[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2539560B2 - Semiconductor acceleration sensor and airbag system - Google Patents

Semiconductor acceleration sensor and airbag system

Info

Publication number
JP2539560B2
JP2539560B2 JP3241460A JP24146091A JP2539560B2 JP 2539560 B2 JP2539560 B2 JP 2539560B2 JP 3241460 A JP3241460 A JP 3241460A JP 24146091 A JP24146091 A JP 24146091A JP 2539560 B2 JP2539560 B2 JP 2539560B2
Authority
JP
Japan
Prior art keywords
mass
diaphragm
acceleration
acceleration sensor
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3241460A
Other languages
Japanese (ja)
Other versions
JPH0580069A (en
Inventor
吉弘 横田
晃 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3241460A priority Critical patent/JP2539560B2/en
Publication of JPH0580069A publication Critical patent/JPH0580069A/en
Application granted granted Critical
Publication of JP2539560B2 publication Critical patent/JP2539560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • G01P2015/0842Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape

Landscapes

  • Air Bags (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体単結晶により形成
された半導体加速度センサ及びこれを用いたエアバッグ
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor acceleration sensor formed of a semiconductor single crystal and an airbag system using the same.

【0002】[0002]

【従来の技術】従来の半導体加速度センサには、例えば
特開昭56−133877号,特開昭63−16907
8号公報に開示されるように、中央に加速度に応答する
厚肉部(剛体,質量部)を設け、この中央厚肉部を薄肉
部(ダイヤフラム部)を介して周囲の厚肉固定部により
支持し、前記ダイヤフラム部にピエゾ抵抗素子を拡散に
より形成したり、そのほか、ダイヤフラムに代えて弾性
の梁により質量部を支持し、この梁にピエゾ抵抗素子を
設けたりしている。これらは、加速度に応答する質量部
の変位をダイヤフラム或いは梁の捩じれにより歪ゲージ
(ピエゾ抵抗素子)を介して検出することで、加速度を
とらえている。
2. Description of the Related Art Conventional semiconductor acceleration sensors include, for example, Japanese Patent Laid-Open Nos. 56-133877 and 63-16907.
As disclosed in Japanese Patent Publication No. 8, a thick portion (rigid body, mass portion) that responds to acceleration is provided in the center, and the central thick portion is surrounded by a thick fixing portion around the thin portion (diaphragm portion). A piezoresistive element is supported on the diaphragm by diffusion, and an elastic beam is used instead of the diaphragm to support the mass part, and the piezoresistive element is provided on the beam. The acceleration is captured by detecting the displacement of the mass portion in response to the acceleration by twisting the diaphragm or the beam through a strain gauge (piezoresistive element).

【0003】また、歪ゲージに代えて前記質量部を可動
電極とし、これに微小隙間を介して固定電極を対向配置
させ、電極間の隙間の変化を静電容量に置換して取りだ
して加速度をとらえるものも種々提案されている。
Further, in place of the strain gauge, the mass portion is used as a movable electrode, and a fixed electrode is arranged to face the movable electrode with a minute gap therebetween, and a change in the gap between the electrodes is replaced with a capacitance to take out acceleration. Various things to be caught have been proposed.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のよう
な加速度センサは、現状では車体制御用の加速度センサ
の開発が進んで1〜2G程度の加速度センサの文献が多
く出ているが、例えば車両衝突を検出する場合に必要な
加速度±(プラス、マイナス)50Gに至る検出,耐衝
撃性,量産性のいずれの条件も充分に満足させる加速度
センサの開発が遅れているのが現状である。
By the way, as for the above-mentioned acceleration sensor, the development of an acceleration sensor for vehicle body control is progressing at present, and there are many documents about the acceleration sensor of about 1 to 2 G. At present, there is a delay in the development of an acceleration sensor capable of sufficiently satisfying all the conditions of detection up to ± (plus or minus) 50 G, impact resistance, and mass productivity required for collision detection.

【0005】例えば、ダイヤフラムだけで質量部を支持
する場合には衝突加速度よりもはるかに小さな加速度で
応答してしまい、また、梁により質量部を支持する場合
には、単結晶半導体が壁開性のために耐衝撃性に不安を
残し、さらに梁間の空隙を加工するプロセスがあるの
で、精密な加工工程が増え量産性に劣る傾向があった。
For example, when the mass portion is supported only by the diaphragm, the response is much smaller than the collision acceleration, and when the mass portion is supported by the beam, the single crystal semiconductor has a wall cleaving property. For this reason, there is a concern about impact resistance, and there is a process for processing the gap between the beams, so the number of precision processing steps increases, and mass productivity tends to be poor.

【0006】本発明は以上の点に鑑みてなされ、その目
的は、車両衝突のような大きな加速度に対する検出に充
分対応でき、しかも耐衝撃性,量産性のいずれの条件も
満足させる加速度センサ及びこれを利用して信頼性のあ
るエアバッグシステムを提供することにある。
The present invention has been made in view of the above points, and an object thereof is an acceleration sensor that can sufficiently detect a large acceleration such as a vehicle collision and that satisfies both conditions of impact resistance and mass productivity. Is to provide a reliable airbag system.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、基本的には、次のような課題解決手段を提
案する。
In order to achieve the above object, the present invention basically proposes the following problem solving means.

【0008】一つは、加速度を慣性力に変換する質量部
がその周囲に配置した枠部(固定部)にダイヤフラム部
を介して支持され、前記質量部,枠部,ダイヤフラム部
が単結晶半導体により一体成形して成る加速度センサに
おいて、前記枠部・質量部をつなぐ梁部を前記ダイヤフ
ラム部の一部を厚肉成形することで構成して該梁部と前
記ダイヤフラム部とを一体の組合せ構造とし、歪みゲー
ジタイプの場合にはこの梁部或いはダイヤフラムにピエ
ゾ抵抗素子を形成し、静電容量タイプの場合には、前記
質量部を可動電極とし、この可動電極と微小隙間を介し
て固定電極を対向配置して成る(これを第1の課題解決
手段とする)。
One is that a mass part for converting acceleration into an inertial force is supported by a frame part (fixed part) arranged around the mass part through a diaphragm part, and the mass part, the frame part and the diaphragm part are made of a single crystal semiconductor. In the acceleration sensor integrally formed by, the beam part connecting the frame part and the mass part is configured by thickly forming a part of the diaphragm part, and the beam part and the diaphragm part are integrally combined structure. In the case of the strain gauge type, a piezoresistive element is formed on this beam portion or diaphragm, and in the case of the capacitance type, the mass portion is used as a movable electrode, and a fixed electrode is formed through a minute gap with this movable electrode. Are opposed to each other (this is the first problem solving means).

【0009】もう一つは、質量部と固定部との位置関係
を上記と逆にしたものを提案する。すなわち、加速度検
出対象に固定される固定部を中央に配置し、この固定部
の周囲に加速度を慣性力に変換する質量部をダイヤフラ
ム部を介して支持しつつ配置し、前記固定部,ダイヤフ
ラム部,質量部を単結晶半導体により一体成形すると共
に、前記固定部・質量部をつなぐ梁部を前記ダイヤフラ
ム部の一部を厚肉成形することで構成して該梁部と前記
ダイヤフラム部とを一体の組合せ構造とする(これを第
2の課題解決手段とする)。
Another proposal is to reverse the positional relationship between the mass portion and the fixed portion. That is, a fixed part fixed to an acceleration detection target is arranged in the center, and a mass part for converting acceleration into inertial force is arranged around the fixed part while supporting it via a diaphragm part. , The mass part is integrally formed of a single crystal semiconductor, and the beam part connecting the fixing part and the mass part is formed by thickly molding a part of the diaphragm part to integrally form the beam part and the diaphragm part. (This is a second means for solving problems).

【0010】[0010]

【作用】質量部を支持する弾性支持体をダイヤフラム部
と梁部とを一体に組合せたもので構成すると、質量部が
比較的大きな加速度(例えば±50Gに至る程度)に対
して的を絞った応答性を有する。また、耐衝撃性も大幅
に向上して±50G程度の衝撃にも耐えられる。
When the elastic support for supporting the mass part is constructed by integrally combining the diaphragm part and the beam part, the mass part is focused on a relatively large acceleration (for example, up to ± 50 G). Responsive. In addition, the shock resistance is greatly improved, and it can withstand a shock of about ± 50G.

【0011】さらに、半導体部分(ゲージ部)の製造
は、量産されているダイヤフラム型の半導体圧力センサ
のプロセスをそのまま用いて加工できる。すなわち、加
速度センサ用のマスク設計がなされれば、ダイヤフラム
加工やピエゾ抵抗素子の拡散技術のプロセスは既存のプ
ロセスとまったく同一に加工でき、さらに梁間に空隙を
設けるような手間のかかる精密加工作業を不要とするの
で、量産性を向上させることができる。
Further, the semiconductor portion (gauge portion) can be manufactured by directly using the process of the mass-produced diaphragm type semiconductor pressure sensor. In other words, if the mask design for the acceleration sensor is done, the process of diaphragm processing and diffusion technology of piezoresistive element can be processed exactly the same as the existing process, and more time-consuming precision processing work such as providing a gap between beams is required. Since it is unnecessary, mass productivity can be improved.

【0012】上記構成において、第1,第2の課題解決
手段ともに衝突時の加速度に応じて質量部が変化する
が、第1の課題解決手段の場合には、枠部内にて質量部
が応答動作するのに対して、第2の課題解決手段の場合
には、中央が固定部となって、その外側で質量部が応答
動作(いわゆる、中央を支点としての、やじろうべえ動
作)を行う。後者の場合には、質量部の設計の自由度が
大きく、また、三次元の加速度検出を可能にする利点が
ある。加速度に応答する質量部の変化は梁やダイヤフラ
ム部に配設したピエゾ抵抗素子の値の変化、或いは質量
部を可動電極とした場合には、それに対向する固定電極
との協働により静電容量の値の変化として検出される。
In the above structure, the mass portion changes in accordance with the acceleration at the time of collision in both the first and second problem solving means, but in the case of the first problem solving means, the mass portion responds within the frame portion. On the other hand, in the case of the second problem solving means, the center serves as a fixed portion, and the mass portion performs a response operation (a so-called staggered movement with the center serving as a fulcrum) outside the fixed portion. To do. In the latter case, there are advantages that the degree of freedom in designing the mass part is large and that three-dimensional acceleration can be detected. The change of the mass part in response to the acceleration is the change of the value of the piezoresistive element arranged on the beam or the diaphragm part, or when the mass part is the movable electrode, the capacitance is generated by the cooperation with the fixed electrode facing it. Is detected as a change in the value of.

【0013】[0013]

【実施例】本発明の実施例を図面により説明する。Embodiments of the present invention will be described with reference to the drawings.

【0014】図1は本発明の第1実施例に係る加速度セ
ンサ100のゲージ部を示す。
FIG. 1 shows a gauge portion of an acceleration sensor 100 according to the first embodiment of the present invention.

【0015】本実施例は、単結晶シリコン1を加工し
て、枠部2と質量部3とそれらをつなぐ梁部4とダイヤ
フラム部6とを一体成形する。梁部4はダイヤフラム部
6の一部を厚肉成形してなる。質量部3は正方形を呈
し、その4辺に梁部4がそれぞれ配設される。本実施例
では、4個の梁部4が質量部3の重心を中心にして配設
される。梁部4の少なくとも一つには、ブリッジ抵抗回
路要素となるピエゾ抵抗素子5が配設される。梁部4は
ダイヤフラム部6との組合せにより質量部3が加速度に
応じて動くときのバランスをとり、且つ±50G程度の
比較的大きな加速度に反応させるためのものであるの
で、全部の梁部にピエゾ抵抗素子5を配設する必要はな
い。加速度に応答する梁部4の歪量はブリッジ構成され
たピエゾ抵抗素子5によって検出され、端子7から検出
信号が取り出される。
In this embodiment, the single crystal silicon 1 is processed to integrally form the frame portion 2, the mass portion 3, the beam portion 4 connecting them, and the diaphragm portion 6. The beam portion 4 is formed by thickening a part of the diaphragm portion 6. The mass portion 3 has a square shape, and the beam portions 4 are arranged on the four sides thereof. In this embodiment, four beam portions 4 are arranged with the center of gravity of the mass portion 3 as the center. At least one of the beam portions 4 is provided with a piezoresistive element 5 serving as a bridge resistance circuit element. The beam portion 4 is used in combination with the diaphragm portion 6 to balance when the mass portion 3 moves in response to acceleration and to react to a relatively large acceleration of about ± 50 G. It is not necessary to provide the piezoresistive element 5. The strain amount of the beam portion 4 in response to the acceleration is detected by the piezoresistive element 5 having a bridge structure, and a detection signal is taken out from the terminal 7.

【0016】図2は上記のようにダイヤフラム部6と梁
部4とを一体に組合せた構造の種々の態様を示す。
FIG. 2 shows various aspects of the structure in which the diaphragm portion 6 and the beam portion 4 are integrally combined as described above.

【0017】図2の(イ)はいわゆるH形と称して、質
量部3の一組の相対する辺に各々2本ずつの梁部4を配
設した構造のもので、一定方向のバランスがとれるもの
として試作を行った。加速度が加わった動きに対してバ
ランス良く動作する構造である。
FIG. 2A shows a so-called H shape, which has a structure in which two beam portions 4 are provided on each of opposite sides of a pair of mass portions 3, and the balance in a fixed direction is obtained. We made a prototype as something that can be taken. It is a structure that operates in a well-balanced manner with respect to a movement to which acceleration is applied.

【0018】図2の(ロ)はバランスと共に感度を確保
することを意図したもので、いわゆるπ形と称している
配置構造で、一辺に2本の梁部4をその両隣に一本づつ
の梁部4を配設したものである。端子7側の反対側の辺
に梁部4を2本配設してシングルビームの動作を確保し
てダイヤフラム部6と共に質量部3を支えるものである
が、その辺の両隣の辺の梁部4を端子7寄りに配置する
ことにより全体として加速度が加わってからの動作を補
正してバランスのとれた構造としたものである。
FIG. 2B is intended to secure the sensitivity as well as the balance, and it is a so-called π type arrangement structure, in which two beam portions 4 are arranged on each side, one on each side. The beam portion 4 is provided. Two beam parts 4 are provided on the side opposite to the terminal 7 side to secure the operation of a single beam and support the mass part 3 together with the diaphragm part 6, but the beam parts on both sides adjacent to that side. By arranging 4 closer to the terminal 7, the operation after the acceleration is applied is corrected as a whole to form a balanced structure.

【0019】図2の(ハ)は先の図1の実施例に係るも
ので、いわゆる十字形配置の梁部4とダイヤフラム部6
との組合せで質量部3を支えるには最適なバランスとな
っている。
FIG. 2C relates to the embodiment shown in FIG. 1 and has a so-called cross-shaped beam portion 4 and diaphragm portion 6.
The optimum balance is provided to support the mass part 3 in combination with.

【0020】図2の(ニ)は質量部3の各辺に2本づつ
の梁部4を配置したいわゆるクロスH形と称せられるも
ので、(ハ)の各辺に1本づつ配置したものに対して、
より良好なバランス特性を得ようとしたものである。
FIG. 2D is a so-called cross H type in which two beam portions 4 are arranged on each side of the mass portion 3, and one beam is arranged on each side of (C). Against
This is intended to obtain better balance characteristics.

【0021】(イ)〜(ニ)の各構造において、梁部4
の数とピエゾ抵抗素子5の配設は一致しない。これは各
梁部の配設と検出しようとする位置が異なるので、ピエ
ゾ抵抗素子5の配設は各々の構造で検討しなければなら
ないからである。
In each of the structures (a) to (d), the beam portion 4
And the arrangement of the piezoresistive elements 5 do not match. This is because the arrangement of each beam portion and the position to be detected are different, and therefore the arrangement of the piezoresistive element 5 must be examined for each structure.

【0022】図3は図2の各々の梁部配置に対するピエ
ゾ抵抗素子の出力特性を示すもので、図2の(ロ)のπ
形は出力は出るが非直線誤差(Non-lineality)が大き
く、(ハ)の十字形は最も非直線誤差が小さく量産に適
した構造である。
FIG. 3 shows the output characteristics of the piezoresistive element with respect to each beam arrangement shown in FIG.
Although the shape is output, the non-linearity (Non-lineality) is large, and the cross in (C) has the smallest non-linearity and is suitable for mass production.

【0023】図4〜図7は図2の(イ)〜(ニ)に対応
の梁部配置の加速度検出軸成分−非直線誤差の特性図を
示すもので、図4〔図2(イ)に対応〕、図5〔図2
(ロ)に対応〕、図7〔図2(ニ)に対応〕は加速度G
の加え方、すなわち、時計回りと反時計回りでは大きく
差が出ていることが判る。これに対して、図6〔図2
(ハ)に対応〕に示した十字形の梁部4をダイアフラム
6と組合せて質量部3を支えている構造のものは時計回
りでも反時計回りでもデータがほゞ一致している。
FIGS. 4 to 7 are characteristic diagrams of acceleration detection axis component-non-linear error of the beam arrangement corresponding to FIGS. 2 (A) to 2 (D). 5] [corresponding to FIG. 2]
(B)] and FIG. 7 [corresponding to FIG. 2D] are acceleration G
It can be seen that there is a large difference in the way of adding, that is, clockwise and counterclockwise. On the other hand, as shown in FIG.
In the structure in which the cross-shaped beam portion 4 is combined with the diaphragm 6 to support the mass portion 3 shown in (corresponding to (c)), the data is almost the same in both clockwise and counterclockwise directions.

【0024】以上からすれば、加速度センサとしては非
直線誤差が少なく、そのばらつきが時計回り、反時計回
りのいずれの加速度に対してもほゞ一致した値を示した
図2の(ハ)の構造が最も適していると判断した。しか
し、非直線誤差を無視して、感度を重視する場合は、当
然図2の(ロ)に示したπ形が良いのは云うまでもな
く、更に、感度は低くても強度のある質量部支持構造が
要求される場合には、図2(ニ)のクロスH形構造がよ
く、一方向からの加速度を検出する場合には図2(イ)
のH形がよく、各種用途に応じて最適なものを選べばよ
い。
In view of the above, the acceleration sensor has a small non-linearity error, and its variation shows a value that is almost the same for both clockwise and counterclockwise accelerations. The structure was judged to be most suitable. However, when the non-linear error is ignored and the sensitivity is emphasized, it goes without saying that the π shape shown in (b) of FIG. When the support structure is required, the cross H-shaped structure of FIG. 2D is preferable, and when the acceleration from one direction is detected, the cross H-shaped structure of FIG.
H type is good, and you can select the most suitable one according to various applications.

【0025】梁部4とダイヤフラム部6とを組合せて質
量部3を支える構造にて加速度を検出するセンサにおい
ては、トータル的な特性が最も優れた図2(ハ)の十字
形の構造が良く、図8のエアバッグシステムではこのセ
ンサを加速度センサ(Gセンサ)として適用した。
In the sensor for detecting acceleration in the structure that supports the mass part 3 by combining the beam part 4 and the diaphragm part 6, the cross-shaped structure of FIG. 2C, which has the best total characteristics, is preferable. In the airbag system of FIG. 8, this sensor is applied as an acceleration sensor (G sensor).

【0026】図8において、100はGセンサ、101
は直流電源、102は診断回路、103は増幅・温度補
正回路、104は加速度検出回路、105は加速度検出
値より衝突か否かを判定する判定回路であり、Gセンサ
100を自動車の2〜3カ所に設置して、衝突によって
50〜100G等の大きな加速度が加わった際に、前記
回路要素103,104,105を介してエアバッグ用
モジュール107を動作させて衝突の際に乗員を保護す
る。診断装置102はこのシステムが健常であるか否か
定期的に診断を行う。本実施例では、エアバッグ用モジ
ュール107を動作させるだけでなく、Gセンサ100
からの信号を用いて警報ランプ106を事前に点灯させ
る構成としており、これに代えてブザーを発するように
してもよい。
In FIG. 8, 100 is a G sensor, 101
Is a DC power supply, 102 is a diagnostic circuit, 103 is an amplification / temperature correction circuit, 104 is an acceleration detection circuit, and 105 is a determination circuit for determining whether or not there is a collision based on the acceleration detection value. When the vehicle is installed at a certain place and a large acceleration of 50 to 100 G or the like is applied due to the collision, the airbag module 107 is operated via the circuit elements 103, 104 and 105 to protect an occupant in the case of the collision. The diagnostic device 102 periodically diagnoses whether or not this system is healthy. In this embodiment, in addition to operating the airbag module 107, the G sensor 100
The alarm lamp 106 is configured to be turned on in advance by using a signal from the above, and a buzzer may be emitted instead.

【0027】図9は本発明に係る加速度センサの他の実
施例で、同図の(イ)が一部切欠斜視図、(ロ)がその
a−a線断面図である。既述の実施例と同一符号は同一
或いは共通する要素を示す。図1の実施例と異なる点
は、中央を固定部2´として基板8上に固定載置し、そ
の外側(周囲)にダイヤフラム部6・梁部4の一体組合
せ体(弾性支持体)を介して枠形の質量部3を配置した
点にある。梁部4はダイヤフラム部6の一部を厚肉成形
して構成したことは、既述の他の実施例と同様である。
図9(ロ)に示すように、外側の質量部3が基板8より
微小間隙Gを介して浮いた状態、いわゆる質量部3が固
定部2´を中心に四方に配置されてやじろうべえ的な被
支持状態にあり、三次元の各方向の加速度成分に対して
質量部3の各箇所の変位が異なる。このことは、各梁部
3の歪量も異なることを意味する。
9A and 9B show another embodiment of the acceleration sensor according to the present invention. FIG. 9A is a partially cutaway perspective view and FIG. 9B is a sectional view taken along the line aa. The same reference numerals as those of the above-described embodiments indicate the same or common elements. 1 is different from the embodiment of FIG. 1 in that the center is fixedly mounted on a substrate 8 as a fixed portion 2 ', and an integral combination body (elastic support) of the diaphragm portion 6 and the beam portion 4 is provided on the outer side (periphery) thereof. The frame-shaped mass part 3 is arranged. The beam portion 4 is configured by thickly forming a part of the diaphragm portion 6 as in the other embodiments described above.
As shown in FIG. 9B, the outer mass portion 3 is floated from the substrate 8 via the minute gap G, that is, the so-called mass portion 3 is arranged in four directions around the fixing portion 2 ′. In this state, the displacement of each part of the mass part 3 is different with respect to the acceleration component in each direction in three dimensions. This means that the amount of strain of each beam 3 is also different.

【0028】梁部4上にはピエゾ抵抗素子5が拡散によ
り形成してあり、上記の各梁部4の歪量を知ることで三
次元の加速度を検出する。
A piezoresistive element 5 is formed on the beam portion 4 by diffusion, and three-dimensional acceleration is detected by knowing the amount of strain of each beam portion 4 described above.

【0029】本実施例においても、質量部3を支持する
弾性支持体を梁部4とダイヤフラム部6とを一体に組合
せたもので構成することで、第1実施例と同様の効果を
奏する。しかも、本実施例においては、質量部3を外側
に配置するが、このようにすると、第1実施例のように
枠内に質量部を設けた場合に較べて幅Wのわずかな増減
で質量部3を大きく増減調整できるので、スペース的な
制約をさほど受けずに質量部3の設計に任意性をもたせ
ることができる。また、一つのセンサで三次元の加速度
を検出できる利点がある。
Also in this embodiment, the elastic support member for supporting the mass portion 3 is constructed by integrally combining the beam portion 4 and the diaphragm portion 6, and thereby the same effect as that of the first embodiment is obtained. Moreover, in the present embodiment, the mass portion 3 is arranged on the outer side. However, in this case, the mass W is slightly increased or decreased as compared with the case where the mass portion is provided in the frame as in the first embodiment. Since the part 3 can be adjusted to be increased / decreased greatly, the design of the mass part 3 can be given flexibility without being restricted by space. Further, there is an advantage that one sensor can detect three-dimensional acceleration.

【0030】図10は本発明の他の実施例を示す静電容
量式加速度センサのゲージ部を示す一部切欠斜視図、図
11はその固定電極側基板を可動電極(質量部)側から
みた平面図である。
FIG. 10 is a partially cutaway perspective view showing a gauge portion of a capacitance type acceleration sensor according to another embodiment of the present invention, and FIG. 11 is a view showing the fixed electrode side substrate from the movable electrode (mass portion) side. It is a top view.

【0031】本実施例も図9の実施例と同様に中央を固
定部2´とし、その周囲(外側)に質量部3を配置し
て、これらの要素2´,3を梁部4,ダイヤフラム部6
の一体組合せ構造体(弾性支持体)でつないだものであ
る。そして、この質量部3を可動電極として、これと対
向する固定電極10を微小隙間Gを介して4カ所に配設
して成る。固定電極10は絶縁基板9上に形成される。
固定電極10は質量部3片面に配置するか、或いは両面
に対向するように配置してもよい。
In this embodiment as well, as in the embodiment of FIG. 9, the central portion is the fixed portion 2 ', and the mass portion 3 is arranged around the fixed portion 2', and these elements 2'and 3 are connected to the beam portion 4 and the diaphragm. Part 6
It is connected by an integrated combination structure (elastic support). The mass portion 3 is used as a movable electrode, and the fixed electrodes 10 facing the movable portion 3 are arranged at four positions with a minute gap G therebetween. The fixed electrode 10 is formed on the insulating substrate 9.
The fixed electrode 10 may be arranged on one side of the mass part 3 or may be arranged so as to face both sides.

【0032】本実施例も図9の実施例と同様の効果を奏
するが、三次元方向の判別を各固定電極10・可動電極
3間の静電容量の変化をとらえて判別している。すなわ
ち、既述したように三次元の各方向の加速度成分に対し
て質量部3の各箇所の変位が異なることから、各箇所の
変位を夫々の固定電極10・可動電極(質量部)3間の
静電容量の値からとらえることで三次元の加速度を検出
している。
This embodiment also has the same effect as that of the embodiment of FIG. 9, but the determination in the three-dimensional direction is made by recognizing the change in the electrostatic capacitance between each fixed electrode 10 and the movable electrode 3. That is, as described above, since the displacement of each part of the mass part 3 is different with respect to the acceleration component in each of the three-dimensional directions, the displacement of each part is measured between the fixed electrode 10 and the movable electrode (mass part) 3. The three-dimensional acceleration is detected by capturing the value of the electrostatic capacitance.

【0033】なお、図9〜図11の実施例における質量
部3は一連の枠形の態様のほかに、図12に示すように
枠形のコーナを切り取って複数の質量部3が固定部2´
を中心としてその周りに配置する態様でもよい。
The mass portion 3 in the embodiment shown in FIGS. 9 to 11 has a series of frame-shaped forms, and as shown in FIG. 12, a plurality of mass portions 3 are fixed by cutting the frame-shaped corners. ´
It may be a mode in which it is arranged around the center.

【0034】また、図1のような質量部,ダイヤフラム
部・梁部,枠部を有する加速度センサにおいて、歪ゲー
ジ方式に代えて質量部を可動電極とし、これに対向して
固定電極を配置して静電容量式とすることも可能であ
る。
Further, in the acceleration sensor having the mass part, the diaphragm part / beam part, and the frame part as shown in FIG. 1, the mass part is used as the movable electrode instead of the strain gauge method, and the fixed electrode is arranged opposite to this. It is also possible to use a capacitance type.

【0035】[0035]

【発明の効果】以上のように本発明によれば、加速度に
対して応答動作する質量部の支持体をダイヤフラム部と
梁部との一体組合せにより構成することで、車両衝突の
ような大きな加速度に対する検出に充分対応でき、しか
も耐衝撃性,量産性のいずれの条件も満足させる加速度
センサ及びこれを利用して信頼性のあるエアバッグシス
テムを提供することができる。
As described above, according to the present invention, the support of the mass portion that responds to acceleration is constructed by an integral combination of the diaphragm portion and the beam portion, so that a large acceleration such as a vehicle collision is generated. Therefore, it is possible to provide an acceleration sensor which can sufficiently cope with the above-mentioned detection, and which satisfies both conditions of shock resistance and mass productivity, and a reliable airbag system using the acceleration sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る加速度センサの一部切
欠斜視図。
FIG. 1 is a partially cutaway perspective view of an acceleration sensor according to an embodiment of the present invention.

【図2】上記実施例に用いる質量部の各種支持態様を示
す説明図。
FIG. 2 is an explanatory view showing various supporting modes of a mass part used in the above-mentioned embodiment.

【図3】図2の(イ)〜(ニ)における各種態様の加速
度センサの出力特性(非直線誤差)を示す説明図。
FIG. 3 is an explanatory diagram showing the output characteristics (non-linear error) of the acceleration sensor of various aspects in (A) to (D) of FIG.

【図4】図2の(イ)の加速度センサに対応の出力特性
図。
FIG. 4 is an output characteristic diagram corresponding to the acceleration sensor of FIG.

【図5】図2の(ロ)の加速度センサに対応の出力特性
図。
FIG. 5 is an output characteristic diagram corresponding to the acceleration sensor of FIG.

【図6】図2の(ハ)の加速度センサに対応の出力特性
図。
FIG. 6 is an output characteristic diagram corresponding to the acceleration sensor shown in FIG.

【図7】図2の(ニ)の加速度センサに対応の出力特性
図。
FIG. 7 is an output characteristic diagram corresponding to the acceleration sensor shown in FIG.

【図8】本発明のエアバッグシステムの一例を示す説明
図。
FIG. 8 is an explanatory view showing an example of the airbag system of the present invention.

【図9】本発明の他の実施例に係る加速度センサの一部
切欠斜視図及びそのa−a線断面図。
FIG. 9 is a partially cutaway perspective view of an acceleration sensor according to another embodiment of the present invention and a sectional view taken along the line aa.

【図10】本発明の他の実施例に係る加速度センサの一
部切欠斜視図。
FIG. 10 is a partially cutaway perspective view of an acceleration sensor according to another embodiment of the present invention.

【図11】図10の加速度センサにおける固定電極側の
基板を可動電極側からみた平面図。
11 is a plan view of a substrate on the fixed electrode side of the acceleration sensor of FIG. 10 viewed from the movable electrode side.

【図12】本発明の他の実施例に係る加速度センサの一
部切欠斜視図。
FIG. 12 is a partially cutaway perspective view of an acceleration sensor according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…単結晶シリコン、2…枠部(固定部)、2´…固定
部、3…質量部、4…梁部、5…ピエゾ抵抗素子、6…
ダイヤフラム部、7…端子、001…直流電源、100
…Gセンサ(半導体加速度センサ)、101…直流電
源、102…診断回路、103……増幅・温度補正回
路、104……加速度検出回路、105…判定回路、1
06…警報ランプ、107…エアバッグ用モジュール。
DESCRIPTION OF SYMBOLS 1 ... Single crystal silicon, 2 ... Frame part (fixed part), 2 '... Fixed part, 3 ... Mass part, 4 ... Beam part, 5 ... Piezoresistive element, 6 ...
Diaphragm part, 7 ... Terminal, 001 ... DC power supply, 100
... G sensor (semiconductor acceleration sensor), 101 ... DC power supply, 102 ... Diagnostic circuit, 103 ... Amplification / temperature correction circuit, 104 ... Acceleration detection circuit, 105 ... Judgment circuit, 1
06 ... Alarm lamp, 107 ... Airbag module.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−94168(JP,A) 特開 昭63−222464(JP,A) 特開 昭63−169078(JP,A) 特開 昭56−133877(JP,A) 特開 昭63−70529(JP,A) 特開 平2−95265(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-3-94168 (JP, A) JP-A-63-222464 (JP, A) JP-A-63-169078 (JP, A) JP-A-56- 133877 (JP, A) JP 63-70529 (JP, A) JP 2-95265 (JP, A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加速度を慣性力に変換する質量部がその
周囲に配置した枠部にダイヤフラム部を介して支持さ
れ、前記質量部,枠部,ダイヤフラム部が単結晶半導体
により一体成形して成る加速度センサにおいて、前記枠
部・質量部をつなぐ梁部を前記ダイヤフラム部の一部を
厚肉成形することで構成して該梁部と前記ダイヤフラム
部とを一体の組合せ構造とし、前記梁部或いはダイヤフ
ラム部にピエゾ抵抗素子を形成して成ることを特徴とす
る半導体加速度センサ。
1. A mass part for converting an acceleration into an inertial force is supported by a frame part arranged around the mass part through a diaphragm part, and the mass part, the frame part, and the diaphragm part are integrally molded of a single crystal semiconductor. In the acceleration sensor, a beam portion connecting the frame portion and the mass portion is formed by thickly forming a part of the diaphragm portion to form a combined structure of the beam portion and the diaphragm portion, and the beam portion or A semiconductor acceleration sensor comprising a piezoresistive element formed on a diaphragm.
【請求項2】 加速度を慣性力に変換する質量部がその
周囲に配置した枠部にダイヤフラム部を介して支持さ
れ、前記質量部,枠部,ダイヤフラム部が単結晶半導体
により一体成形して成る加速度センサにおいて、前記枠
部・質量部をつなぐ梁部を前記ダイヤフラム部の一部を
厚肉成形することで構成して該梁部と前記ダイヤフラム
部とを一体の組合せ構造とし、前記質量部を可動電極と
し、この可動電極と微小隙間を介して固定電極を対向配
置して成ることを特徴とする半導体加速度センサ。
2. A mass part for converting an acceleration into an inertial force is supported by a frame part arranged around the mass part through a diaphragm part, and the mass part, the frame part and the diaphragm part are integrally molded of a single crystal semiconductor. In the acceleration sensor, a beam portion connecting the frame portion and the mass portion is formed by thickly forming a part of the diaphragm portion to form a combined structure of the beam portion and the diaphragm portion, and the mass portion is A semiconductor acceleration sensor comprising a movable electrode, and a fixed electrode facing the movable electrode with a minute gap therebetween.
【請求項3】 加速度検出対象に固定される固定部を中
央に配置し、この固定部の周囲に加速度を慣性力に変換
する質量部をダイヤフラム部を介して支持しつつ配置
し、前記固定部,ダイヤフラム部,質量部を単結晶半導
体により一体成形すると共に、前記固定部・質量部をつ
なぐ梁部を前記ダイヤフラム部の一部を厚肉成形するこ
とで構成して該梁部と前記ダイヤフラム部とを一体の組
合せ構造とし、前記梁部或いはダイヤフラムにピエゾ抵
抗素子を形成して成ることを特徴とする半導体加速度セ
ンサ。
3. A fixed part fixed to an acceleration detection target is arranged at the center, and a mass part for converting acceleration into inertial force is arranged around this fixed part while supporting it via a diaphragm part. , The diaphragm part and the mass part are integrally molded from a single crystal semiconductor, and the beam part connecting the fixing part and the mass part is formed by thickly molding a part of the diaphragm part to form the beam part and the diaphragm part. And a piezoresistive element formed on the beam portion or the diaphragm.
【請求項4】 加速度検出対象に固定される固定部を中
央に配置し、この固定部の周囲に加速度を慣性力に変換
する質量部をダイヤフラム部を介して支持しつつ配置
し、前記固定部,ダイヤフラム部,質量部を単結晶半導
体により一体成形すると共に、前記固定部・質量部をつ
なぐ梁部を前記ダイヤフラム部の一部を厚肉成形するこ
とで構成して該梁部と前記ダイヤフラム部とを一体の組
合せ構造とし、且つ前記質量部を可動電極とし、この可
動電極と微小隙間を介して固定電極を対向配置して成る
ことを特徴とする半導体加速度センサ。
4. A fixed part fixed to an acceleration detection target is arranged in the center, and a mass part for converting acceleration into an inertial force is arranged around this fixed part while supporting it via a diaphragm part. , The diaphragm part and the mass part are integrally molded from a single crystal semiconductor, and the beam part connecting the fixing part and the mass part is formed by thickly molding a part of the diaphragm part to form the beam part and the diaphragm part. And an integral combination structure, and the mass portion is a movable electrode, and a fixed electrode is arranged so as to face the movable electrode with a minute gap therebetween.
【請求項5】 請求項1ないし請求項4のいずれか1項
において、前記梁部は前記質量部の四辺を支持しつつそ
の質量部の重心を中心にして配設されることを特徴とす
る半導体加速度センサ。
5. The beam portion according to any one of claims 1 to 4, wherein the beam portion is arranged around the center of gravity of the mass portion while supporting the four sides of the mass portion. Semiconductor acceleration sensor.
【請求項6】 請求項1ないし請求項4のいずれか1項
において、前記梁部は前記質量部の各辺に複数個づつ配
設されることを特徴とする半導体加速度センサ。
6. The semiconductor acceleration sensor according to claim 1, wherein a plurality of the beam portions are arranged on each side of the mass portion.
【請求項7】 請求項1ないし請求項4のいずれか1項
において、前記梁部は前記質量部の一組の対辺にそれぞ
れ複数個配設されることを特徴とする半導体加速度セン
サ。
7. The semiconductor acceleration sensor according to claim 1, wherein a plurality of the beam portions are arranged on opposite sides of the pair of mass portions, respectively.
【請求項8】 請求項1ないし請求項4のいずれか1項
において、前記梁部は前記質量部の一辺に2本配置さ
れ、その両隣の辺に一つづつ配設されてπ形配置を呈し
てなることを特徴とする半導体加速度センサ。
8. The beam part according to claim 1, wherein two beam parts are arranged on one side of the mass part, and one beam part is arranged on each side of the mass part to form a π-type arrangement. A semiconductor acceleration sensor characterized by being presented.
【請求項9】 車両の一部に、半導体単結晶により加速
度を慣性力に変換する質量部と、ダイヤフラム部と梁部
とを一体に組合せた弾性支持体と、この弾性支持体を介
して前記質量部を支持する固定部とを一体成形して成る
車両衝突検出用の加速度センサを設け、且つ前記質量部
の変位を前記弾性支持体に設けたピエゾ抵抗素子の抵抗
値よりとらえて車両の衝突を検出しエアバッグを動作さ
せる手段を設けて成ることを特徴とするエアバッグシス
テム。
9. An elastic support body in which a mass portion for converting acceleration into an inertial force by a semiconductor single crystal, a diaphragm portion and a beam portion are integrally combined with each other in a part of a vehicle, and the elastic support body is used to interpose the elastic support body. A vehicle collision is provided by providing an acceleration sensor for vehicle collision detection, which is integrally formed with a fixed portion that supports the mass portion, and detects displacement of the mass portion from a resistance value of a piezoresistive element provided on the elastic support. An air bag system, characterized in that it is provided with means for detecting an air conditioner and operating the air bag.
【請求項10】 車両の一部に、半導体単結晶により加
速度を慣性力に変換する質量部と、ダイヤフラム部と梁
部とを一体に組合せた弾性支持体と、この弾性支持体を
介して前記質量部を支持する固定部とを一体成形して成
る車両衝突検出用の加速度センサを設け、且つ前記質量
部の変位を静電容量の変化に置換して車両の衝突を検出
しエアバッグを動作させる手段を設けて成ることを特徴
とするエアバッグシステム。
10. A part of a vehicle, an elastic support body in which a mass part for converting an acceleration into an inertial force by a semiconductor single crystal, a diaphragm part and a beam part are integrally combined, and the elastic support body is interposed therebetween. An acceleration sensor for vehicle collision detection, which is integrally formed with a fixed portion that supports the mass portion, is provided, and displacement of the mass portion is replaced with a change in capacitance to detect a vehicle collision and operate an airbag. An airbag system comprising means for causing the airbag system.
JP3241460A 1991-09-20 1991-09-20 Semiconductor acceleration sensor and airbag system Expired - Lifetime JP2539560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3241460A JP2539560B2 (en) 1991-09-20 1991-09-20 Semiconductor acceleration sensor and airbag system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3241460A JP2539560B2 (en) 1991-09-20 1991-09-20 Semiconductor acceleration sensor and airbag system

Publications (2)

Publication Number Publication Date
JPH0580069A JPH0580069A (en) 1993-03-30
JP2539560B2 true JP2539560B2 (en) 1996-10-02

Family

ID=17074650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3241460A Expired - Lifetime JP2539560B2 (en) 1991-09-20 1991-09-20 Semiconductor acceleration sensor and airbag system

Country Status (1)

Country Link
JP (1) JP2539560B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895347B2 (en) * 2004-11-19 2007-03-22 横浜ゴム株式会社 Tire deformation amount calculation method and tire deformation amount calculation device
CN107907710B (en) * 2017-09-30 2019-10-11 西安交通大学 A kind of two axle acceleration sensor chip of MEMS piezoresistive and preparation method thereof

Also Published As

Publication number Publication date
JPH0580069A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US7472611B2 (en) Stress detection method for force sensor device with multiple axis sensor and force sensor device employing this method
US8061203B2 (en) Combined sensor
US20080034867A1 (en) Multi-range three-axis acceleration sensor device
JP2804874B2 (en) Semiconductor acceleration detector
US8074517B2 (en) Inertia force sensor
WO2006106739A1 (en) Semiconductor acceleration sensor
JP2539560B2 (en) Semiconductor acceleration sensor and airbag system
JPH07225242A (en) Acceleration sensor, acceleration sensor system, vehicle equipped with acceleration sensor system, and other devices
US6370960B1 (en) Capacitive sensor
US7587941B2 (en) Vibration piezoelectric acceleration sensor
US5708207A (en) Semiconductor acceleration sensor
JPH05264577A (en) Acceleration sensor, air bag apparatus and body controller using the same
US10955434B2 (en) Resonant sensor device
JP3010725B2 (en) Semiconductor acceleration sensor
JP2005106749A (en) Inertial sensor unit and manufacturing method therefor
JP2002372549A (en) Acceleration sensor device
JPH06265569A (en) Acceleration sensor unit
JP2006250702A (en) Acceleration sensor
JPH10170545A (en) Self-diagnostic function for acceleration sensor and acceleration sensor with self-diagnostic function
JP5648595B2 (en) Pressure sensor
US20240264023A1 (en) Microelectromechanical pressure sensor
JPH0815057A (en) Thin type load cell
JPH08262053A (en) Acceleration sensor
JPH0875775A (en) Semiconductor-type acceleration sensor
JPH0875776A (en) Acceleration sensor