[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2523410B2 - Spread spectrum demodulator - Google Patents

Spread spectrum demodulator

Info

Publication number
JP2523410B2
JP2523410B2 JP3086096A JP8609691A JP2523410B2 JP 2523410 B2 JP2523410 B2 JP 2523410B2 JP 3086096 A JP3086096 A JP 3086096A JP 8609691 A JP8609691 A JP 8609691A JP 2523410 B2 JP2523410 B2 JP 2523410B2
Authority
JP
Japan
Prior art keywords
output
signal
spread
multiplier
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3086096A
Other languages
Japanese (ja)
Other versions
JPH05284139A (en
Inventor
行信 石垣
卓久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP3086096A priority Critical patent/JP2523410B2/en
Priority to US07/813,735 priority patent/US5239556A/en
Publication of JPH05284139A publication Critical patent/JPH05284139A/en
Application granted granted Critical
Publication of JP2523410B2 publication Critical patent/JP2523410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスペクトル拡散変調復調
装置に係り、特に、任意の伝送手段又は記録再生媒体を
介して得られたスペクトル拡散信号中に含まれる種々の
干渉波や雑音等を、復調側において比較的簡単な構成で
大幅に抑圧し得るようにした、パッケージ系や放送系等
への利用に好適な、スペクトル拡散復調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spread spectrum modulation / demodulation device, and more particularly to various interference waves and noises contained in a spread spectrum signal obtained through an arbitrary transmission means or recording / reproducing medium. The present invention relates to a spread spectrum demodulation device suitable for use in a package system, a broadcast system, etc., which can be greatly suppressed by a demodulation side with a relatively simple configuration.

【0002】[0002]

【技術的背景】情報を扱う種々の分野において、決めら
れた制限の中で如何に情報量を高めるかは永遠のテーマ
でもある。近年の技術の進歩や方向は、高能率な符号化
技術や変復調技術で代表されると言っても過言ではな
く、たとえば通信分野での多値QAM{Quadrature Ampl
itude Modulation;直交振幅変調}の移動通信への応用
の例にも見られるように、定められた周波数帯域の中で
伝送速度を高める技術の研究,開発が一般的と言える。
しかるに、多値QAMについては、16QAMから256
QAMと多値化への進歩は見られるが、このベクトル上
で考えると次は216(=65536)QAMとなり非現実的で
ある。例えば 256QAMの 1.5倍の容量を実現しようと
すると4096QAMが必要となる。このようなことから、
今後は変復調技術と符号化技術の融合化の研究がいよい
よ嘱望され、従来の考え方にとらわれない新たな発想で
の情報量を高めるための研究,開発が期待されている。
2. Description of the Related Art In various fields dealing with information, how to increase the amount of information within fixed limits is an eternal theme. It is not an exaggeration to say that recent technological advances and directions are represented by highly efficient coding and modulation / demodulation techniques. For example, multi-level QAM (Quadrature Amplification) in the communication field
As seen in the application of itude modulation to quadrature amplitude modulation 振幅 in mobile communications, it can be said that research and development of techniques for increasing the transmission speed within a predetermined frequency band are common.
However, for multilevel QAM, 16QAM to 256
Although progress has been made in QAM and multi-valued, considering this vector, the next becomes 2 16 (= 65536) QAM, which is unrealistic. For example, to realize a capacity 1.5 times that of 256 QAM, 4096 QAM is required. From such a thing,
In the future, research on the integration of modulation / demodulation technology and coding technology will become more and more desired, and research and development to increase the amount of information based on new ideas that are not bound by conventional thinking are expected.

【0003】かかる期待に答え得る変復調技術と符号化
技術の融合化の1つに、スペクトル拡散(Spread Spectr
um:以下“SS”とも記載する)変調復調方式がある。
SS変調復調方式とは、変調側では情報信号等を広帯域
の雑音状の拡散符号により拡散変調して、非常に広い周
波数帯域に拡散すると共に、復調側では変調側で使用す
る拡散符号と等価な拡散符号で逆拡散する方式である。
かかる変調復調方式を用いて通信を行なうSS通信方式
は、秘話性が非常に高く、外部干渉や雑音,故意の妨害
に強く、従来システムと共存でき、しかも微弱な電力で
送信でき、更に、疑似雑音符号を変えることにより同一
周波数帯域内に多重できる等々多くの特長があるので、
現在では単に通信機器分野にとどまらず各分野での応用
が進んでおり、民生機器への展開も始まりつつある。
Spread spectrum (Spread Spectr) is one of the integration of modulation / demodulation technology and coding technology that can meet such expectations.
um: hereinafter also referred to as “SS”) modulation and demodulation method.
The SS modulation / demodulation method is such that the modulation side spread-modulates an information signal or the like with a wideband noise-like spreading code to spread over a very wide frequency band, and the demodulation side is equivalent to the spreading code used on the modulation side. This is a method of despreading with a spreading code.
The SS communication method for performing communication using such a modulation / demodulation method has a very high degree of confidentiality, is resistant to external interference, noise, and intentional interference, can coexist with a conventional system, and can transmit with weak power. Since there are many features such as multiplexing in the same frequency band by changing the noise code,
Nowadays, it is being applied not only in the field of communication equipment but also in other fields, and its application to consumer equipment is also beginning.

【0004】[0004]

【従来の技術】SS通信方式を含むSS変調復調方式の
基本的な考え方は、変調部(送信側)と復調部(受信
側)の間で妨害を受けた場合に、復調出力中の情報と干
渉波(妨害波)成分の中から打消し用干渉波成分を生成
して、復調出力と生成干渉波成分との演算処理により、
情報信号のみを得るという考え方に基づくもので、変調
部,復調部に夫々スペクトル拡散変調,復調を用いてい
る。
2. Description of the Related Art The basic idea of the SS modulation and demodulation method including the SS communication method is that information is output during demodulation when there is interference between the modulation section (transmission side) and the demodulation section (reception side). A canceling interference wave component is generated from the interference wave (interference wave) component, and by the calculation processing of the demodulation output and the generated interference wave component,
This is based on the idea of obtaining only an information signal, and spread spectrum modulation and demodulation are used for the modulator and demodulator, respectively.

【0005】かかるSS通信方式(SS変調復調方式)
を実施し得るSS通信(SS変調復調)装置の基本構成
を第3図に示す。図中、2,3は乗算器、6はROF
(ロールオフフィルタ)、8,9は拡散符号発生回路
(PNG)、10は変調部(SS変調装置)、11はL
PF(低域濾波器)、17は減算器、20は復調部(S
S復調装置)、21はHPF(高域濾波器)、25は雑
音生成回路である。PNG8と9は夫々入力端子In2,In
4 からの互いに等価なクロック信号C(t) を基に拡散符
号P(t)(通常は擬似雑音符号である)を生成するもの
で、両者は同期が取れている。ROF6は通常cosin ro
ll off特性を持ち、符号間干渉問題を起さないようにし
ながら帯域制限をするよう構成されている。なお、加算
器19は実際のSS通信装置では存在しないが、干渉波
除去動作の説明の便宜上描いている。
Such SS communication system (SS modulation / demodulation system)
FIG. 3 shows a basic configuration of an SS communication (SS modulation / demodulation) device capable of implementing the above. In the figure, 2 and 3 are multipliers, 6 is ROF
(Roll-off filter), 8 and 9 are spread code generation circuits (PNG), 10 is a modulator (SS modulator), and 11 is L.
PF (low-pass filter), 17 is a subtractor, 20 is a demodulator (S
S demodulator), 21 is an HPF (high-pass filter), and 25 is a noise generation circuit. PNG8 and 9 are input terminals In 2 and In respectively
A spread code P (t) (usually a pseudo noise code) is generated based on mutually equivalent clock signals C (t) from 4 , and both are synchronized. ROF6 is usually cosin ro
It has the ll off characteristic and is configured to limit the band while preventing the intersymbol interference problem. Although the adder 19 does not exist in the actual SS communication device, it is drawn for convenience of explanation of the interference wave removing operation.

【0006】上記構成のSS変調復調装置において、変
調部10の入力端子In1 より与えられるデータ等の情報
信号d(t) は、ROF6にて不要な周波数成分を除去さ
れた後乗算器2に供給される。一方、PNG8では入力
端子In2 からのクロック信号C(t) を基に拡散符号P
(t) を生成し、これを乗算器2に供給して情報信号d
(t)に乗算することにより拡散変調を行ない、変調信号
ss{=d(t)*P(t)}を出力端子Out1を介して例えばア
ンテナ(図示せず)より出力する。ここで、伝送媒体通
過中に混入する干渉波をI(t) とすると、復調部20へ
の入力信号は、d(t)*P(t)+I(t) で表わされる。
In the SS modulation / demodulation apparatus having the above-mentioned configuration, the information signal d (t) such as data given from the input terminal In 1 of the modulation section 10 is removed by the ROF 6 after unnecessary frequency components are removed, and then is sent to the multiplier 2. Supplied. On the other hand, in the PNG8, the spread code P is generated based on the clock signal C (t) from the input terminal In 2.
(t) is generated and is supplied to the multiplier 2 to supply the information signal d
Spreading modulation is performed by multiplying (t), and the modulated signal D ss {= d (t) * P (t)} is output from, for example, an antenna (not shown) via the output terminal Out1. Here, assuming that the interference wave mixed during passing through the transmission medium is I (t), the input signal to the demodulation unit 20 is represented by d (t) * P (t) + I (t).

【0007】復調部20側のPNG9では、入力端子In
4 からのクロック信号を基に、上記PNG8と等価な拡
散符号P(t) を生成して、逆拡散用の乗算器3に供給し
ている。従ってこの乗算器3からの逆拡散出力は、 {d(t)*P(t)+I(t)}P(t) =d(t)*P2 (t) +I(t)*P(t) …………(1) となる。ところで、P(t) は1又は−1の値しか取らな
い符号なので、P2 (t)=1となる。従って、逆拡散出
力は、d(t) +I(t)*P(t) となる。即ち、復調情報d
(t) に、干渉波の拡散された拡散干渉波I(t)*P(t) が
混じり合ったのとして出力される。かかる出力信号を適
当な特性を有するLPF(低域濾波器)11に通せば、
復調出力d(t) +n(t){n(t):ノイズ成分}が得られる
{従来の代表的構成}。
In the PNG9 on the demodulation section 20 side, the input terminal In
Based on the clock signal from 4, a spreading code P (t) equivalent to the PNG8 is generated and supplied to the despreading multiplier 3. Despreading output from the multiplier 3 is therefore, {d (t) * P (t) + I (t)} P (t) = d (t) * P 2 (t) + I (t) * P ( t) ………… (1). By the way, since P (t) is a code that takes only a value of 1 or -1, P 2 (t) = 1. Therefore, the despread output is d (t) + I (t) * P (t). That is, demodulation information d
The diffused interference wave I (t) * P (t) in which the interference wave is diffused is output to (t) as being mixed. If such an output signal is passed through an LPF (low pass filter) 11 having appropriate characteristics,
The demodulation output d (t) + n (t) {n (t): noise component} is obtained {a typical conventional configuration}.

【0008】一方、LPF11(1次)の遮断周波数と
等しいHPF21(高域濾波器)を通すと、そのHPF
21出力は、I(t)*P(t) −n(t) となる。このHPF
出力は次段の雑音生成回路25に供給され、ここで−n
(t) 成分を著しく小さくされることにより、近似的にI
(t)*P(t) が残る。このようにして得られた打消し用生
成拡散干渉波I(t)*P(t) は、減算器17での上記逆拡
散出力d(t) +I(t)*P(t) との引算により拡散干渉波
成分は打消されて、ほぼ情報d(t) のみが出力される
{より改良された従来の構成}。
On the other hand, when the HPF 21 (high-pass filter) having the same cutoff frequency as the LPF 11 (first order) is passed, the HPF 21
21 output is I (t) * P (t) -n (t). This HPF
The output is supplied to the noise generation circuit 25 at the next stage, where -n
By making the (t) component extremely small, I
(t) * P (t) remains. The canceling generated diffused interference wave I (t) * P (t) thus obtained is subtracted from the despreading output d (t) + I (t) * P (t) in the subtractor 17. The diffuse interference wave component is canceled by the calculation, and almost only the information d (t) is output (a more improved conventional configuration).

【0009】[0009]

【発明が解決しようとする課題】以上のように原理はか
なり明快であるが、引算法を基本としているために生成
干渉波の精度をどれだけ高められるかが重要なポイント
であり、干渉波の形状,位相と振幅が完全に一致して打
消しが可能となるので、オシロスコープ等で比較,観測
して、略等しく見える程度では、10dB抑圧も困難で
ある。また、非常に広い周波数帯域を対象としているの
で、広帯域回路技術も必要となる。更に、同一周波数を
共用することにより、本質的に相互干渉を避けられない
ので、他の局からの信号電力が非常に大きくなれば、S
S通信方式においても干渉波により性能が劣化してしま
う。
As described above, the principle is quite clear, but since it is based on the subtraction method, it is an important point how much the accuracy of the generated interference wave can be improved. Since the shapes, the phases, and the amplitudes can be completely matched to cancel each other, it is difficult to suppress 10 dB if they are compared and observed with an oscilloscope or the like and appear to be substantially equal. In addition, since it covers a very wide frequency band, wideband circuit technology is also required. Furthermore, since sharing the same frequency inevitably prevents mutual interference, if the signal power from other stations becomes very large, S
Even in the S communication method, the performance deteriorates due to the interference wave.

【0010】そこで、自局のSS信号電力を増加させる
とその信号の品質は向上するが、他の信号に対する干渉
が無視できなくなるという問題点もある。更にまた、従
来方式のものは既知のSS干渉波に限って有効であり、
ランダムノイズや未知のSS干渉波には殆ど対処でき
ず、複数の既知のSS干渉波に対処しようとすると、複
数の逆拡散復調器,互いに通過帯域が異なる複数の狭帯
域濾波器,複数の拡散変調器によるループ,及び加算器
が必要となり、構成がかなり複雑となって、コストも上
昇するという欠点もある。
Therefore, if the SS signal power of the local station is increased, the quality of the signal is improved, but there is a problem that interference with other signals cannot be ignored. Furthermore, the conventional method is effective only for known SS interference waves,
Random noise and unknown SS interference waves can hardly be dealt with, and when trying to deal with a plurality of known SS interference waves, a plurality of despread demodulators, a plurality of narrowband filters having different pass bands, a plurality of spreaders. A modulator loop and an adder are required, which has a drawback that the structure is considerably complicated and the cost is increased.

【0011】[0011]

【課題を解決するための手段】本発明のスペクトル拡散
復調装置は、入力信号のうち拡散符号のメインローブ帯
域以上の高域干渉信号成分を除去する入力フィルタと、
変調装置側の拡散符号と等価な拡散符号を生成する拡散
符号発生回路と、入力フィルタと伝達関数の略等しい補
正用フィルタと、拡散符号発生回路からの拡散符号信号
を補正用フィルタを伝送させることにより得られる被補
正拡散符号の逆数をとる逆数回路と、この逆数回路の出
力を入力フィルタの出力信号に乗算することにより逆拡
散を行なう第1の乗算器と、この乗算器の出力信号のう
ち復調情報信号成分を除去するローカットフィルタと、
このローカットフィルタの出力に被補正拡散符号を乗算
する第2の乗算器と、この乗算器の出力のうち高域周波
数成分を除去するハイカットフィルタと、このハイカッ
トフィルタの出力に逆数回路の出力を乗算する第3の乗
算器と、この乗算器で得られた拡散干渉信号のスペクト
ルを第1の乗算器出力中の拡散干渉信号のスペクトルに
略等しくなるよう補正するイコライザ回路と、このイコ
ライザ回路の出力と第1の乗算器出力との減算を行なう
減算器と、この減算器出力のうち復調情報信号以上の高
域周波数成分を除去する低域濾波器とを備えて構成する
ことにより上記課題を解決し、復調ロスを大幅に低減し
た。
A spread spectrum demodulator according to the present invention includes an input filter for removing a high frequency interference signal component in a main code band or more of a spread code from an input signal,
A spreading code generating circuit for generating a spreading code equivalent to the spreading code on the modulator side, a correction filter having a transfer function substantially equal to that of an input filter, and a spreading code signal transmitted from the spreading code generating circuit to the correction filter. A reciprocal circuit for taking the reciprocal of the corrected spread code, the first multiplier for despreading by multiplying the output signal of the reciprocal circuit by the output signal of the input filter, and the output signal of the multiplier. A low-cut filter for removing the demodulation information signal component,
A second multiplier that multiplies the output of the low-cut filter by the spread code to be corrected, a high-cut filter that removes high-frequency components from the output of the multiplier, and the output of the high-cut filter by the output of the reciprocal circuit. A third multiplier that performs the correction, an equalizer circuit that corrects the spectrum of the spread interference signal obtained by the multiplier to be substantially equal to the spectrum of the spread interference signal in the output of the first multiplier, and the output of the equalizer circuit. And a first multiplier output, and a subtracter for subtracting the output of the first multiplier and a low-pass filter for removing high-frequency components above the demodulation information signal in the subtractor output. However, the demodulation loss has been greatly reduced.

【0012】[0012]

【実施例】本発明のスペクトル拡散復調装置(以下「S
S復調装置」とも記載する)の一実施例について、図面
と共に説明する。図1は本発明のSS復調装置1のブロ
ック図であり、この図において図3に示した従来装置
(の復調部20)と同一構成部分には同一符号を付して
その詳細な説明を省略する。図中、3〜5は乗算器、1
2及び13は伝達関数HL (s) の夫々入力フィルタ及び
補正用フィルタ、14は逆数回路、15はLCF(ロー
カットフィルタ,高域濾波器)、16はHCF(ハイカ
ットフィルタ,低域濾波器)、18はイコライザ回路で
ある。なお、イコライザ回路18の特性は、例えば本出
願人の先願である特願平2-253689号に開示されたものと
同等な特性で良い。
BEST MODE FOR CARRYING OUT THE INVENTION The spread spectrum demodulation device of the present invention (hereinafter referred to as "S
(Also referred to as “S demodulator”) will be described with reference to the drawings. FIG. 1 is a block diagram of an SS demodulation device 1 of the present invention. In this figure, the same components as those of (the demodulation unit 20 of) the conventional device shown in FIG. To do. In the figure, 3 to 5 are multipliers, 1
2 and 13 are input filters and correction filters of the transfer function H L (s), 14 is an inverse circuit, 15 is LCF (low cut filter, high-pass filter), 16 is HCF (high-cut filter, low-pass filter) , 18 are equalizer circuits. The characteristics of the equalizer circuit 18 may be equivalent to those disclosed in Japanese Patent Application No. 2-253689, which is a prior application of the present applicant.

【0013】次に、SS復調装置1の機能,動作につい
て、図2の信号波形図(周波数スペクトル)を併せ参照
しながら説明する。SS復調装置1の入力端子In3 に入
来する信号の中には、SS変調信号d(t)*P(t) の他
に、干渉信号I1(t),I2(t)や雑音等が混入するのが一
般的である。I1(t),I2(t)は図2(A) に示すように、
夫々周波数の低い干渉信号と高い干渉信号とを代表させ
ている。かかる入力信号d(t)*P(t) +I1(t)+I2(t)
は、まず初段のフィルタ12にて周波数 1/T以上の不
要な周波数成分{拡散信号のメインローブ以外の周波数
成分}を除去される。これにより干渉信号I2(t)も完全
に除去されるが、SS変調信号d(t)*P(t)も高域周波
数成分が低下してしまうので、逆拡散用の乗算器3に供
給される信号は、d(t){P(t) −P'(t)}+I1(t)とな
る{図2(B) 参照}。
Next, the function and operation of the SS demodulator 1 will be described with reference to the signal waveform diagram (frequency spectrum) of FIG. In addition to the SS modulation signal d (t) * P (t), interference signals I1 (t), I2 (t), noise, etc. are included in the signal coming into the input terminal In 3 of the SS demodulator 1. It is generally mixed. I1 (t) and I2 (t) are, as shown in FIG. 2 (A),
The interference signal having a low frequency and the interference signal having a high frequency are represented respectively. Such input signal d (t) * P (t) + I1 (t) + I2 (t)
First, unnecessary frequency components having a frequency of 1 / T or more (frequency components other than the main lobe of the spread signal) are removed by the first-stage filter 12. As a result, the interference signal I2 (t) is completely removed, but the high frequency component of the SS modulation signal d (t) * P (t) is also reduced, so that it is supplied to the multiplier 3 for despreading. The resulting signal is d (t) {P (t) -P '(t)} + I1 (t) {see FIG. 2 (B)}.

【0014】一方、入力端子In4 からのクロック信号C
(t) を基にPNG9で生成された拡散符号P(t) は、補
正用フィルタ13に供給される。補正用フィルタ13は
フィルタ12と伝達関数が略等しいので、その出力(被
補正拡散符号)は P(t) −P'(t)となる。かかる被補
正拡散符号は逆数回路14と乗算器4に供給され、逆数
回路14からは 1/{P(t) −P'(t)}なる逆数信号が
出力され、乗算器3及び5に供給される。従って、逆拡
散用の乗算器3からは、復調データd(t) の他に、拡散
干渉信号成分I1(t)/{P(t) −P'(t)}が混入して出
力される{図2(C) 参照}。かかる逆拡散出力は、次段
のLCF15にて復調データd(t) を除去されて{除去
成分をα(t) とする}I1(t)/{P(t) −P'(t)}−α
(t) となり{図2(D) 参照}、乗算器4にて上記被補正
拡散符号を乗算されて、I1(t)−α(t){P(t) −P'
(t)}となり、次段のHCF16に供給される。
On the other hand, the clock signal C from the input terminal In 4
The spread code P (t) generated by the PNG 9 based on (t) is supplied to the correction filter 13. Since the correction filter 13 has substantially the same transfer function as the filter 12, its output (corrected spread code) is P (t) -P '(t). The corrected spread code is supplied to the reciprocal circuit 14 and the multiplier 4. The reciprocal circuit 14 outputs a reciprocal signal of 1 / {P (t) -P '(t)} and supplies it to the multipliers 3 and 5. To be done. Therefore, from the despreading multiplier 3, the spread interference signal component I1 (t) / {P (t) -P '(t)} is mixed and output in addition to the demodulated data d (t). {Refer to FIG. 2 (C)}. In the despread output, the demodulated data d (t) is removed by the LCF 15 in the next stage, {the removal component is α (t)} I1 (t) / {P (t) -P '(t)}. -Α
(t) and {see FIG. 2 (D)}, and the multiplier 4 multiplies the corrected spread code to obtain I1 (t) -α (t) {P (t) -P '.
(t)} and is supplied to the HCF 16 in the next stage.

【0015】即ち、乗算器4により干渉信号成分I1(t)
が復元されるわけであるが、正確には完全な復元ではな
く、LCF15で除去された分だけ僅かにレベルが下る
ので、図2(E) ではI1'と記入している。また、同様な
理由から、図2(D) でもi1Pと記入しているが、説明
の便宜上、ここでは“I1(t)”のままで説明する。HC
F16は図2(F) から察せられるように、SS周波数帯
域のメインローブの高域成分を遮断するフィルタであ
り、これにより、干渉信号成分I1(t)はそのまま伝送さ
せ、拡散成分であるα(t){P(t) −P'(t)}は帯域制限
させている{除去成分をβ(t) とする}。これにより、
HCF16の出力はI1(t)+α(t){P(t)−P'(t)}−
β(t) となり、乗算器5に供給されて、ここで上記逆数
回路14からの逆数出力との乗算が行なわれ、その出力
として、I1(t)/{P(t) −P'(t)}−α(t) +β(t)
/{P(t) −P'(t)}なる信号が得られ、次段のイコラ
イザ回路18に供給される。
That is, the multiplier 4 causes the interference signal component I1 (t)
However, it is not a complete restoration to be exact, and the level is slightly reduced by the amount removed by the LCF 15, so I 1 ′ is written in FIG. 2 (E). Further, for the same reason, i 1 P is also written in FIG. 2D, but for convenience of description, the description will be given here as “I 1 (t)”. HC
As can be seen from FIG. 2 (F), F16 is a filter that cuts off the high frequency component of the main lobe of the SS frequency band, which allows the interference signal component I1 (t) to be transmitted as it is and is a spread component α. (t) {P (t) -P '(t)} is band-limited {the removal component is β (t)}. This allows
The output of the HCF 16 is I1 (t) + α (t) {P (t) -P '(t)}-
.beta. (t), which is supplied to the multiplier 5 where it is multiplied by the reciprocal output from the reciprocal circuit 14, and the output is I1 (t) / {P (t) -P '(t )}-Α (t) + β (t)
A signal of / {P (t) -P '(t)} is obtained and supplied to the equalizer circuit 18 in the next stage.

【0016】イコライザ回路18は、上記乗算器5の出
力信号のうち、不要な成分−α(t)(データ周波数帯域
中の拡散干渉信号成分)及びβ(t) /{P(t) −P'
(t)}{α(t) と逆相関係にある拡散干渉信号成分}
を、0又は支障をきたさない低レベルにまで下げる作用
をする。従って、図2(G) の周波数スペクトルは、イコ
ライザ回路18により、図2(H) に示すように低域成分
が補正されたものとなる。即ち、LCF15からイコラ
イザ回路18までの信号処理により、抑圧用拡散干渉信
号I1(t)/{P(t) −P'(t)}+γ(t) が生成されるわ
けであり、これを次段の減算器17に供給して、前記逆
拡散出力d(t) +I1(t)/{P(t) −P'(t)}と引算す
ることにより拡散干渉波成分は打消されて、d(t) −γ
(t) が得られる。このうち残留成分γ(t) は次段のLP
F11でほぼ除去されて、殆ど復調情報データd(t) の
みが出力端子Out2より出力されるわけである。
The equalizer circuit 18 includes unnecessary components -α (t) (spreading interference signal components in the data frequency band) and β (t) / {P (t) -P in the output signal of the multiplier 5. '
(t)} {Spreading interference signal component that is in antiphase with α (t)}
Is reduced to 0 or a low level without causing any trouble. Therefore, the frequency spectrum of FIG. 2 (G) has the low-frequency component corrected by the equalizer circuit 18 as shown in FIG. 2 (H). That is, the signal processing from the LCF 15 to the equalizer circuit 18 generates the suppressing spread interference signal I1 (t) / {P (t) -P '(t)} + γ (t), which is By supplying the despreading output d (t) + I1 (t) / {P (t) -P '(t)} to the subtractor 17 of the stage, the diffuse interference component is canceled, d (t) −γ
(t) is obtained. Of these, the residual component γ (t) is the LP of the next stage.
Almost all of the demodulation information data d (t) is almost removed at F11 and is output from the output terminal Out2.

【0017】[0017]

【発明の効果】叙上の如く、本発明のスペクトル拡散復
調装置によれば、SS信号周波数帯域に遮断周波数を有
するフィルタ(入力フィルタ)が使用されていても、全
く問題なく干渉信号の影響を回避することができ、逆拡
散出力中の拡散干渉信号や拡散雑音等を効率良く抑制又
は除去することができる。干渉信号としては、本発明装
置で使用するSS変調信号と同期関係の無い他のSS変
調信号も含まれ、同様の低減効果が得られる。従って、
SS通信装置の復調用として幅広い応用が可能となり、
例えば車載用無線電話機やコードレステレホン等の普
及,発展にも寄与し得るという優れた特長を有する。
As described above, according to the spread spectrum demodulation device of the present invention, even if a filter (input filter) having a cutoff frequency in the SS signal frequency band is used, the influence of the interference signal can be obtained without any problem. This can be avoided, and the spread interference signal, spread noise, etc. in the despread output can be efficiently suppressed or removed. The interference signal includes other SS modulation signals that are not synchronized with the SS modulation signal used in the device of the present invention, and the same reduction effect can be obtained. Therefore,
Widely applicable for demodulation of SS communication device,
For example, it has an excellent feature that it can contribute to the spread and development of in-vehicle wireless telephones and cordless telephones.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のスペクトル拡散復調装置の一実施例の
ブロック図である。
FIG. 1 is a block diagram of an embodiment of a spread spectrum demodulation device of the present invention.

【図2】本発明のSS復調装置の動作説明用信号スペク
トル図である。
FIG. 2 is a signal spectrum diagram for explaining the operation of the SS demodulation device of the present invention.

【図3】従来のSS変調復調装置の基本的な構成を示す
ブロック図である。
FIG. 3 is a block diagram showing a basic configuration of a conventional SS modulation / demodulation device.

【符号の説明】[Explanation of symbols]

1 SS(スペクトル拡散)復調装置 2〜5 乗算器 8,9 拡散符号発生回路(PNG) 11 LPF(低域濾波器) 12 入力フィルタ 13 補正用フィルタ 14 逆数回路 15 LCF(ローカットフィルタ) 16 HCF(ハイカットフィルタ) 17 減算器 18 イコライザ回路。 DESCRIPTION OF SYMBOLS 1 SS (spread spectrum) demodulator 2-5 Multiplier 8,9 Spreading code generation circuit (PNG) 11 LPF (low-pass filter) 12 Input filter 13 Correction filter 14 Reciprocal circuit 15 LCF (low-cut filter) 16 HCF ( High cut filter) 17 Subtractor 18 Equalizer circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】情報信号をスペクトル拡散変調装置におけ
る拡散符号で拡散変調して得られたスペクトル拡散信号
と、伝送系にて混入する種々の干渉信号とを入力し、乗
算による逆拡散を行なって情報信号を復調するスペクト
ル拡散復調装置において、 該入力信号のうち拡散符号のメインローブ帯域以上の高
域干渉信号成分を除去する入力フィルタと、上記変調装
置側の拡散符号と等価な拡散符号を生成する拡散符号発
生回路と、上記入力フィルタと伝達関数の略等しい補正
用フィルタと、上記拡散符号発生回路からの拡散符号信
号を該補正用フィルタを伝送させることにより得られる
被補正拡散符号の逆数をとる逆数回路と、該逆数回路の
出力を上記入力フィルタの出力信号に乗算することによ
り逆拡散を行なう第1の乗算器と、該乗算器の出力信号
のうち復調情報信号成分を除去するローカットフィルタ
と、該ローカットフィルタの出力に上記被補正拡散符号
を乗算する第2の乗算器と、該第2の乗算器の出力のう
ち高域周波数成分を除去するハイカットフィルタと、該
ハイカットフィルタの出力に上記逆数回路の出力を乗算
する第3の乗算器と、該第3の乗算器で得られた拡散干
渉信号のスペクトルを上記第1の乗算器出力中の拡散干
渉信号のスペクトルに略等しくなるよう補正するイコラ
イザ回路と、該イコライザ回路の出力と上記第1の乗算
器出力との減算を行なう減算器と、該減算器出力のうち
上記復調情報信号以上の高域周波数成分を除去する低域
濾波器とを備えて、上記種々の干渉信号成分が略完全に
除去された復調情報信号を出力するよう構成したことを
特徴とするスペクトル拡散復調装置。
1. A spread spectrum signal obtained by spreading and modulating an information signal with a spread code in a spread spectrum modulator and various interference signals mixed in a transmission system are input, and despreading is performed by multiplication. In a spread spectrum demodulation device for demodulating an information signal, an input filter for removing a high-band interference signal component in the input signal above a main lobe band of the spread code and a spread code equivalent to the spread code on the modulator side are generated. A spreading code generating circuit, a correction filter having a transfer function substantially equal to that of the input filter, and a reciprocal number of the spread code to be corrected obtained by transmitting the spreading code signal from the spreading code generating circuit to the correction filter. A reciprocal circuit, a first multiplier for performing despreading by multiplying an output signal of the input filter by an output of the reciprocal circuit, and a multiplier of the multiplier. A low-cut filter that removes a demodulation information signal component of the output signal, a second multiplier that multiplies the output of the low-cut filter by the corrected spread code, and a high-frequency component of the output of the second multiplier. , A third multiplier for multiplying the output of the high cut filter by the output of the reciprocal circuit, and the spectrum of the spread interference signal obtained by the third multiplier for the first multiplier. An equalizer circuit that corrects the spread interference signal so that it has a spectrum substantially equal to that of the spread interference signal, a subtractor that subtracts the output of the equalizer circuit from the output of the first multiplier, and the demodulation information of the subtractor output. A low-pass filter that removes high-frequency components above the signal, and is configured to output a demodulated information signal from which the various interference signal components are substantially completely removed. Spread spectrum demodulation apparatus.
JP3086096A 1990-12-28 1991-03-26 Spread spectrum demodulator Expired - Lifetime JP2523410B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3086096A JP2523410B2 (en) 1991-03-26 1991-03-26 Spread spectrum demodulator
US07/813,735 US5239556A (en) 1990-12-28 1991-12-27 Demodulation system for spread spectrum communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3086096A JP2523410B2 (en) 1991-03-26 1991-03-26 Spread spectrum demodulator

Publications (2)

Publication Number Publication Date
JPH05284139A JPH05284139A (en) 1993-10-29
JP2523410B2 true JP2523410B2 (en) 1996-08-07

Family

ID=13877180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3086096A Expired - Lifetime JP2523410B2 (en) 1990-12-28 1991-03-26 Spread spectrum demodulator

Country Status (1)

Country Link
JP (1) JP2523410B2 (en)

Also Published As

Publication number Publication date
JPH05284139A (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JP4286802B2 (en) Elimination of pilot and unwanted traffic signals in CDMA systems
JP2998204B2 (en) Method and apparatus for canceling spread spectrum noise
KR100592631B1 (en) Receiving spread spectrum signals with narrowband interference
JP3434141B2 (en) Synchronous dual channel QPSK modulation / demodulation device and method for CDMA system
US5170411A (en) Modulation and demodulation system for spread spectrum transmission
JP4579831B2 (en) Modulation device, demodulation device, modulation method and demodulation method
JP2523410B2 (en) Spread spectrum demodulator
JP2600518B2 (en) Parallel spread spectrum modulation demodulator
KR100423724B1 (en) Apparatus and method for processing data using CQPSK of wireless communication system
JP2001156679A (en) Cdma modulation method and its system
JPH04828A (en) Spread spectrum modulating/demodulating system
JP3686839B2 (en) Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method
Waraya et al. Proposal of a Quadrature SSB modulation Scheme for Wireless Communication Systems
JP2004201267A (en) Digital filter, its factor calculation apparatus and factor calculation method
JPH04365237A (en) Spread spectrum demodulator
JPH03145832A (en) Spread spectrum modulator/demodulator
JPH03143041A (en) Spread spectrum modulator-demodulator
JPH03166833A (en) Spread spectrum modulation and demodulation system
JPH03143042A (en) Spread spectrum modulator-demodulator
KR0171032B1 (en) Single sideband bpsk modulating/demodulating method and the apparatus thereof
JPH03171843A (en) Spread spectrum modulation/demodulation system
JP2679576B2 (en) Spread spectrum demodulator
JP2514113B2 (en) Spread spectrum demodulator
JPH03151736A (en) Spread spectrum modulation and demodulation system
JP2000101547A (en) Receiver for spread spectrum communication wave

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040302

Free format text: JAPANESE INTERMEDIATE CODE: A02