[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2533108B2 - Superconducting material - Google Patents

Superconducting material

Info

Publication number
JP2533108B2
JP2533108B2 JP62069954A JP6995487A JP2533108B2 JP 2533108 B2 JP2533108 B2 JP 2533108B2 JP 62069954 A JP62069954 A JP 62069954A JP 6995487 A JP6995487 A JP 6995487A JP 2533108 B2 JP2533108 B2 JP 2533108B2
Authority
JP
Japan
Prior art keywords
critical
oxygen
temperature
composition
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62069954A
Other languages
Japanese (ja)
Other versions
JPS63236712A (en
Inventor
和雄 笛木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP62069954A priority Critical patent/JP2533108B2/en
Publication of JPS63236712A publication Critical patent/JPS63236712A/en
Application granted granted Critical
Publication of JP2533108B2 publication Critical patent/JP2533108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は、超伝導性材料に関し、特に、比較的高温に
臨界温度を有する超伝導性材料に関する。
TECHNICAL FIELD The present invention relates to a superconducting material, and more particularly to a superconducting material having a critical temperature at a relatively high temperature.

《従来の技術》 これまでに知られている超伝導体は、極低温の液体ヘ
リウム(沸点4.2K)による冷却が不可欠であり、このた
め冷却コストが膨大になり、ひいては、作り出す超伝導
状態の規模も小さくなるという欠点があった。又、ヘリ
ウムの資源的偏在が超伝導体の広範な普及を阻害してい
た。
《Prior art》 It is indispensable to cool superconductors known up to now by cryogenic liquid helium (boiling point 4.2K), which results in enormous cooling cost, and eventually in superconducting state. It had the drawback of being smaller in scale. In addition, the uneven distribution of helium in resources has hindered the widespread use of superconductors.

しかしながら、極く最近、超伝導の臨界温度Tc(転移
開始温度)が液体窒素温度(沸点77K)を越える超伝導
体が報告されている。例えば、米国ヒューストン大学C.
W.Chuらのグループは、臨界温度が94Kのバリウム−イッ
トリウム−銅−酸素系の酸化物を見い出したことを報告
している(Phys.Rev.Letter,vol.58,P.908-909,198
7)。
However, very recently, a superconductor having a superconducting critical temperature Tc (transition initiation temperature) exceeding liquid nitrogen temperature (boiling point 77K) has been reported. For example, University of Houston C.
W. Chu et al. Reported that they found oxides of the barium-yttrium-copper-oxygen system with a critical temperature of 94 K (Phys. Rev. Letter, vol. 58, P. 908-909, 198).
7).

又、東京大学の北沢らのグループはバリウム−イッテ
ルビウム−銅−酸素系の酸化物において、臨界温度が95
Kのものを報告しており、同じく東京大学の高木らのグ
ループはバリウム−エルビウム−銅−酸素系の酸化物に
おいて、95Kの臨界温度を報告している(いずれも、Ja
p.Journal of Appl.Phys.,vol.26,4月号、1987)。
Also, the group of Kitazawa et al. Of the University of Tokyo has a critical temperature of 95% in barium-ytterbium-copper-oxygen system oxides.
Takagi et al.'S group at the University of Tokyo also reported a critical temperature of 95 K in barium-erbium-copper-oxygen-based oxides (both Ja
p.Journal of Appl.Phys., vol.26, April issue, 1987).

更に、上記3種の酸化物の第2成分をスカンジウム、
ルテチウム、ツリウム、ホルミウム、ディスプロシウ
ム、ガドリニウム等で置換した酸化物においても、90K
程度の臨界温度が報告されている。
Further, the second component of the above three kinds of oxides is scandium,
90K even in oxides substituted with lutetium, thulium, holmium, dysprosium, gadolinium, etc.
Some critical temperatures have been reported.

これら各種の超伝導体はすべて一般式: BaxMyCu3O9-zで表される。All of these various superconductors are represented by the general formula: BaxMyCu 3 O 9-z .

但し、MはY、Yb、Er、Sc、Lu、Tm、Ho、Dy及びGdよ
り選ばれた一種の元素であり、xは1〜3、好ましくは
約2、yは0.5〜1.5、好ましくは約1で表わされる酸素
欠損ペロブスカイト型結晶構造を有している。又、これ
らの各種の超伝導体のうち、MのYb、Ym、Er、Ho、Dy及
びGdはすべて強い磁場のもとで磁性を有するイオンとし
て酸化物中に存在している。
However, M is one kind of element selected from Y, Yb, Er, Sc, Lu, Tm, Ho, Dy and Gd, x is 1 to 3, preferably about 2, y is 0.5 to 1.5, preferably It has an oxygen-deficient perovskite type crystal structure represented by about 1. Of these various superconductors, Yb, Ym, Er, Ho, Dy and Gd of M are all present in the oxide as ions having magnetism under a strong magnetic field.

ところで、これまでの超伝導体の長年の研究におい
て、超伝導体に磁性不純物を固溶させることにより、臨
界磁場や臨界電流が向上することが知られている(例え
ば、F.Fischerら、Appl.Phys.,vol.16,p.1,1978等を参
照)。
By the way, in many years of research on superconductors, it has been known that solid solution of magnetic impurities in the superconductor improves the critical magnetic field and the critical current (for example, F. Fischer et al., Appl. .Phys., Vol.16, p.1,1978 etc.).

一般に第2種超伝導体において、磁性不純物の添加に
より臨界磁場や臨界電流が向上する理由は、第2種超伝
導体の中を貫通している量子化された磁束(ボルテック
ス)が、固溶された磁性不純物によりエネルギー的に安
定化されピン止めされるために、外部磁場等が加わって
も、磁束の移動、即ち超伝導状態の局所的破壊が起こり
にくくなるからであると説明される。
Generally, the reason why the critical magnetic field and the critical current are improved by the addition of magnetic impurities in the type 2 superconductor is that the quantized magnetic flux (vortex) penetrating through the type 2 superconductor becomes a solid solution. It is explained that, because the magnetic impurities are stabilized by energy and pinned, the movement of the magnetic flux, that is, the local destruction of the superconducting state is unlikely to occur even when an external magnetic field or the like is applied.

《発明が解決しようとする問題点》 しかしながら、これまで知られていたシュブレル化合
物等のすべての超伝導体においては、磁性不純物の添加
により臨界温度が大きく低下してしまうという問題があ
った。それに対して最近、酸素欠損ペロブスカイト型結
晶構造を有する超伝導体は、磁性を有するイオンが多量
に超伝導体に含まれるにもかかわらず超伝導の臨界温度
が低下せず、極めて良好である事が見い出された。
<< Problems to be Solved by the Invention >> However, in all known superconductors such as the Schbrel compound, there has been a problem that the critical temperature is greatly lowered by the addition of magnetic impurities. On the other hand, recently, superconductors having an oxygen-deficient perovskite-type crystal structure are extremely good because the superconducting critical temperature does not decrease despite the fact that a large amount of magnetic ions are contained in the superconductor. Was found.

そこで、本発明者等は前記一般式中の金属Mについて
種々検討した結果、Mとして非磁性の希土類金属及びN
として磁性を有する希土類金属を組み合わせることがで
き、これによって素材の選択の幅を大きく広げることが
できるのみならず、臨界磁場及び臨界電流を改善するこ
とができることを見い出し本発明に到達した。
Therefore, the inventors of the present invention have made various studies on the metal M in the above general formula, and as a result, as the M, a non-magnetic rare earth metal and N
As a result, the inventors have found that it is possible to combine a rare earth metal having magnetism, which not only greatly expands the selection range of the raw material, but also improves the critical magnetic field and the critical current, and has reached the present invention.

従って本発明の第1の目的は、比較的高温の臨界温度
と、高い臨界磁場及び高い臨界電流値を有する超伝導材
料を提供することにある。
Therefore, a first object of the present invention is to provide a superconducting material having a relatively high critical temperature, a high critical magnetic field and a high critical current value.

本発明の第2の目的は、比較的高温の臨界温度を有す
る超伝導体の素材を容易に選択するための方法を提供す
ることにある。
A second object of the present invention is to provide a method for easily selecting a superconductor material having a relatively high critical temperature.

《問題を解決するための手段》 本発明の上記の諸目的は、一般式: BaxMyNzCu3O9-u の組成物からなり、酸素欠損ペロブスカイト型結晶構造
を有することを特徴とする超伝導性材料によって達成さ
れた。ここでMはY(イットリウム)、Sc(スカンジウ
ム)、La(ランタン)、及びLu(ルテチウム)の群から
選択される少なくとも1種の非磁性希土類金属、NはYb
(イッテルビウム)、Tm(ツリウム)、Er(エルビウ
ム)、Ho(ホルミウム)、Dy(ディスプロシウム)、Gd
(ガドリニウム)及びSm(サマリウム)の群から選択さ
れる少なくとも1種の磁性希土類金属、xは1〜3、y
及びzは各々0.01〜1.5、uは0〜3である。好ましく
は、xは2程度、y+zは1程度である。
Above the objectives of the present invention "means for solving the problem" in the general formula: BaxMyNzCu 3 consists O 9-u of the composition, superconducting material characterized by having an oxygen-deficient perovskite-type crystal structure Achieved by Here, M is at least one non-magnetic rare earth metal selected from the group of Y (yttrium), Sc (scandium), La (lanthanum), and Lu (lutetium), and N is Yb.
(Ytterbium), Tm (thulium), Er (erbium), Ho (holmium), Dy (dysprosium), Gd
(Gadolinium) and Sm (samarium) at least one magnetic rare earth metal selected from the group, x is 1 to 3, y
And z are each 0.01 to 1.5, and u is 0 to 3. Preferably, x is about 2 and y + z is about 1.

本発明の酸化物においては、大部分のCuは2価の状態
で存在し、M及びNは略3価、Baは2価であるので、O
の数は約6.5となるが、前記組成物を結晶化させる際の
焼成温度や雰囲気によっては、Cuの一部が3価の状態に
なったものが共存する場合があり、その場合、全体とし
て、Oの数は、6.5より若干高めに表れることになる
が、本発明においてはかかる場合を除外するものではな
く、Ba2MyN1−yCu3O6.5に近い組成が大部分を占めてい
れば足りる。又、本発明においては、目的の達成に悪影
響を与えない限り、前記組成物以外の組成物及び/又は
金属が共存する場合をも除外するものではない。
In the oxide of the present invention, most of Cu exists in a divalent state, M and N are approximately trivalent, and Ba is divalent, so that O
However, depending on the firing temperature and the atmosphere when the composition is crystallized, some of the Cu may be in the trivalent state, and in that case, as a whole. , O will appear slightly higher than 6.5, but this case is not excluded in the present invention, and if the composition close to Ba 2 MyN 1 -yCu 3 O 6.5 occupies most of it. Is enough. Further, in the present invention, the case where a composition other than the above composition and / or a metal coexists is not excluded unless it adversely affects the achievement of the object.

又、磁気的な効果のために、電子素子としても、特異
な素子物性を示すと考えられる。
Further, due to the magnetic effect, it is considered that the electronic device exhibits unique device physical properties.

《発明の効果》 本発明の超伝導性材料は、液体窒素温度で超伝導状態
を実現できるのみならず、臨界電流も大きく、更に、空
気中で900℃程度の高温まで加熱しても安定である。
又、組成を調整することにより、臨界電流密度Icを105
〜106A/cm2程度にすることが十分可能であるので、本
発明は産業上極めて有意義である。
<Effects of the Invention> The superconducting material of the present invention not only realizes a superconducting state at liquid nitrogen temperature, but also has a large critical current, and is stable even when heated to a high temperature of about 900 ° C. in air. is there.
In addition, the critical current density Ic can be adjusted to 10 5 by adjusting the composition.
The present invention is extremely significant industrially because it can be sufficiently controlled to about 10 6 A / cm 2 .

実施例1. 本発明に係る一般式BaxMyNzCu3O9-uのMをY、NをYb
とし、公知の方法によりx:y:x=2:0.8:0.2のバリウム−
イットリウム−イッテルビウム−銅−酸素系組成物を調
製した。
Example 1. M in the general formula BaxMyNzCu 3 O 9-u of the present invention Y, the N Yb
And x: y: x = 2: 0.8: 0.2 barium by a known method
An yttrium-ytterbium-copper-oxygen based composition was prepared.

上記組成物の調製は、計算量の試薬特級BaCo3、Y
2O3、Yb2O3及びCuOの各粉末にエタノールを加えてメノ
ウ乳鉢中で、湿式混合し、ルツボに入れて900℃で12時
間予備焼成し、炉から取り出した後再び粉砕し、約1,00
0kg/cm2の圧力でプレスしてペレットとし、900℃の炉中
で5時間焼結することにより行った。
The above composition was prepared by using a calculated amount of reagent grade BaCo 3 , Y
Ethanol was added to each powder of 2 O 3 , Yb 2 O 3 and CuO, wet-mixed in an agate mortar, put in a crucible, pre-baked at 900 ° C. for 12 hours, taken out of the furnace, and then pulverized again. 1,00
Pressing was performed at a pressure of 0 kg / cm 2 to obtain pellets, and sintering was performed in a furnace at 900 ° C. for 5 hours.

得られた焼結物は、X線回折により酸素欠損ペロブス
カイト型結晶構造を有することが確認された。
The obtained sintered product was confirmed by X-ray diffraction to have an oxygen-deficient perovskite crystal structure.

この焼結物について、超伝導臨界温度Tc、転移温度幅
ΔTc(電気抵抗率がTc近傍の通常の値からゼロ抵抗迄変
化する時の変化率が90%及び10%になる時の温度間隔)
及び臨界電流密度Icを測定した結果を第1表に示す。
For this sinter, the superconducting critical temperature Tc, transition temperature range ΔTc (temperature interval when the rate of change when the electrical resistivity changes from a normal value near Tc to zero resistance is 90% and 10%)
Table 1 shows the results of measuring the critical current density Ic.

比較例1及び2. 実施例1と同様にして、x:y:z=2:1:0のバリウム−イ
ットリウム−銅−酸素系組成物(比較例1)及び、x:y:
z=2:0:1のバリウム−イッテルビウム−銅−酸素系組成
物(比較例2)を調製した。
Comparative Examples 1 and 2. Similar to Example 1, x: y: z = 2: 1: 0 barium-yttrium-copper-oxygen composition (Comparative Example 1) and x: y:
A barium-ytterbium-copper-oxygen composition (Comparative Example 2) having z = 2: 0: 1 was prepared.

各試料について超伝導臨界温度Tc、転移温度幅ΔTc及
び臨界電流密度Icを測定した結果は第1表の通りであ
る。
Table 1 shows the results of measuring the superconducting critical temperature Tc, the transition temperature width ΔTc and the critical current density Ic of each sample.

実施例2. 前記本発明に係る一般式BaxMyNzcu3O9-uにおいてMを
La、NをErとし、x:y:z=2:0.5:0.5のバリウム−ランタ
ン−エルビウム−銅−酸素系組成物を調製した。
Example 2 In the general formula BaxMyNzcu 3 O 9-u according to the present invention, M is
La and N were set to Er, and a barium-lanthanum-erbium-copper-oxygen composition having x: y: z = 2: 0.5: 0.5 was prepared.

上記組成物の調製は、計算量の試薬特級BaCO3、La
2O3、Er2O3及びCuOの各粉末にエタノールを加えてメノ
ウ乳鉢中で、湿式混合し、ルツボに入れて950℃で12時
間予備焼成し、炉から取り出した後再び粉砕し、約1,00
0kg/cm2の圧力でプレスしてペレットとし、950℃の炉中
で6時間焼結することによって行った。
The above composition was prepared by using calculated amounts of reagent grade BaCO 3 , La
Ethanol was added to each powder of 2 O 3 , Er 2 O 3 and CuO, and they were wet-mixed in an agate mortar, put in a crucible, pre-baked at 950 ° C. for 12 hours, taken out of the furnace, and then pulverized again. 1,00
It was carried out by pressing at a pressure of 0 kg / cm 2 into pellets and sintering in a furnace at 950 ° C. for 6 hours.

得られた焼結物は、X線回折により酸素欠損ペロブス
カイト型結晶構造を有することが確認された。
The obtained sintered product was confirmed by X-ray diffraction to have an oxygen-deficient perovskite crystal structure.

この焼成物について、超伝導臨界温度Tc、転移温度幅
△Tc、臨界電流密度Icを測定した結果を第2表に示す。
Table 2 shows the results of measuring the superconducting critical temperature Tc, transition temperature width ΔTc, and critical current density Ic of this fired product.

比較例3及び4. 実施例2と同様にして、x:y:z=2:1:0のバリウム−ラ
ンタン−銅−酸素系組成物(比較例3)及び、x:y:z=
2:0:1のバリウム−エルビウム−銅−酸素系組成物(比
較例4)を調製した。
Comparative Examples 3 and 4. Similar to Example 2, x: y: z = 2: 1: 0 barium-lanthanum-copper-oxygen based composition (Comparative Example 3) and x: y: z =
A 2: 0: 1 barium-erbium-copper-oxygen composition (Comparative Example 4) was prepared.

比較例3及び比較例4の各々の試料について超伝導臨
界温度Tc、転移温度幅ΔTc、臨界電流密度Icを測定した
結果を第2表に示す。
Table 2 shows the results of measuring the superconducting critical temperature Tc, the transition temperature width ΔTc, and the critical current density Ic of each of the samples of Comparative Example 3 and Comparative Example 4.

第1表及び第2表の結果は、本発明の超伝導性材料が
従来のものに比し極めて大きな臨界電流密度を実現する
ことができたことを実証するものである。
The results in Tables 1 and 2 demonstrate that the superconducting material of the present invention was able to achieve a significantly higher critical current density than the conventional ones.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式BaxMyNzCu3O9-uの組成物から成り、
酸素欠損ペロブスカイト型結晶構造を有することを特徴
とする超伝導性材料(式中MはY、Sc、La及びLuの群か
ら選択される少なくとも1種の非磁性希土類金属、Nは
Yb、Tm、Er、Ho、Dy、Gd及びSmの群から選択される少な
くとも1種の磁性金属であり、xは1〜3、y及びzは
各々0.01〜5、uは0〜3である。)。
1. A composition of the general formula BaxMyNzCu 3 O 9-u ,
A superconducting material having an oxygen-deficient perovskite type crystal structure (wherein M is at least one non-magnetic rare earth metal selected from the group of Y, Sc, La and Lu, and N is
It is at least one kind of magnetic metal selected from the group of Yb, Tm, Er, Ho, Dy, Gd and Sm, x is 1 to 3, y and z are 0.01 to 5 and u is 0 to 3 respectively. . ).
JP62069954A 1987-03-24 1987-03-24 Superconducting material Expired - Lifetime JP2533108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069954A JP2533108B2 (en) 1987-03-24 1987-03-24 Superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069954A JP2533108B2 (en) 1987-03-24 1987-03-24 Superconducting material

Publications (2)

Publication Number Publication Date
JPS63236712A JPS63236712A (en) 1988-10-03
JP2533108B2 true JP2533108B2 (en) 1996-09-11

Family

ID=13417556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069954A Expired - Lifetime JP2533108B2 (en) 1987-03-24 1987-03-24 Superconducting material

Country Status (1)

Country Link
JP (1) JP2533108B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283620A1 (en) 1987-03-25 1988-09-28 Semiconductor Energy Laboratory Co., Ltd. Superconducting ceramics
JPS63242922A (en) * 1987-03-30 1988-10-07 Sumitomo Electric Ind Ltd Superconducting material
JPS63252952A (en) * 1987-04-08 1988-10-20 Kazuo Fueki Superconducting ceramic
JP2577380B2 (en) * 1987-04-15 1997-01-29 新技術事業団 Superconductive material
JPS6445765A (en) * 1987-08-13 1989-02-20 Sumitomo Electric Industries Superconducting material and production thereof
JPS6445766A (en) * 1987-08-13 1989-02-20 Sumitomo Electric Industries Superconducting material and production thereof
JPH01264957A (en) * 1988-04-13 1989-10-23 Semiconductor Energy Lab Co Ltd Superconducting material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230525A (en) * 1987-03-18 1988-09-27 Shoji Tanaka Superconductive material
JPS63230524A (en) * 1987-03-18 1988-09-27 Kazuo Fueki Superconductive material
JPS63236218A (en) * 1987-03-23 1988-10-03 Nippon Telegr & Teleph Corp <Ntt> Superconductive wire

Also Published As

Publication number Publication date
JPS63236712A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US4880771A (en) Bismuth-lead-strontium-calcium-cuprate superconductors
JP2533108B2 (en) Superconducting material
CA1337149C (en) Devices and systems based on novel superconducting material
EP0301958B1 (en) Superconducting material and a method for preparing the same
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
Yang et al. Observation of Pr and Gd ordering in the 2212-type compounds (Pb 0.5 Cu 0.5) 2 (Ba 0.5 Sr 0.5) 2 R Cu 2 O 8 (R= Pr, Gd)
JP2577380B2 (en) Superconductive material
Sampathkumar et al. Properties of YBa2Cu3O7− δ-BaBiO3 composite superconductors
Supadanaison et al. Determination of Cu2+ and Cu3+ by titration in Y134 and Y145 superconductor
US5270292A (en) Method for the formation of high temperature semiconductors
Abdullah et al. Superconducting properties of niobium-doped Y Ba Cu Nb O superconductors
Wu et al. High‐temperature processing of cuprate oxide superconductors
Kirschner et al. High-Tc Superconductivity in La-Ba-Cu-O and Y-Ba-Cu-O Compounds
Andreouli et al. Processing effect on microstructure and superconducting properties of sintered ReBa2Cu3Oy ceramics—the role of ionic radius
JP2523928B2 (en) Oxide superconductor and method for producing the same
JP2855123B2 (en) Oxide superconductor
KR970001258B1 (en) Super conducting material
Paranthaman et al. Enhanced flux pinning via chemical substitution in bulk superconducting Tl-2212
Hill et al. Effect of Composition on Superconducting Properties in the System Ba‐Y‐Gd‐Cu‐O
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JP2855128B2 (en) Oxide superconductor
JP2855125B2 (en) Oxide superconductor
Ouchi Preparation and superconducting properties of Ln-Ba-Cu-O ceramics
Kim et al. Magnetic and Electrical Properties of High-Tc Superconductor $ YBa_2Cu_3O_ {6.87} $
Lin et al. Effect of Mg addition on superconducting properties of BiSrCaCuO compounds

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070627

Year of fee payment: 11