを具備し、複数核種の核磁気共鳴信号を同時に検出
することを特徴とする核磁気共鳴を用いた検査装置。
9. A receiving coil for detecting a nuclear magnetic resonance signal,
A plurality of band-pass filters having different center frequencies, receiving signals from the receiving coil, and a plurality of parallel-connected receiving circuits non-resonantly coupled to the receiving coil; An inspection apparatus using nuclear magnetic resonance, wherein resonance signals are simultaneously detected.
【請求項10】前記受信コイルは超伝導体から構成さ
れ、前記受信回路はSQUID磁束計を含み、核SQUID磁束計
は、第1のSQUID素子と第2のSQUID素子とが逆順に接続
されてなるSQUID素子の組と、前記第1のSQUID素子へ信
号を入力する第1方向の巻線をもつ第1の入力コイルと
前記第2のSQUID素子へ信号を入力する第2方向の巻線
をもつ第2の入力コイルとが接続されてなる入力コイル
の組とを有し、前記SQUID素子の組が複数個直列に接続
され第1及び第2の端子を有するSQUID素子配列と、前
記入力コイルの組が複数個直列に接続され第1及び第2
の端子を有する入力コイル配列と、前記SQUID素子配列
の第1の端子に接続され、前記各SQUID素子を駆動する
バイアス電源と、前記入力コイル配列の第1、第2の端
子と前記受信コイルとを接続する超伝導−常伝導転移を
有する可変抵抗を含む磁束伝達回路とからなり、核磁束
伝達回路、前記入力コイルが超伝導体から構成される磁
束計であり、前記SQUID素子配列の第1、第2の端子が
前記バンドパスフィルタのそれぞれに並列接続されるこ
とを特徴とする特許請求の範囲第9項に記載の核磁気共
鳴を用いた検査装置。
10. The receiving coil comprises a superconductor, the receiving circuit includes a SQUID magnetometer, and the nuclear SQUID magnetometer has a first SQUID element and a second SQUID element connected in reverse order. A first input coil having a first-direction winding for inputting a signal to the first SQUID element, and a second-direction winding for inputting a signal to the second SQUID element. A set of input coils connected to a second input coil having the input coil, a plurality of sets of the SQUID elements connected in series, and a SQUID element array having first and second terminals; Are connected in series and the first and second
An input coil array having terminals of: a bias power supply connected to a first terminal of the SQUID element array for driving each of the SQUID elements; a first and a second terminal of the input coil array and the receiving coil; A magnetic flux transmission circuit including a variable resistor having a superconducting-normal conduction transition, and a nuclear magnetic flux transmission circuit, wherein the input coil is a magnetometer composed of a superconductor, and a first of the SQUID element array. 10. The inspection apparatus using nuclear magnetic resonance according to claim 9, wherein a second terminal and a second terminal are connected in parallel to each of said bandpass filters.
【請求項11】前記受信コイルは超伝導体から構成さ
れ、前記受信回路はSQUID磁束計を含み、核SQUID磁束計
は、直列に接続される複数個のSQUID素子が、複数個並
列に接続されるSQUID素子配列の第1、第2の端子を有
し、前記SQUID素子配列の第1の端子に接続され、前記
各SQUID素子を駆動するバイアス電源と、前記SQUID素子
のそれぞれに対応して入力コイルが直列に接続され、第
1、第2の端子をもつ入力コイル配列と、前記入力コイ
ル配列の第1、第2の端子と前記受信コイルとを接続す
る超伝導−常伝導転移を有する可変抵抗を含む磁束伝達
回路とからなり、核磁束伝達回路、前記入力コイルが超
伝導体から構成される磁束計であり、前記SQUID素子配
列の第1、第2の端子が前記バンドパスフィルタのそれ
ぞれに並列接続されることを特徴とする特許請求の範囲
第9項に記載の核磁気共鳴を用いた検査装置。
11. The receiving coil comprises a superconductor, the receiving circuit includes a SQUID magnetometer, and the nuclear SQUID magnetometer includes a plurality of SQUID elements connected in series and a plurality of SQUID elements connected in parallel. And a bias power supply connected to the first terminal of the SQUID element array for driving each of the SQUID elements, and an input corresponding to each of the SQUID elements. An input coil array having coils connected in series and having first and second terminals, and a variable having a superconducting-normal conducting transition connecting the first and second terminals of the input coil array to the receiving coil. A magnetic flux transmission circuit including a resistor, a nuclear magnetic flux transmission circuit, wherein the input coil is a magnetic flux meter including a superconductor, and first and second terminals of the SQUID element array are each of the bandpass filters. Characterized by being connected in parallel to An inspection apparatus using nuclear magnetic resonance according to claim 9.
【請求項12】前記受信コイルは超伝導体から構成さ
れ、前記受信回路はSQUID磁束計を含み、核SQUID磁束計
は、複数個のSQUID素子が直列に接続された第1、第2
の端子をもつSQUID素子列と、前記SQUID素子配列の第1
の端子に接続され、前記各SQUID素子を駆動するバイア
ス電源と、前記SQUID素子のそれぞれに対応して入力コ
イルが直列に接続され、第1、第2の端子をもつ入力コ
イル配列と、前記入力コイル配列の第1、第2の端子と
前記受信コイルとを接続する超伝導−常伝導転移を有す
る可変抵抗を含む磁束伝達回路とからなり、核磁束伝達
回路、前記入力コイルが超伝導体から構成される磁束計
であり、前記SQUID素子配列の第1、第2の端子が前記
バンドパスフィルタのそれぞれに並列接続されることを
特徴とする特許請求の範囲9項に記載の核磁気共鳴を用
いた検査装置。
12. The receiving coil includes a superconductor, the receiving circuit includes a SQUID magnetometer, and the nuclear SQUID magnetometer includes a first and a second SQUID element in which a plurality of SQUID elements are connected in series.
A SQUID element array having terminals of
And a bias power supply for driving each of the SQUID elements, an input coil array having first and second terminals connected in series with input coils corresponding to each of the SQUID elements, and A magnetic flux transmission circuit including a variable resistor having a superconducting-normal conduction transition for connecting the first and second terminals of the coil array and the receiving coil, wherein a nuclear magnetic flux transmitting circuit and the input coil are formed of a superconductor; 10. The magnetic flux meter according to claim 9, wherein the first and second terminals of the SQUID element array are connected in parallel to each of the band-pass filters. Inspection equipment used.
JP62208110A 1987-08-24 1987-08-24 SQUID magnetometer and inspection apparatus using nuclear magnetic resonance using the same Expired - Fee Related JP2641456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62208110A JP2641456B2 (en) 1987-08-24 1987-08-24 SQUID magnetometer and inspection apparatus using nuclear magnetic resonance using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62208110A JP2641456B2 (en) 1987-08-24 1987-08-24 SQUID magnetometer and inspection apparatus using nuclear magnetic resonance using the same

Publications (2)

Publication Number Publication Date
JPS6452446A JPS6452446A (en) 1989-02-28
JP2641456B2 true JP2641456B2 (en) 1997-08-13

Family

ID=16550802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62208110A Expired - Fee Related JP2641456B2 (en) 1987-08-24 1987-08-24 SQUID magnetometer and inspection apparatus using nuclear magnetic resonance using the same

Country Status (1)

Country Link
JP (1) JP2641456B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284679A (en) * 1985-06-11 1986-12-15 Mitsubishi Electric Corp Superconductive quantum interference device

Also Published As

Publication number Publication date
JPS6452446A (en) 1989-02-28

Similar Documents

Publication Publication Date Title
CA1194108A (en) Nuclear magnetic resonance tomography apparatus
US4591787A (en) Multi-channel device with SQUIDS and superconducting gradiometers for the measurement of weak magnetic fields produced by various field sources
US5559434A (en) Magnetic resonance imaging apparatus and RF coil employed therein
US4613817A (en) Superconducting gradiometer coil system for an apparatus for the multi-channel measurement of weak nonstationary magnetic fields
US5473251A (en) Magnetic resonance imaging apparatus
EP0147655B1 (en) Miniature squid susceptometer
CA1275693C (en) Balanced self-shielded gradient coils
US5012190A (en) Apparatus for multi-channel measurement of weak magnetic fields with squids and superconducting gradiometers on individual detachable assemblies, and method of manufacture
Liston et al. A contact modulated amplifier to replace sensitive suspension galvanometers
US6362617B1 (en) Wideband, high dynamic range antenna
EP0196134B1 (en) Magnetic resonance imaging apparatus including two orthogonal r.f. coils
JP2569542B2 (en) Magnetic flux transmission circuit
US5600242A (en) Electrically small broadband high linear dynamic range deceiver including a plurality of active antenna elements
JP2641456B2 (en) SQUID magnetometer and inspection apparatus using nuclear magnetic resonance using the same
Jesmanowicz et al. Noise correlation
US6453189B1 (en) Probe for magnetic resonance imaging
JPH04309869A (en) Pickup coil
JPH06265612A (en) Squid fluxmeter
US5109198A (en) Nuclear magnetic resonance imaging apparatus
JPS60171439A (en) Coil for nmr image diagnosing apparatus
JP3058681B2 (en) Multi-channel SQUID magnetometer
JP3156396B2 (en) Differential SQUID magnetometer and biomagnetic field measurement device using the same
JPH0274882A (en) Multichannel squid type fluxmeter
JP2869780B2 (en) Latch-free SQUID magnetometer
Borsboom et al. Low-frequency quadrature mode birdcage resonator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees