JP2535417B2 - Defective insulator detection method - Google Patents
Defective insulator detection methodInfo
- Publication number
- JP2535417B2 JP2535417B2 JP1209218A JP20921889A JP2535417B2 JP 2535417 B2 JP2535417 B2 JP 2535417B2 JP 1209218 A JP1209218 A JP 1209218A JP 20921889 A JP20921889 A JP 20921889A JP 2535417 B2 JP2535417 B2 JP 2535417B2
- Authority
- JP
- Japan
- Prior art keywords
- insulator
- laser
- defective
- frequency spectrum
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/12—Analysing solids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/269—Various geometry objects
- G01N2291/2697—Wafer or (micro)electronic parts
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は例えば送電線を支持する懸垂碍子の碍子本
体にクラックなどの不良箇所が生じた場合にそれを確実
かつ迅速に、しかも安全に検出することができる不良碍
子の検出方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention reliably, swiftly, and safely detects a defective portion such as a crack in an insulator body of a suspension insulator that supports a power transmission line. The present invention relates to a defective insulator detection method that can be performed.
[従来の技術] 従来、送電線用懸垂碍子連の不良懸垂碍子を検出する
検出器として、各懸垂碍子の分担電圧を測定して、不良
碍子を検出器(同じ出願人による特公昭40−3057号公
報)が提案されている。[Prior Art] Conventionally, as a detector for detecting a defective suspension insulator of a suspension insulator series for a transmission line, a voltage shared by each suspension insulator is measured to detect a defective insulator (Japanese Patent Publication No. 40-3057 of the same applicant). Issue).
この不良碍子検出器は絶縁棒の先端部に懸垂碍子の上
下両端部に接触する一対の接触棒を設け、碍子の分担電
圧に応じ、検出器のギャップを放電させ、ネオンランプ
の点滅具合により良否判定をするようになっている。This defective insulator detector is provided with a pair of contact rods that contact the upper and lower ends of the suspended insulator at the tip of the insulating rod, discharge the gap of the detector according to the voltage shared by the insulator, and determine whether the neon lamp blinks. It is supposed to make a decision.
又、本願出願人は不良碍子の検出方法として、特願昭
62−166471号の検出方法を提案した。これはレーザ発生
器からレーザ光を碍子に照射して機械的衝撃を与え、碍
子を振動させるとともに、この振動を検出するためのレ
ーザ送受信装置により、前記碍子の磁器表面に振動検出
用レーザを照射して同磁器表面で反射させ、この反射レ
ーザを前記レーザ送受信装置に受信し、この信号を周波
数分析器により周波数分析を行い、正常碍子の振動モー
ドと不良碍子の振動モードを比較して不良碍子の検出を
行うようにしている。Further, the applicant of the present invention has disclosed that
The detection method of 62-166471 was proposed. This is to irradiate the insulator with a laser beam from a laser generator to give a mechanical impact to vibrate the insulator, and to irradiate a vibration detection laser on the porcelain surface of the insulator by a laser transmitting / receiving device for detecting this vibration. Then, the reflected laser is received by the laser transmitter / receiver, and this signal is subjected to frequency analysis by a frequency analyzer, and the defective insulator is compared by comparing the vibration mode of the normal insulator with the vibration mode of the defective insulator. Is detected.
[発明が解決しようとする課題] ところが、前者の不良碍子検出器は、使用状態にある
懸垂碍子の良否を判定する場合、鉄塔に上って作業する
必要があるので、危険性が高く、かつ長い絶縁棒を使用
するので、作業性も悪く良否の判定能率が極めて低いと
いう問題があった。[Problems to be Solved by the Invention] However, the former defective insulator detector has a high risk because it is necessary to work on a steel tower when judging whether the suspended insulator in use is good or bad, and Since a long insulating rod is used, there is a problem that the workability is poor and the efficiency of judging the quality is extremely low.
又、後者の不良碍子の検出方法は、実際に正常な碍子
の振動モードと不良碍子の振動モードを比較しても、そ
の良否の判別が難しいという問題が新たに発生した。即
ち、碍子のひび割れを振動の変化から検出するのに周波
数スペクトル分析による振動モードの変化が僅かの周波
数のずれを伴なう微妙な差にすぎないため、それを検出
するのは困難であった。さらに、詳述すると正常碍子及
び不良碍子にCO2レーザ光を照射したときに得られた加
速度計振動検出器からの出力波形は第7図及び第8図に
示される。(なお、このときのレーザ出力は約2.7Jであ
る。)両図から明らかなように、両者の波形に顕著な違
いは見られず、周波数スペクトル分析による単なる波形
の相違から不良碍子を検出するのはかなり困難である。Further, in the latter method of detecting a defective insulator, even if the vibration mode of a normal insulator and the vibration mode of a defective insulator are actually compared, it is difficult to determine the quality of the insulator. That is, it was difficult to detect the crack of the insulator from the change of the vibration because the change of the vibration mode by the frequency spectrum analysis is only a subtle difference accompanied by a slight frequency shift. . Further, in detail, output waveforms from the accelerometer vibration detector obtained when the normal insulator and the defective insulator are irradiated with the CO 2 laser light are shown in FIGS. 7 and 8. (Note that the laser output at this time is approximately 2.7 J.) As is clear from both figures, there is no noticeable difference in the waveforms of the two, and defective insulators are detected from the mere difference in the waveforms by frequency spectrum analysis. Is quite difficult.
この発明の目的は前述のように従来行なわれていた周
波数スペクトル分析による長所を生かしつつ、それをさ
らに発展させることにより、正常碍子と不良碍子の良否
の判定を確実かつ迅速に行うことができる不良碍子の検
出方法を提供することにある。As described above, the object of the present invention is to make good use of the advantages of the frequency spectrum analysis conventionally performed as described above, and to further develop it, so that the quality of the normal insulator and the defective insulator can be surely and quickly determined. It is to provide a method of detecting an insulator.
[課題を解決するための手段] この発明は上記目的を達成するため、レーザ発生器か
らレーザを碍子に照射して機械的衝撃を与え、碍子を振
動させるとともに、この振動を検出するためのレーザ送
受信装置により前記碍子の磁器表面に測定用レーザを照
射して同磁器表面で反射させ、この反射レーザを前記レ
ーザ送受信装置に受信し、周波数スペクトル分析器によ
り所定時間帯における特定の周波数のピーク値を基準に
し、所定周波数帯域(f0〜f1)の振動モードを周波数ス
ペクトル分析し、この方法で得られた正常碍子の基準周
波数スペクトル{S0(f)}に対する前記所定時間帯と同
じ時間帯で得られた被検出碍子の測定周波数スペクトル
{S(f)}のピーク値のわずかなずれの残差{S
(f)−S0(f)}の二乗を演算装置で演算し、前記被検
出碍子の残差の二乗の積分値(V)と予め設定された設
定値(Vo)とを比較して前記被検出碍子が正常か不良か
を判別するという方法をとっている。[Means for Solving the Problems] In order to achieve the above object, the present invention irradiates a laser from a laser generator to an insulator to give a mechanical impact to vibrate the insulator and to detect the vibration. Irradiation of a measuring laser on the porcelain surface of the insulator by the transmitter-receiver to reflect on the same porcelain surface, the reflected laser is received by the laser transmitter-receiver, the peak value of a specific frequency in a predetermined time zone by the frequency spectrum analyzer. , The frequency spectrum analysis of the vibration mode in a predetermined frequency band (f 0 to f 1 ) is performed, and the same time as the predetermined time zone for the reference frequency spectrum {S 0 (f)} of the normal insulator obtained by this method. Residual {S of slight deviation of peak value of measured frequency spectrum {S (f)} of the insulator to be detected obtained in the band
The square of (f) −S 0 (f)} is calculated by a calculation device, and the integrated value (V) of the square of the residual of the detected insulator is compared with a preset set value (Vo). The method is to determine whether the detected insulator is normal or defective.
[作用] この発明は正常碍子の基準周波数スペクトルと被検出
碍子の測定周波数スペクトルとの残差を演算装置で演算
し、前記被検出碍子の残差の二乗の積分値と予め設定さ
れた設定値を比較して正常碍子か不良碍子かの判断を行
うので、その判別を確実かつ迅速に行うことができる。[Operation] According to the present invention, the residual between the reference frequency spectrum of the normal insulator and the measured frequency spectrum of the detected insulator is calculated by the arithmetic device, and the integrated value of the square of the residual of the detected insulator and the preset value are set. Is compared to determine whether the insulator is normal or defective, so that the determination can be performed reliably and quickly.
[実施例] 以下、この発明を具体化した実施例を第1図〜第6図
に基づいて説明する。[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.
第3図に示すように、鉄塔1の支持アーム2には送電
線3を支持する懸垂碍子連4が吊下されている。この懸
垂碍子連4は第2図に示す懸垂碍子5と直列に多数連結
して構成されている。この懸垂碍子5は碍子本体6とそ
の上部にセメント接着したキャップ金具7を下部にセメ
ント接着したピン金具8とにより構成されている。As shown in FIG. 3, the suspension armature 4 supporting the power transmission line 3 is suspended from the support arm 2 of the steel tower 1. This suspension insulator string 4 is constituted by connecting a large number of suspension insulators 5 shown in FIG. 2 in series. The suspension insulator 5 is composed of an insulator body 6 and a cap metal fitting 7 cemented to the upper portion thereof and a pin metal fitting 8 cemented to the lower portion thereof.
一方、地面Gの安定した箇所には懸垂碍子5に機械的
衝撃を与えるための碍子振動用レーザ発生装置としての
パルスレーザ発生器11が設置され、前記碍子本体6の磁
器表面6aにレーザ光を照射することにより、懸垂碍子5
を振動し得るようにしている。前記レーザ発生器11から
CO2レーザ光(λ=10.6μm、出力〜数J)が碍子表面
に照射されると、照射面に衝撃が発生し、これによって
碍子は振動する。On the other hand, a pulse laser generator 11 as a laser generator for insulator vibration for giving a mechanical impact to the suspension insulator 5 is installed at a stable position on the ground G, and a laser beam is applied to the porcelain surface 6a of the insulator body 6. By irradiating, the suspension insulator 5
To be able to vibrate. From the laser generator 11
When the insulator surface is irradiated with CO 2 laser light (λ = 10.6 μm, output to several J), an impact is generated on the irradiated surface, which causes the insulator to vibrate.
又、前記パルスレーザ発生器11の近傍には、碍子の振
動をレーザの干渉を利用して検出するために振動検出用
レーザ発生装置として、He−Neレーザ発生器12が設置さ
れている。このレーザ発生器12からはλ=0.64μm、出
力〜数mWのHe−Neレーザ光が照射される。このレーザ発
生器12の前方には該発生器12から発射されたレーザ光を
2つに分岐させるためのビームスプリッタ13が配置され
ている。そして、ビームスプリッタ13から直進したレー
ザ光は懸垂碍子5表面に照射された後、物体反射光とし
てスライドガラス14を透過して、光検出器15に入力され
るようにしている。(第2図実線参照) 一方、ビームスプリッタ13で分岐した原レーザ光(参
照光)は、碍子からの物体反射光と光路差により干渉さ
せるものである。参照光は物体反射光よりも光強度がか
なり強いため、参照光と物体反射光を重ねた場合、光強
度をほぼ同じ程度にしないと干渉がわかりにくい。この
ため、光強度を減衰するビーム拡散レンズ16を通過させ
た後、前記スライドガラス14を直進透過させ、同じく光
強度を減衰するためにフィルタ17を通り、Alミラー18に
より反射され、再び前記フィルム17を経て前記スライド
ガラス14を導かれ、そして該スライドガラス14で反射さ
せ物体反射光と一致させ干渉光を生じさせた。この干渉
光の干渉縞を光検出器15(光電子増倍管PM:Photomultip
lier)で検出し電気信号に変換する。Further, a He-Ne laser generator 12 is installed near the pulse laser generator 11 as a vibration detecting laser generator for detecting the vibration of the insulator by utilizing the interference of the laser. The laser generator 12 irradiates a He-Ne laser beam of λ = 0.64 μm and an output of several mW. In front of the laser generator 12, a beam splitter 13 for splitting the laser light emitted from the generator 12 into two is disposed. Then, the laser light that has proceeded straight from the beam splitter 13 is irradiated onto the surface of the suspension insulator 5, and then passes through the slide glass 14 as object reflected light to be input to the photodetector 15. (See the solid line in FIG. 2) On the other hand, the original laser light (reference light) split by the beam splitter 13 interferes with the object reflected light from the insulator due to the optical path difference. Since the reference light has a considerably higher light intensity than the object-reflected light, when the reference light and the object-reflected light are overlapped with each other, it is difficult to see the interference unless the light intensities are approximately the same. Therefore, after passing through the beam diffusing lens 16 that attenuates the light intensity, the glass slide 14 is transmitted straight through, similarly passes through the filter 17 to attenuate the light intensity, is reflected by the Al mirror 18, and is again the film. The slide glass 14 was guided through 17 and was reflected by the slide glass 14 to coincide with the object-reflected light to generate interference light. The interference fringes of this interference light are detected by the photodetector 15 (photomultiplier tube PM: Photomultip
lier) and convert it to an electrical signal.
前記光検出器15は、懸垂碍子を振動させた場合干渉縞
も移動するので、この移動を検出するものである。第4
図は前記光検出器15で検出した出力の変化を示したもの
である。The photodetector 15 detects this movement because the interference fringes also move when the suspension insulator is vibrated. Fourth
The figure shows the change in the output detected by the photodetector 15.
前記干渉縞の移動の原因は、懸垂碍子5を振動させる
と、前記参照光と物体反射光との光路差が変化するため
である。The cause of the movement of the interference fringes is that when the suspension insulator 5 is vibrated, the optical path difference between the reference light and the object reflected light changes.
さらに、前記光検出器15にはデジタルストレージオシ
ロスコープ20が接続され、前記出力を記録するようにし
ている。又、該オシロスコープ20には高速フーリエ変換
(FFT:Fast・Fourier・Transform)による周波数解析を
行うための機構も備えられている。そして周波数解析し
たデータを処理するために解析装置21が接続され、該周
波数解析装置21には報知装置としてのスピーカ22が接続
されている。Further, a digital storage oscilloscope 20 is connected to the photodetector 15 to record the output. Further, the oscilloscope 20 is also provided with a mechanism for performing frequency analysis by Fast Fourier Transform (FFT). An analysis device 21 is connected to process the frequency-analyzed data, and a speaker 22 as a notification device is connected to the frequency analysis device 21.
次に、前記のように構成した不良碍子の検出装置につ
いて、その作用を説明する。Next, the operation of the defective insulator detecting device configured as described above will be described.
パルスレーザ発生器11からレーザ光を懸垂碍子5の磁
器表面6aに照射して機械的衝撃を与え、懸垂碍子5を振
動させる。すると、前記光検出器15により干渉縞の移動
が検出され、第4図に示すように電圧波形信号に変換さ
れる。このPM出力の電気信号を録音し、耳で聞いたとこ
ろ、実際に試料を叩いたとき直接耳で聞こえる音色や余
韻と酷似していたことから、レーザビーム照射時の振動
は、碍子を叩いたときに直接耳に聞こえる音に対応する
と考えられる。The porcelain surface 6a of the suspension insulator 5 is irradiated with laser light from the pulse laser generator 11 to give a mechanical shock to vibrate the suspension insulator 5. Then, the movement of the interference fringes is detected by the photodetector 15 and is converted into a voltage waveform signal as shown in FIG. When the electric signal of this PM output was recorded and heard by the ear, it was very similar to the timbre and afterglow that was heard directly when the sample was actually hit, so the vibration during laser beam irradiation hit the insulator. It is thought to correspond to the sound that is sometimes heard directly in the ear.
次、前記PM出力をデジタルストレージオシロスコープ
20により記録するとともに、周波数スペクトル分析し、
第5図(a)〜(d)に示すように、周波数スペクトル
を得る。この第5図(a)〜(d)から明らかなように
レーザ光を照射した後の1〜31ms間の信号にはさまざま
な周波数成分が含まれているが、時間が経過するにつれ
て試料の材質と形状から決まる固有モードの周波数で振
動することがわかる。第5図(a)〜(c)においてPM
出力の周波数スペクトルを比較すると、2.2KHz、4.4KHz
の振動モードがよくとらえられており、PM出力の録音を
耳で聞いたときの音の音色や余韻はこの周波数の信号と
考えられる。その後、第5図(d)に示すように230〜2
60msではこの振動は大きく減衰するためにPM出力には現
れなくなる。Next, the PM output is digital storage oscilloscope
Recorded by 20 and analyzed frequency spectrum,
A frequency spectrum is obtained as shown in FIGS. As is apparent from FIGS. 5A to 5D, various frequency components are included in the signal for 1 to 31 ms after laser light irradiation, but as time passes, the material of the sample It can be seen that it vibrates at the frequency of the eigenmode determined by the shape. PM in FIGS. 5 (a) to (c)
Comparing the output frequency spectrum, 2.2KHz, 4.4KHz
The vibration mode of is well understood, and the timbre and afterglow of the sound when listening to the PM output recording is considered to be a signal of this frequency. Then, as shown in FIG.
At 60 ms, this vibration is greatly attenuated and does not appear in the PM output.
次に、第5図(a)〜(d)に示す周波数スペクトル
から、この実施例では4.4KHzのスペクトルのピークにつ
いて解析装置21により正常碍子と不良碍子の間における
周波数スペクトルのずれを以下のようにして解析する。Next, from the frequency spectra shown in FIGS. 5 (a) to 5 (d), the deviation of the frequency spectra between the normal insulator and the defective insulator is analyzed by the analyzer 21 for the peak of the spectrum of 4.4 KHz in this embodiment as follows. And analyze.
まず、第1図(a)に示すように、正常碍子について
その固有モードで振動している時間帯としてレーザ光照
射後、150〜180msの30ms間を選び、複数の正常懸垂碍子
の周波数スペクトルの約4.4KHzのピーク値を基準値とし
て、所定時間帯における所定周波数帯域(f0〜f1)の振
動モードの周波数スペクトルを規格化し、それらの平均
を判別を行うための正常碍子の基準スペクトルS0(f)と
して記憶する。First, as shown in FIG. 1 (a), after irradiating laser light as a time period in which the normal insulator is vibrating in its eigenmode, a period of 150 to 180 ms for 30 ms is selected, and the frequency spectra of a plurality of normal suspension insulators are Using the peak value of about 4.4 KHz as the reference value, the frequency spectrum of the vibration mode in the given frequency band (f 0 to f 1 ) in the given time zone is standardized, and the reference spectrum S of the normal insulator for making the average of them is determined. It is stored as 0 (f).
又、前記正常碍子の基準スペクトルS0(f)と同じ時間
帯及び同じ所定周波数帯域(f0〜f1)における被検出碍
子の振動モードを周波数スペクトル分析し、これを第1
図(b)に示すように測定周波数スペクトルS(f)と
して記憶する。Further, the vibration spectrum of the detected insulator in the same time period and the same predetermined frequency band (f 0 to f 1 ) as the reference spectrum S 0 (f) of the normal insulator is subjected to frequency spectrum analysis,
It is stored as a measurement frequency spectrum S (f) as shown in FIG.
さらに、前記基準スペクトルS0(f)に対する被検出碍
子の測定周波数スペクトルS(f)のずれによる残差
[S(f)−S0(f)]の二乗の積分値Vを演算する。Further, an integral value V of the square of the residual [S (f) −S 0 (f)] due to the deviation of the measured frequency spectrum S (f) of the detected insulator with respect to the reference spectrum S 0 (f) is calculated.
V=▲∫f1 f0▼[S(f)-S0(f)]2df ここで、f0:3.9KHz f1:4.9KHz この積分値Vは被検出碍子のピーク値が正常碍子のピ
ーク値から少しでもずれていると、第1図(c)に示す
ように大きな値となって現れるため、この演算した積分
値Vと予め設定した設定値Voとを比較することにより、
正常碍子か不良碍子かの判定を確実かつ迅速に行うこと
ができる。V = ▲ ∫ f1 f0 ▼ [S (f) -S 0 (f)] 2 df where f 0 : 3.9KHz f 1 : 4.9KHz This integrated value V is the peak value of the detected insulator and the peak of the normal insulator. If it deviates from the value even a little, it appears as a large value as shown in FIG. 1 (c). Therefore, by comparing the calculated integral value V with the preset setting value Vo,
It is possible to reliably and quickly determine whether the insulator is normal or defective.
ところで、前記実施例において、周波数スペクトルの
ピーク値4.4KHz付近の周波数スペクトルについての積分
値Vを各被検出碍子にクラックを入れる前後で測定する
と、第6図に示すようになった。図中、○印は正常碍子
の積分値V、●印はクラックを入れた碍子の積分値Vを
それぞれ示す。これにより基準スペクトルS0(f)に対す
る被検出碍子の周波数スペクトルS(f)のずれがクラ
ックを入れた後の方が入れる前よりも大きいことがわか
る。第6図から明らかなように本実験ではクラック入り
碍子を判別するための積分値Vの設定値Voは、相対値12
程度となった。By the way, in the above-mentioned example, the integral value V about the frequency spectrum near the peak value of 4.4 KHz of the frequency spectrum was measured before and after the cracks were formed in each of the detected insulators. In the figure, ◯ indicates the integrated value V of a normal insulator, and ● indicates the integrated value V of a cracked insulator. This shows that the deviation of the frequency spectrum S (f) of the insulator to be detected from the reference spectrum S 0 (f) is larger after the crack is formed than before the crack is formed. As is apparent from FIG. 6, in this experiment, the set value Vo of the integral value V for discriminating the insulator with cracks is a relative value 12
It became a degree.
[発明の効果] 以上詳述したように、この発明は正常碍子か不良碍子
かの検出を確実かつ迅速に行うことができ、線路の活線
状態においても遠隔地から安全に行うことができる。
又、工場ラインでの碍子検査の自動化などを図ることが
できる効果もある。[Effects of the Invention] As described in detail above, the present invention can reliably and promptly detect whether a normal insulator or a defective insulator is present, and can be safely performed from a remote place even in a live state of a line.
Further, there is also an effect that automation of the insulator inspection in the factory line can be achieved.
第1図はこの発明の不良碍子の検出装置により検出され
た正常碍子、不良碍子の振動モードと、それの残差の2
乗の積分値を示すグラフ、第2図は不良碍子検出装置の
略体正面図、第3図は不良碍子検出装置を鉄塔付近に配
置した状態を示す略体正面図、第4図はPM出力(相対
値)と時間との関係を示すグラフ、第5図(a)〜
(d)は周波数と振動の強度との関係を示すグラフ、第
6図は各試料と相対値(V)との関係を示す説明図、第
7図及び第8図は従来例を示す正常碍子と不良碍子の出
力信号の電圧波形図である。 11…パルスレーザ発生器、12…He−Neレーザ発生器、13
…ビームスプリッタ、14…スライドガラス、15…光検出
器(光電子増倍管:PM)、16…ビーム拡散レンズ、17…
フィルタ、18…Alミラー、20…オシロスコープ、21…解
析装置。FIG. 1 shows the vibration modes of the normal insulator and the defective insulator detected by the defective insulator detecting device of the present invention and the residuals thereof.
2 is a schematic front view of the defective insulator detection device, FIG. 3 is a schematic front view of the defective insulator detection device arranged near the steel tower, and FIG. 4 is a PM output. A graph showing the relationship between (relative value) and time, FIG.
(D) is a graph showing the relationship between frequency and vibration intensity, FIG. 6 is an explanatory view showing the relationship between each sample and relative value (V), and FIGS. 7 and 8 are normal insulators showing a conventional example. FIG. 3 is a voltage waveform diagram of an output signal of a defective insulator. 11 ... Pulse laser generator, 12 ... He-Ne laser generator, 13
… Beam splitter, 14… Slide glass, 15… Photo detector (photomultiplier tube: PM), 16… Beam diffusion lens, 17…
Filter, 18… Al mirror, 20… Oscilloscope, 21… Analysis device.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−10166(JP,A) 特開 昭64−80858(JP,A) 特開 昭54−102188(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A 64-10166 (JP, A) JP-A 64-80858 (JP, A) JP-A 54-102188 (JP, A)
Claims (1)
機械的衝撃を与え、碍子を振動させるとともに、この振
動を検出するためのレーザ送受信装置により前記碍子の
磁器表面に測定用レーザを照射して同磁器表面で反射さ
せ、この反射レーザを前記レーザ送受信装置に受信し、
周波数スペクトル分析器により所定時間帯における特定
の周波数のピーク値を基準にし、所定周波数帯域(f0〜
f1)の振動モードを周波数スペクトル分析し、この方法
で得られた正常碍子の基準周波数スペクトル{S0(f)}
に対する前記所定時間帯と同じ時間帯で得られた被検出
碍子の測定周波数スペクトル{S(f)}のピーク値の
わずかなずれの残差{S(f)−S0(f)}の二乗を演算
装置で演算し、前記被検出碍子の残差の二乗の積分値
(V)と予め設定された設定値(Vo)とを比較して前記
被検出碍子が正常か不良かを判別することを特徴とする
不良碍子の検出方法。1. An insulator is irradiated with a laser from a laser generator to give a mechanical shock to vibrate the insulator, and a laser transmitting / receiving device for detecting this vibration irradiates a measuring laser on the porcelain surface of the insulator. Then, it is reflected on the same porcelain surface, and the reflected laser is received by the laser transmitter / receiver,
Based on the peak value of a specific frequency in a predetermined time zone by a frequency spectrum analyzer, a predetermined frequency band (f 0 ~
Frequency spectrum analysis of the vibration mode of f 1 ), the reference frequency spectrum of normal insulator obtained by this method {S 0 (f)}
The square of the residual {S (f) -S 0 (f)} of the slight deviation of the peak value of the measured frequency spectrum {S (f)} of the detected insulator obtained in the same time zone as Is calculated by an arithmetic device, and the integrated value (V) of the square of the residual of the detected insulator is compared with a preset set value (Vo) to determine whether the detected insulator is normal or defective. A method for detecting a defective insulator characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1209218A JP2535417B2 (en) | 1989-08-11 | 1989-08-11 | Defective insulator detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1209218A JP2535417B2 (en) | 1989-08-11 | 1989-08-11 | Defective insulator detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0372258A JPH0372258A (en) | 1991-03-27 |
JP2535417B2 true JP2535417B2 (en) | 1996-09-18 |
Family
ID=16569306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1209218A Expired - Lifetime JP2535417B2 (en) | 1989-08-11 | 1989-08-11 | Defective insulator detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2535417B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2547290B2 (en) * | 1991-12-13 | 1996-10-23 | 東京電力株式会社 | How to judge the quality of insulators for power transmission lines |
JP3298318B2 (en) * | 1994-07-18 | 2002-07-02 | 株式会社デンソー | Glass break detector |
JP5202552B2 (en) * | 2010-01-21 | 2013-06-05 | 中国電力株式会社 | Recording board |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54102188A (en) * | 1978-01-30 | 1979-08-11 | Chunichi Denshi Kogyosha | Defective and nonndefective discriminating method of product and its device |
JPS6410166A (en) * | 1987-07-02 | 1989-01-13 | Ngk Insulators Ltd | Detecting method for defective insulator |
JPS6480858A (en) * | 1987-09-24 | 1989-03-27 | Toyota Motor Corp | Method and device for detecting crack detection |
-
1989
- 1989-08-11 JP JP1209218A patent/JP2535417B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0372258A (en) | 1991-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6490042B2 (en) | Measurement of crystal position lifetime in nonlinear optical crystals. | |
CN105102173A (en) | Welded portion inspection apparatus and inspection method thereof | |
JPS6258143A (en) | Method of optically detecting defect of semiconductor material | |
JPH0810188B2 (en) | Particulate matter analyzer and analysis method, ultrapure water production apparatus, semiconductor production apparatus, high-purity gas production apparatus | |
JP2535417B2 (en) | Defective insulator detection method | |
CN109884032A (en) | The pinpoint laser induced breakdown spectroscopy detection system of ablation point and method | |
CN211179645U (en) | Laser ultrasonic all-optical strain clamp nondestructive testing device | |
CN106338499A (en) | Element laser detection and analysis instrument and mineral element analysis method | |
JPH0235351A (en) | Apparatus for detecting defective insulator | |
JPH085569A (en) | Particle measuring apparatus and particle inspection method | |
JPS5690246A (en) | Optical defect detection device | |
FR2666656A1 (en) | Method and device for inspecting a structure by modal analysis | |
CN114018826B (en) | Laser ultrasonic nondestructive testing equipment and method by light deflection method | |
JPH0253748B2 (en) | ||
JP2505673B2 (en) | Vibration detection equipment for steel tower installation equipment | |
CN206132617U (en) | Element laser detecting analyzer ware | |
JPH04315957A (en) | Device for measuring vibration of steel tower-mounted equipment | |
JPS62114786A (en) | Method for monitoring processing condition | |
JP2948703B2 (en) | Vibration detector for transmission line insulators | |
CN221100506U (en) | Insulator detection device | |
JPH06242077A (en) | Method for imparting vibration to insulator for transmission line in vibration detector | |
JP2013092497A (en) | Crack detecting method and crack detector | |
CN219434218U (en) | Device for realizing in-situ measurement of ultra-high-intensity laser pulse time domain waveform | |
JPH06258232A (en) | Defect inspection device for glass substrate | |
TW202349810A (en) | Vibration-monitored laser lens system |