JP2527615B2 - Temperature control device - Google Patents
Temperature control deviceInfo
- Publication number
- JP2527615B2 JP2527615B2 JP1138619A JP13861989A JP2527615B2 JP 2527615 B2 JP2527615 B2 JP 2527615B2 JP 1138619 A JP1138619 A JP 1138619A JP 13861989 A JP13861989 A JP 13861989A JP 2527615 B2 JP2527615 B2 JP 2527615B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heater
- compressor
- valve
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Temperature (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は恒温槽等に適用され、ヒータと冷凍装置を用
いて設定温度に制御対象の温度を精密に制御する温度制
御装置に関する。DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a temperature control device which is applied to a constant temperature bath or the like and precisely controls the temperature of a control target to a set temperature by using a heater and a refrigerating device.
(ロ)従来の技術 従来、例えば植物用或るいは汎用のインキュベータで
はヒータと冷凍装置の組み合わせにより庫内温度を−10
℃〜50℃の広範囲に設定し、制御できる様にしている。
この制御の方式としてはヒータと冷凍装置の圧縮機を逆
サイクルで発熱或るいは運転する方式と、圧縮機は連続
運転し、ヒータの発熱量を調節する方式とがある。(B) Conventional technology Conventionally, for example, in a plant or a general-purpose incubator, the temperature inside the refrigerator is set to −10 by combining a heater and a refrigerating device.
It can be controlled by setting it in a wide range from ℃ to 50 ℃.
As a method of this control, there are a method in which the heater and the compressor of the refrigerating apparatus are heated or operated in a reverse cycle, and a method in which the compressor is continuously operated to adjust the amount of heat generated by the heater.
(ハ)発明が解決しようとする課題 然し乍ら、前者の方式では庫内温度の変動が大きく、
圧縮機を頻繁に運転及び停止する必要があり、圧縮機の
耐久性や起動性に問題があり、更に温度が大きく変動す
る問題があった。(C) Problems to be solved by the invention However, in the former method, the fluctuation of the internal temperature is large,
It is necessary to frequently operate and stop the compressor, there is a problem in durability and startability of the compressor, and there is a problem that the temperature greatly fluctuates.
又、後者の方式では圧縮機の冷凍能力分だけのヒータ
能力が余分に必要になり、消費電力が無駄となる。特に
連続運転によって蒸発器の温度が低くなるため、除湿量
が多くなって庫内の乾燥や蒸発器への霜付きが問題とな
っていた。In the latter method, the heater capacity corresponding to the refrigerating capacity of the compressor is additionally required, and the power consumption is wasted. In particular, since the temperature of the evaporator becomes low due to continuous operation, the amount of dehumidification increases, and there are problems such as drying inside the refrigerator and frost on the evaporator.
本発明はかかる問題を解決することを目的とする。 The present invention aims to solve such a problem.
(ニ)課題を解決するための手段 本発明は制御対象を加熱するヒータと、制御対象を冷
却する為の蒸発器及び圧縮機等から成る冷凍装置と、圧
縮機の吸入側に接続された電動制御弁と、制御対象の温
度と設定温度に基づいてヒータ、圧縮機の起動停止を制
御するとともに、前記ヒータの出力値に設定温度と検出
温度との偏差の単位時間当たりの変化量及び前記偏差の
変化量の変化速度を加算して前記電動制御弁の開度を制
御し、前記ヒータによる加熱と蒸発器による冷却により
前記制御対象の温度を制御する制御装置とから温度制御
装置を構成したものである。(D) Means for Solving the Problems The present invention is directed to a heater for heating a controlled object, a refrigerating apparatus including an evaporator and a compressor for cooling the controlled object, and an electric motor connected to a suction side of the compressor. The control valve controls the start and stop of the heater and compressor based on the temperature of the controlled object and the set temperature, and the change amount of the deviation between the set temperature and the detected temperature in the output value of the heater per unit time and the deviation. A temperature control device is configured by a control device that controls the opening degree of the electric control valve by adding the change speed of the change amount of the control amount, and controls the temperature of the control target by heating by the heater and cooling by the evaporator. Is.
又、制御装置は制御対象の温度と設定温度との偏差、
ヒータ出力値及び電動制御弁の開度に基づき圧縮機を停
止し、前記偏差及びヒータ出力値に基づき圧縮機を起動
するようにしたものである。In addition, the control device has a deviation between the temperature of the controlled object and the set temperature,
The compressor is stopped based on the heater output value and the opening degree of the electric control valve, and the compressor is started based on the deviation and the heater output value.
(ホ)作用 本発明によれば圧縮機の運転停止によらずとも電動制
御弁によってヒータ出力を小さくなるよう制御して冷凍
装置の冷凍能力を調整することが可能となる。(E) Action According to the present invention, it is possible to adjust the refrigerating capacity of the refrigerating device by controlling the heater output to be small by the electric control valve regardless of whether the compressor is stopped.
更に、無駄な冷凍能力を削減し、且つ、頻繁な圧縮機
の運転停止を防止できる。Further, it is possible to reduce wasteful refrigeration capacity and prevent frequent compressor shutdowns.
(ヘ)実施例 次に図面に於て実施例を説明する。第1図は本発明を
適用する冷媒回路図であり、例えば植物用又は汎用の培
養庫等の恒温庫に用いれるものである。1は電動圧縮機
であり、圧縮機1から吐出された冷媒は凝縮器2に流入
して放熱し、次にキャピラリチューブ3にて減圧されて
蒸発器4に流入する。蒸発器4内で冷媒が蒸発して周囲
から潜熱を奪うことにより、蒸発器4は冷凍能力を発揮
する。蒸発器4を出た冷媒はサクションパイプ6を通過
して圧縮機1に帰還するが、このサクションパイプ6に
は電動制御弁5が介設されている。(F) Embodiment Next, an embodiment will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram to which the present invention is applied, and is used for a constant temperature chamber such as a plant or a general-purpose culture chamber. Reference numeral 1 denotes an electric compressor, and the refrigerant discharged from the compressor 1 flows into the condenser 2 to radiate heat, and then is decompressed by the capillary tube 3 and flows into the evaporator 4. The refrigerant evaporates in the evaporator 4 and removes latent heat from the surroundings, so that the evaporator 4 exhibits a refrigerating ability. The refrigerant that has exited from the evaporator 4 passes through the suction pipe 6 and returns to the compressor 1, and the suction pipe 6 is provided with an electric control valve 5.
弁5は例えばステップモータによって駆動せられてそ
の開度を高精度で調整できるもので、それによってそこ
を通過する冷媒の流量を高精度で増減するものである。
第2図に圧縮機1が運転状態で、弁5の開度と蒸発器4
による冷凍能力比の関係を示す。弁5が全開の時の冷凍
能力を1とすると、開度の減少に伴い、この曲線に沿っ
て冷凍能力が現象する。又、冷凍能力の減少によって圧
縮機1の負荷が軽くなるので結果的に消費電力も減少す
る。この弁5には多少漏れがあるので全閉状態でも冷凍
能力は残存している。The valve 5 is driven by, for example, a step motor to adjust its opening degree with high accuracy, thereby increasing or decreasing the flow rate of the refrigerant passing therethrough with high accuracy.
FIG. 2 shows the state of opening of the valve 5 and the evaporator 4 when the compressor 1 is operating.
The following shows the relationship of the refrigerating capacity ratio. Assuming that the refrigerating capacity when the valve 5 is fully opened is 1, the refrigerating capacity occurs along this curve as the opening degree decreases. Further, since the load on the compressor 1 is reduced due to the decrease in the refrigerating capacity, the power consumption is also reduced as a result. Since there is some leakage in the valve 5, the refrigerating capacity remains even in the fully closed state.
第3図は本発明の温度制御装置の電気回路のブロック
図を示す。7は汎用マイクロコンピュータであり、そこ
には図示しない恒温庫内の温度PVを検出するセンサー8
と、恒温庫内の設定温度SVを出力する設定装置9の出力
を入力とし、圧縮機1、弁5及び恒温庫内を加熱するヒ
ータ10に出力を発生してこれらを制御する。FIG. 3 shows a block diagram of an electric circuit of the temperature control device of the present invention. Reference numeral 7 is a general-purpose microcomputer, and a sensor 8 for detecting the temperature PV in a thermostat (not shown).
Then, the output of the setting device 9 for outputting the set temperature SV in the constant temperature chamber is used as an input, and outputs are generated to the compressor 1, the valve 5 and the heater 10 for heating the inside of the constant temperature chamber to control them.
第4図に制御系と制御対象のブロック線図を示す。ま
ずヒータ10の制御を説明する。前述のSV−PVで算出され
る偏差eの値はヒータ制御手段12に入力され、そこで下
記式に示すPID演算処理によりヒータ出力H(%)を
算出する。FIG. 4 shows a block diagram of the control system and the control target. First, the control of the heater 10 will be described. The value of the deviation e calculated by the above-mentioned SV-PV is input to the heater control means 12, where the heater output H (%) is calculated by the PID calculation processing shown in the following equation.
ここで、Kp、TD及びTIはそれぞれ比例定数微分定数及
び積分定数であり、サンプリング周期は例えば3秒であ
る。式の比例項は偏差eの増減に比例してそれをなく
する様に作用し、積分項は定常偏差を無くす様に作用
し、微分項は偏差eの急激な変化を抑制する様に作用す
るもので、この制御によってマイクロコンピュータ7は
庫内温度PVを設定温度SVに近付ける様にヒータ10の発熱
量を増減し、精密に調節する。 Here, Kp, TD, and TI are a proportional constant, a differential constant, and an integral constant, respectively, and the sampling period is, for example, 3 seconds. The proportional term of the equation acts so as to eliminate it proportionally to the increase / decrease of the deviation e, the integral term acts to eliminate the steady deviation, and the differential term acts to suppress the abrupt change of the deviation e. By this control, the microcomputer 7 increases / decreases the heat generation amount of the heater 10 so as to bring the internal temperature PV close to the set temperature SV and adjusts it precisely.
次に、弁5の動作を説明する。13は前述の弁制御手段
であり、同様に偏差eの値を入力し、更に、ヒータ手段
12からのヒータ出力Hを入力する。弁制御手段13は下記
式により偏差eのサンプリング周期毎の変化量EDを、
又、式により変化の速度DEDを算出する。Next, the operation of the valve 5 will be described. Reference numeral 13 is the above-mentioned valve control means, which similarly inputs the value of the deviation e, and further the heater means.
Input the heater output H from 12. The valve control means 13 calculates the change amount ED of the deviation e for each sampling cycle according to the following equation.
Further, the speed of change DED is calculated by the formula.
ED=en−en-1 …… DED=(en−en-1)−(en-1−en-2) …… 弁制御手段13はこれらの値をヒータ出力Hに加算し
て、下記式により弁5の制御出力Yを算出する。 ED = e n -e n-1 ...... DED = (e n -e n-1) - (e n-1 -e n-2) ...... valve control means 13 adds these values to the heater output H Then, the control output Y of the valve 5 is calculated by the following formula.
Y=H+X1ED+X2DED …… X1、X2はヒータ10の出力(%)に適合させるための係
数であり、X1>0、X2>0とする。Y = H + X 1 ED + X 2 DED ... X 1 and X 2 are coefficients for adapting to the output (%) of the heater 10, and X 1 > 0 and X 2 > 0.
第5図にヒータ出力Hと弁5の動作の関係をグラフで
示し、第6図にマイクロコンピュータ7の弁5の制御の
為のソフトウエアを示すフローチャートを示す。FIG. 5 is a graph showing the relationship between the heater output H and the operation of the valve 5, and FIG. 6 is a flow chart showing the software for controlling the valve 5 of the microcomputer 7.
ステップ14で前記出力Yを算出してステップ15でEDが
例えば0以上か否か判断し、0以下の時はステップ16に
進んでYがX3%以下か判断し、以下であればステップ17
に進んで弁5を一段階開く。一方ステップ15でEDが0よ
り大きい時はステップ18に進みYがX4%以上か否か判断
し、以上であれば弁5を一段階閉じる。ここでX4>X3と
する。In step 14, the output Y is calculated, and in step 15, it is judged whether or not ED is 0 or more. If it is 0 or less, the process proceeds to step 16 to judge whether Y is X 3 % or less.
And open valve 5 one step. On the other hand, when ED is greater than 0 in step 15, the process proceeds to step 18 and it is determined whether Y is X 4 % or more, and if it is, valve 5 is closed by one step. Here, it is assumed that X 4 > X 3 .
これらの動作を第5図で説明する。横軸はヒータ出力
(%)を示し、縦軸は前述のEDを示す。実線で示すL1の
上方が弁開動作領域、L2の下方が弁閉動作領域、L1とL2
間が不感帯をそれぞれ示す。そこで、L1、L2は変化の速
度DEDが0のときの動作を示し、また、EDが0以下のと
きは温度PVは上昇している場合であり、EDが0より大き
いときは温度PVが降下している場合であるので、区分け
して判断する(ステップ15の処理)。These operations will be described with reference to FIG. The horizontal axis shows the heater output (%), and the vertical axis shows the above-mentioned ED. Upper valve opening operation region of the L 1 shown by a solid line, the lower valve closing region of the L 2, L 1 and L 2
Each interval represents a dead zone. Therefore, L 1 and L 2 show the operation when the speed of change DED is 0, and when ED is 0 or less, the temperature PV is rising, and when ED is greater than 0, the temperature PV is It is a case where the vehicle is descending, and therefore, judgment is made by classifying (step 15).
庫内温度PVが降下しているときにヒータ出力Hが大き
いときは弁5を閉じて冷凍能力を減少させて温度PVの降
下を抑制し、ヒータ出力Hを削減する様動作する。When the heater output H is large while the inside temperature PV is decreasing, the valve 5 is closed to reduce the refrigerating capacity to suppress the decrease in the temperature PV and to reduce the heater output H.
このとき前記式右辺がH項のみであるとYはHがX4
以上のときにのみ弁5を閉じる(ステップ19の処理)こ
とになるが、X1EDの項が存在するため、温度降下量が大
きい場合はHがある程度小さい状態から弁5を閉じる様
になる。これがL2の傾斜部分で示される。更に、式に
はX2DEDの項が存在するため、この項の値が+に大きい
ときには破線で示すL3に移行する。即ち降下速度が大き
いときにはHがより小さい段階から弁5を閉じ、冷凍能
力を減少せしめる様になる。逆に、降下速度が小さいと
きは破線で示すL4に移行し、Hがより大きい状態となっ
てから弁5を閉じる様になる。これによって温度PVの変
動を小さくし、安定的に設定値SVに制御できるようにな
る。At this time, if the right side of the above expression is only the H term, Y becomes H 4
Only in the above cases, the valve 5 is closed (step 19). However, since the term X 1 ED exists, the valve 5 is closed from a state where H is small to some extent when the temperature drop amount is large. . This is illustrated by the inclined portion of the L 2. Furthermore, since there is a term of X 2 DED in the equation, when the value of this term is large in +, the process shifts to L 3 shown by the broken line. That is, when the descending speed is high, the valve 5 is closed from the stage where H is lower, and the refrigerating capacity is reduced. Conversely, when the descending speed is low, the process proceeds to L 4 indicated by broken lines, H is as close the valve 5 becomes larger state. This makes it possible to reduce fluctuations in the temperature PV and stably control to the set value SV.
庫内温度PVが上昇しているときにヒータ出力Hが小さ
いときは弁5を開いて冷凍能力を増加させて温度PVの上
昇を抑制する。When the heater output H is small while the inside temperature PV is increasing, the valve 5 is opened to increase the refrigerating capacity and suppress the increase in temperature PV.
このとき同様に式右辺がH項のみであるとYはHが
X3以下のときにのみ弁5を開く(ステップ17の処理)こ
とになるが、X1EDの項が存在するため、温度上昇量が大
きい場合はHがある程度大きい状態から弁5を開く様に
なる。これがL1の傾斜部分で示される。更に、式には
X2DEDの項が存在するため、この項の値が−に大きいと
きには破線で示すL5に移行する。即ち、上昇速度が大き
いときにはHがより大きい段階から弁5を開き、冷凍能
力を増大せしめる様になる。逆に、上昇速度が小さいと
きは破線で示すL6に移行し、Hがより小さい状態となっ
てから弁5を開く様になる。これれらの制御によって温
度PVの変動を小さくし、精密に設定値SVに制御できるよ
うになる。At this time, similarly, if the right side of the equation is only the H term, then Y becomes H
The valve 5 is opened only when the temperature is X 3 or less (processing of step 17), but since the term of X 1 ED exists, the valve 5 should be opened from a state where H is large to some extent when the temperature rise amount is large. become. This is illustrated by the inclined portion of the L 1. Furthermore, the formula
Since there is a term of X 2 DED, when the value of this term is large at −, it shifts to L 5 indicated by a broken line. That is, when the ascending speed is high, the valve 5 is opened from the stage where H is larger, and the refrigerating capacity is increased. On the contrary, when the rising speed is small, the flow shifts to L 6 shown by the broken line, and the valve 5 is opened after H becomes smaller. By these controls, it becomes possible to reduce the fluctuation of the temperature PV and precisely control the set value SV.
次に圧縮機1の動作を説明する。第4図で21は圧縮機
制御手段であり、前述の偏差eとヒータ出力H及び弁5
の開度に関する出力を入力し、圧縮機1の起動停止を判
断する。Next, the operation of the compressor 1 will be described. In FIG. 4, reference numeral 21 is a compressor control means, which is the above-mentioned deviation e, heater output H and valve 5
The output related to the opening degree is input to determine whether the compressor 1 is started or stopped.
第7図にマイクロコンピュータ7の圧縮機1の制御の
為のソフトウエアを示すフローチャートを示す。ステッ
プ22でPVがSV−X5(℃)以下か、即ち、偏差eがX5以上
か否か判断し、PVがSV−X5以下であればステップ23に進
む。X5は例えば0.3℃等の値である。ステップ23ではヒ
ータ出力Hが例えば50%等の値X6以上か否か判断し、以
上であればステップ24で弁5が現在全閉か否か判断し、
全閉であればステップ25で圧縮機1を停止する。ステッ
プ22、23、24で全て否であればステップ26でPVがSV+X5
(℃)より大きいか、即ち、偏差eが−X5より小さいか
否か判断し、PVがSV+X5より大きければステップ26に進
み、ヒータ出力Hが例えば25%等の値X7以下か否か判断
し、以下であればステップ28で圧縮機1を起動する。FIG. 7 is a flowchart showing software for controlling the compressor 1 of the microcomputer 7. In step 22, it is determined whether PV is SV-X 5 (° C.) or less, that is, whether the deviation e is X 5 or more. If PV is SV-X 5 or less, the process proceeds to step 23. X 5 is the value of for example 0.3 ° C. and the like. In step 23, it is determined whether the heater output H is, for example, a value X 6 such as 50% or more, and if it is above, it is determined in step 24 whether the valve 5 is currently fully closed,
If it is fully closed, the compressor 1 is stopped in step 25. If all of steps 22, 23, and 24 are denied, PV is SV + X 5 in step 26.
It is judged whether it is larger than (° C.), that is, whether the deviation e is smaller than −X 5 or not, and if PV is larger than SV + X 5 , the process proceeds to step 26, and the heater output H is, for example, 25% or less value X 7 If it is below, the compressor 1 is started in step 28.
即ち、圧縮機1は庫内温度PVが設定温度SVよりX5℃以
上低くなるとヒータ出力HがX6%以上で、且つ、弁5が
全閉のときに停止する。これは弁5が全閉時にはそれ以
上の冷凍能力の低下は弁5によっては行えず、又、ヒー
タ出力Hが低い状態では温度PVが低下しても出力Hの増
加によって対処できるが、ある程度高い状態では加熱効
果が相対的に低くなること、及びヒータ10の消費電力の
削減の為である。That is, the compressor 1 stops when the heater output H is X 6 % or more and the valve 5 is fully closed when the inside temperature PV becomes lower than the set temperature SV by X 5 ° C or more. When the valve 5 is fully closed, the refrigerating capacity cannot be further reduced by the valve 5, and when the heater output H is low, the output H can be increased even if the temperature PV is reduced, but it is high to some extent. This is because the heating effect is relatively low in the state and the power consumption of the heater 10 is reduced.
又、圧縮機1は庫内温度PVが設定温度SVよりX5℃以上
高くなり、且つ、ヒータ出力HがX7%以下のときに起動
することになる。これはヒータ出力Hが低いときで、温
度PVが上昇しているときはそれ以上の温度低下が期待で
きず、圧縮機1によって冷凍能力を発揮させる必要があ
るかるである。Further, the compressor 1 is started when the inside temperature PV is higher than the set temperature SV by X 5 ° C. or more and the heater output H is X 7 % or less. This is because when the heater output H is low and the temperature PV is rising, further temperature reduction cannot be expected, and it is necessary to exert the refrigerating capacity by the compressor 1.
これによって温度PVは設定温度SV付近から逸脱せず、
且つ、ヒータの消費電力を削減できるようになる。As a result, the temperature PV does not deviate from around the set temperature SV,
In addition, the power consumption of the heater can be reduced.
尚、実施例では本発明をインキュベータの温度制御に
適用したが、それに限られずショウケース等の他の恒温
装置にも適用可能である。又、電動制御弁の開度は所定
のサンプリング周期毎に一段階ずつ変更したが、それに
限らず、目標とする開度に直接変更する方式でも良い。In addition, although the present invention is applied to the temperature control of the incubator in the embodiments, the present invention is not limited to this and can be applied to other thermostatic devices such as a showcase. Further, although the opening degree of the electric control valve is changed one step at a time in each predetermined sampling period, the present invention is not limited to this, and a method in which the opening degree is directly changed to a target opening degree may be used.
(ト)発明の効果 請求項1の発明によれば、ヒータの加熱と冷凍装置の
冷却によって制御対象の温度を広範囲の設定温度に制御
可能にでき、ヒータの出力値に設定温度と検出温度との
偏差の単位時間当たりの変化量及び前記偏差の変化量の
変化速度を加算して電動制御弁の開度の調節によって温
度変動及び除湿量の少ない精密な温度制御を可能にでき
る。(G) Effect of the Invention According to the invention of claim 1, the temperature of the controlled object can be controlled to a wide range of set temperatures by heating the heater and cooling the refrigerating device, and the set value and the detected temperature are set to the output value of the heater. The amount of change in the deviation per unit time and the change rate of the amount of change in the deviation are added to adjust the opening of the motor-operated control valve to enable precise temperature control with less temperature fluctuation and dehumidification amount.
又、請求項2の発明によれば、圧縮機の適正な起動、
停止によって制御対象の温度制御性能を向上し、且つ、
無駄な冷凍能力ヒータ出力を削減し、省エネルギー寄与
できる。Further, according to the invention of claim 2, proper starting of the compressor,
The temperature control performance of the controlled object is improved by stopping, and
Wasteful refrigerating capacity Heater output can be reduced and energy can be saved.
各図は本発明の実施例を示し、第1図は冷媒回路図、第
2図は電動制御弁と冷凍能力比の関係を示す図、第3図
は電気回路のブロック図、第4図は制御系と制御対象の
ブロック線図、第5図はヒータ出力と電動制御弁の動作
の関係を示す図、第6図はマイクロコンピュータの電動
制御弁の制御の為のソフトウエアを示すフローチャー
ト、第7図はマイクロコンピュータの圧縮機の制御の為
のソフトウエアを示すフローチャートである。 1……圧縮機、4……蒸発器、5……電動制御弁、7…
…マイクロコンピュータ、8……センサー、10……ヒー
タ。Each figure shows an embodiment of the present invention, FIG. 1 is a refrigerant circuit diagram, FIG. 2 is a diagram showing a relationship between an electric control valve and a refrigerating capacity ratio, FIG. 3 is a block diagram of an electric circuit, and FIG. FIG. 5 is a diagram showing the relationship between the heater output and the operation of the electric control valve, FIG. 6 is a flowchart showing software for controlling the electric control valve of the microcomputer, FIG. FIG. 7 is a flowchart showing software for controlling the compressor of the microcomputer. 1 ... Compressor, 4 ... Evaporator, 5 ... Electric control valve, 7 ...
… Microcomputer, 8 …… Sensor, 10 …… Heater.
Claims (2)
象を冷却する為の蒸発器及び圧縮機等から成る冷凍装置
と、前記圧縮機の吸入側に接続された電動制御弁と、前
記制御対象の温度と前記温度に基づいて前記ヒータ、圧
縮機の起動停止を制御するとともに、前記ヒータの出力
値に設定温度と検出温度との偏差の単位時間当たりの変
化量及び前記偏差の変化量の変化速度を加算して前記電
動制御弁の開度を制御し、前記ヒータによる加熱と蒸発
器による冷却により前記制御対象の温度を制御する制御
装置とから構成したことを特徴とする温度制御装置。1. A heater for heating an object to be controlled, a refrigerating device including an evaporator and a compressor for cooling the object to be controlled, an electric control valve connected to a suction side of the compressor, and the control. While controlling the start and stop of the heater and the compressor based on the target temperature and the temperature, the change amount of the deviation between the set temperature and the detected temperature in the output value of the heater per unit time and the change amount of the deviation A temperature control device comprising: a control device that controls the opening degree of the electric control valve by adding the changing speed, and controls the temperature of the control target by heating by the heater and cooling by the evaporator.
偏差、ヒータ出力値及び電動制御弁の開度に基づき圧縮
機を停止し、前記偏差及びヒータ出力値に基づき圧縮機
を起動することを特徴とする請求項1記載の温度制御装
置。2. The control device stops the compressor based on the deviation between the temperature to be controlled and the set temperature, the heater output value and the opening degree of the electric control valve, and starts the compressor based on the deviation and the heater output value. The temperature control device according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1138619A JP2527615B2 (en) | 1989-05-31 | 1989-05-31 | Temperature control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1138619A JP2527615B2 (en) | 1989-05-31 | 1989-05-31 | Temperature control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH033016A JPH033016A (en) | 1991-01-09 |
JP2527615B2 true JP2527615B2 (en) | 1996-08-28 |
Family
ID=15226309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1138619A Expired - Lifetime JP2527615B2 (en) | 1989-05-31 | 1989-05-31 | Temperature control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2527615B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100990822B1 (en) | 2006-03-28 | 2010-10-29 | 산요덴키가부시키가이샤 | Control Method for Absorption Refrigerator |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04373006A (en) * | 1991-06-21 | 1992-12-25 | Tabai Espec Corp | Temperature increase/decrease control method |
JPH0544234U (en) * | 1991-11-22 | 1993-06-15 | 株式会社アドバンテスト | IC test bath |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5734212A (en) * | 1980-08-08 | 1982-02-24 | Tokyo Sanyo Electric Co Ltd | Thermostatic controller |
JPS63201470A (en) * | 1987-02-16 | 1988-08-19 | 三洋電機株式会社 | Refrigerator |
-
1989
- 1989-05-31 JP JP1138619A patent/JP2527615B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100990822B1 (en) | 2006-03-28 | 2010-10-29 | 산요덴키가부시키가이샤 | Control Method for Absorption Refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JPH033016A (en) | 1991-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8996141B1 (en) | Adaptive predictive functional controller | |
US20130025304A1 (en) | Loading and unloading of compressors in a cooling system | |
JP2006266533A (en) | Valve control system and valve control method | |
CN101887275B (en) | High-precision temperature control method | |
JP2527615B2 (en) | Temperature control device | |
JP2632081B2 (en) | Temperature and humidity control device | |
KR101132186B1 (en) | Temparature control system for the industrial cooler | |
JP2501244B2 (en) | Temperature control method | |
JPH11173631A (en) | Air conditioner controller | |
JP2000214933A (en) | Temperature controller | |
JP2006105437A (en) | Device and system for controlling cooling system | |
JPH09303885A (en) | Refrigerating and air conditioning device | |
JPH0526519A (en) | Method of controlling reversible proportional type expansion valve | |
JPH06201198A (en) | Refrigerating cycle control device | |
KR20180053181A (en) | Proportional integral derivative controller for high-precision temperature control of cooler | |
JPH02178567A (en) | Refrigerant flow rate controller | |
JP2529029B2 (en) | Absorption refrigerator and control method thereof | |
JPS6135856A (en) | Method for controlling temperature of thermostatic apparatus | |
CN113587500B (en) | Electronic expansion valve control method and heat pump system | |
JPH0772648B2 (en) | Refrigerant flow control method | |
JP2508160B2 (en) | Turbo refrigerator | |
JPH0712408A (en) | Control method of air-conditioning machine | |
KR100300581B1 (en) | Cold and heat cycle controll method | |
JPH06265222A (en) | Expansion valve control device for air conditioner | |
JPH0260818A (en) | Car airconditioner control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080614 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090614 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |