[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2521778B2 - Method for manufacturing infiltration-bonded sintered machine parts - Google Patents

Method for manufacturing infiltration-bonded sintered machine parts

Info

Publication number
JP2521778B2
JP2521778B2 JP62295891A JP29589187A JP2521778B2 JP 2521778 B2 JP2521778 B2 JP 2521778B2 JP 62295891 A JP62295891 A JP 62295891A JP 29589187 A JP29589187 A JP 29589187A JP 2521778 B2 JP2521778 B2 JP 2521778B2
Authority
JP
Japan
Prior art keywords
infiltration
shaft member
combination
members
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62295891A
Other languages
Japanese (ja)
Other versions
JPH01136906A (en
Inventor
剛 小林
一夫 浅香
忠 高木
直弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP62295891A priority Critical patent/JP2521778B2/en
Publication of JPH01136906A publication Critical patent/JPH01136906A/en
Application granted granted Critical
Publication of JP2521778B2 publication Critical patent/JP2521778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は、複数個の圧粉体を組合せ焼結および銅溶
浸により接合して1個の焼結部品を作る、いわゆる焼結
溶浸接合法の改良に関するものであり、特に耐圧性の必
要な油圧および空圧部品に好適なものである。
The present invention relates to an improvement of a so-called sinter infiltration joining method in which a plurality of green compacts are combined and joined by sintering and copper infiltration to make one sintered part. In particular, it is suitable for hydraulic and pneumatic components that require pressure resistance.

押型で成形できない複雑な形状をした鉄系焼結部品
は、単純形状の部材に分けて成形し、それぞれの圧粉体
またはその焼結体を組合せ、各部材ごとの焼結寸法変化
の差を応用したり、ろう付けまたは銅溶浸により接合し
て作られている。
For iron-based sintered parts that have complicated shapes that cannot be formed by pressing, divide them into simple-shaped members and combine them, and combine each green compact or its sintered body to determine the difference in sintering dimensional change for each member. It is applied and made by brazing or copper infiltration.

このうち、銅溶浸による接合は、接合部材の空孔を封
じて気密性を生じ、材料強度および耐摩耗性がよいとい
う特徴を持ち、特に耐圧性が要求される油圧部品に適用
されている。
Of these, joining by copper infiltration has the characteristics that it seals the pores of the joining member to create airtightness, has good material strength and wear resistance, and is particularly applied to hydraulic parts that require pressure resistance. .

また溶浸材は銅を主成分とし、溶浸中に鉄系基材を浸
蝕しないようにCoやFe、Mn等を含んだ材料が用いられて
いる。
Further, the infiltrant is mainly composed of copper, and a material containing Co, Fe, Mn or the like is used so as not to corrode the iron-based base material during the infiltration.

ところで、2個の分割部材を径方向で嵌合して接合す
る場合は、溶浸後の接合部の部材間隔が出来るだけ小さ
く、溶浸材が隙間を満たすように、望ましくは溶浸され
た後の部材間隔が0.02mm以下になるようにすると溶浸銅
が接合部を満たして気密性が良好になる。また、部材間
隔が大きいと溶浸銅の吸い込みが悪くなり、気密性が確
保できないことがある。
By the way, when two split members are fitted and joined in the radial direction, the member spacing of the joint after infiltration is as small as possible, and the infiltrant is preferably infiltrated so as to fill the gap. If the distance between the members is 0.02 mm or less, the infiltrated copper fills the joint and the airtightness is improved. In addition, if the distance between the members is large, the infiltration of the infiltrated copper becomes poor, and the airtightness may not be secured.

また、部材の孔寸法と軸寸法は経験に基づいて設定す
るが、押型で形成できるため量産は容易である。
Further, the hole size and the shaft size of the member are set based on experience, but since they can be formed by a pressing die, mass production is easy.

さらに、2個の分割部材を端面で接合する場合は、圧
粉体の面が粗く平坦度も余りよくないので、部材間隔は
大きくなりやすいが、上方部材の自重でまたは別に重り
を載せることにより接合できる。
Furthermore, when joining two split members at the end faces, the surface of the green compact is not good and the flatness is not so good, so the member spacing tends to be large, but by mounting the weight by the upper member's own weight or separately. Can be joined.

これら溶浸接合は、部材を圧粉体とし、焼結と溶浸を
一連に行なう方法が経済的に有利であり、主流になって
いる。
For these infiltration joining methods, a method of performing sintering and infiltration in series using a member as a green compact is economically advantageous and has become the mainstream.

しかし、軸部を受け持つ圧粉体と、段付きの孔部を有
する圧粉体の組合せのように、径方向と端面方向を同時
に接合する場合、一方だけの接合に比べて困難である。
それは、径方向の間隔を少なくさせようとすると、加熱
中に軸と孔面が接して冶金的な拡散結合が起こり、端面
間の隙間が充分小さくなる前に拘束されてしまう。その
結果、端面接合部の気密性が得られない。そのため、こ
の端面部隙間を溶浸銅で埋めようとして溶浸銅の量を増
やすと、必ずしも隙間内にとどまらず、部材の表面にま
で溢れ出してしまい不良品になる。
However, in the case of simultaneously joining the radial direction and the end face direction, such as a combination of the green compact that bears the shaft portion and the green compact having the stepped hole portion, it is more difficult than joining only one.
If an attempt is made to reduce the radial distance, the shaft and the hole surface will come into contact with each other during heating to cause metallurgical diffusion bonding, and the gap will be restricted before the gap between the end faces becomes sufficiently small. As a result, the airtightness of the end face joint cannot be obtained. Therefore, if the amount of infiltrated copper is increased in an attempt to fill this end face gap with infiltrated copper, it will not necessarily stay within the gap but will overflow to the surface of the member, resulting in a defective product.

一方、軸部材を細めに設定して前述した拘束を避けよ
うとすると、端面間は接合するが、径方向の接合が不十
分になってしまう。また、両部材を組合せた後、搬送し
て溶浸材が溶けるまでの間に軸部材が動いてしまい、組
合せ位置精度を要求される部品には適用できない。
On the other hand, if the shaft member is thinly set and the above-mentioned constraint is avoided, the end faces are joined, but the joining in the radial direction becomes insufficient. In addition, after the two members are combined, the shaft member moves during transportation and before the infiltrant is melted, which cannot be applied to a part that requires a combination position accuracy.

この発明は、径方向も端面方向も気密性のある複合組
合せ部品を安定して量産することを目的としてなされた
もので、多くの試験研究の結果、溶浸銅の融点以下の温
度範囲における軸部材と孔部材の熱膨張率差と、溶浸ま
たは冷却過程の熱膨張差とを分けて考え、昇温中は径方
向に隙間を生じ、冷却過程では隙間が小さくなる軸部材
と孔部材の組合せにより解決することができた。
The present invention was made for the purpose of stably mass-producing composite combination parts that are airtight in both the radial direction and the end face direction. Considering the difference in the coefficient of thermal expansion between the member and the hole member and the difference in the coefficient of thermal expansion during the infiltration or cooling process separately, a gap is created in the radial direction during the temperature rise, and becomes smaller during the cooling process. It could be solved by combination.

すなわち、この製造方法は鉄系の軸部を有する圧粉体
と段付きの孔部を有する圧粉体をそれぞれ成形し、段付
きの孔部材に軸部材を嵌め合せる場合、溶浸材を添えて
焼結および銅溶浸する過程においては、溶浸材の融点以
下の加熱中における接合径の寸法変化は相対的に孔部材
が0.04%以上膨張して接合部に隙間を生じること、か
つ、溶浸後からの冷却過程で孔部材が軸部材より0.05%
の膨脹状態より相対的に収縮する関係を持つ、両部材の
組成が異なる組合せを特徴とするものである。
That is, in this manufacturing method, a powder compact having an iron-based shaft portion and a powder compact having a stepped hole portion are respectively molded, and when the shaft member is fitted into the stepped hole member, an infiltration material is added. In the process of sintering and copper infiltration, the dimensional change of the joint diameter during heating below the melting point of the infiltrant causes the pore member to expand by 0.04% or more to form a gap in the joint, and The hole member is 0.05% more than the shaft member in the cooling process after infiltration
It is characterized by a combination in which the compositions of both members have a relationship of contracting relative to the expanded state of.

また、この発明の実施態様として、孔部材圧粉体の炭
素量を軸部材よりも重量比で0.02%以上多くするとか、
Fe−C系とFe−C−P系、Fe−C系とFe−C−Ni系の組
合せ等が考えられる。
Further, as an embodiment of the present invention, the carbon content of the hole member green compact is increased by 0.02% or more in weight ratio than the shaft member,
A combination of Fe-C system and Fe-C-P system, Fe-C system and Fe-C-Ni system, and the like are considered.

第1図はこの発明の基本的な作用を説明する加熱およ
び冷却過程における部材の熱膨張率を模式的に示した概
念図であり、この図は軸部材2と孔部材1とを組合せ、
所要量溶浸銅3を添えて焼結炉中で加熱し、焼結および
銅溶浸した後、常温まで冷却する過程の両部材の膨張率
を比較したものである。
FIG. 1 is a conceptual diagram schematically showing the coefficient of thermal expansion of a member in a heating and cooling process for explaining the basic operation of the present invention. This figure shows a combination of a shaft member 2 and a hole member 1.
This is a comparison of the expansion coefficients of both members in the process of heating in a sintering furnace together with a required amount of infiltrated copper 3, sintering and infiltrating copper, and then cooling to room temperature.

図中のように圧粉体を組合せるとき、両部材1,2の
組合せ位相を合せて締まり嵌め、または中間嵌めで嵌合
する。軸寸法は孔寸法よりもプラス0.02mm〜マイナス0.
01mmに設定する。これより太いと嵌合の際に孔付き部材
が割れることがあり、細いと緩すぎて移動中に組合せ位
相がずれてしまうおそれがある。組合せ圧粉体に溶浸銅
3を添えて加熱すると、軸部材2の方が熱膨張が小さ
く、のように径方向に隙間を生じ、軸部材2は自重で
落下し孔部材1の段部に接触する。
When the green compacts are combined as shown in the figure, the phases of the combination of both members 1 and 2 are matched with each other, and they are fitted by interference fitting or intermediate fitting. The shaft dimension is plus 0.02 mm to minus 0 than the hole dimension.
Set to 01 mm. If it is thicker than this, the holed member may break during fitting, and if it is thin, it may be too loose and the combination phase may shift during movement. When the infiltrated copper 3 is added to the combination green compact and heated, the shaft member 2 has a smaller thermal expansion, and a gap is formed in the radial direction like the shaft member 2, and the shaft member 2 falls by its own weight and falls in the step portion of the hole member 1. To contact.

次いでのように溶浸銅が溶融すると、通常の溶浸が
行なわれるとともに、少なくとも端面接合部は銅で満た
された状態になる。そして、溶浸が終わる頃、および冷
却過程になると、溶浸中の寸法よりも小さくなる傾向に
なり、両部材1,2の相対的な膨張率は軸部材2が大きく
なる。この結果、のように径方向の隙間が小さくな
り、両部材1,2の組合せ条件によっては孔付き部材を押
し広げる結果となり、接触面は拡散接合される。
When the infiltrated copper is melted as described below, normal infiltration is performed, and at least the end face joint portion is filled with copper. At the end of infiltration and in the cooling process, the dimension tends to be smaller than the dimension during infiltration, and the relative expansion coefficient of both members 1 and 2 becomes larger in the shaft member 2. As a result, the radial gap becomes small as described above, and depending on the combination condition of both members 1 and 2, the member with holes is expanded, and the contact surfaces are diffusion-bonded.

このように両部材1,2の組合せは組成によって行なわ
れる。例えば孔付き部材が炭素を含む鉄系材料の場合は
軸部材はそれより0.2%以上炭素量を少なくする。
In this way, the combination of both members 1 and 2 is performed depending on the composition. For example, when the perforated member is an iron-based material containing carbon, the shaft member has a carbon content lower than that of 0.2% or more.

実施例 以下本発明の実施例について詳細に説明する。Examples Examples of the present invention will be described in detail below.

実施例1 第1表は、各種組成に調整した鉄系圧粉体を焼結およ
び銅溶浸する過程の熱膨張率を測定した結果を示してい
る。各組成の混合粉を密度6.8g/cm3に成形し、溶浸銅は
2.5%Coを含有する銅合金粉末の圧粉体を載せて還元性
雰囲気中で加熱し、昇温途中1000℃と、1130℃で保持し
た時、および冷却中800℃のときの成形体寸法を基準に
した線膨張率を測定した。
Example 1 Table 1 shows the results of measuring the coefficient of thermal expansion in the process of sintering and copper infiltration of iron-based green compacts adjusted to various compositions. Molded mixed powder of each composition to a density of 6.8 g / cm 3 ,
Place a compact of copper alloy powder containing 2.5% Co on it and heat it in a reducing atmosphere. Hold the molded body size at 1000 ° C and 1130 ° C during heating, and at 800 ° C during cooling, measure the compact size. The coefficient of linear expansion based on the standard was measured.

例えば、試料番号1と試料番号3を比較すると、後者
は昇温時には膨張率が大きく、溶浸後および冷却中は膨
張率が小さい値を示しており、この材料組合せの場合は
軸部材に試料番号1を採用すれば所望する結果が得られ
ると推定される。
For example, comparing sample No. 1 and sample No. 3, the latter shows a large expansion coefficient at the time of temperature rise, and a small expansion coefficient after infiltration and during cooling. It is estimated that the desired result can be obtained by adopting the number 1.

実施例2 実施例1で用いた各種組成の混合粉を用い、第2図に
示す形状の部品に適用した。軸部材2は外径40mmの円筒
状でA−A方向に切込みが付いている。段付きの孔部材
1は全体が円筒状でB−B方向にスリットを備えてい
る。A−A方向は端面だけの接合、B−B方向は径方向
だけの接合、その他は両方の接合になる。両部材とも成
形密度は6.8g/cm3であり、軸部材の外径寸法と孔部材の
内径寸法は同じに設定した。
Example 2 The mixed powders of various compositions used in Example 1 were used and applied to parts having the shape shown in FIG. The shaft member 2 has a cylindrical shape with an outer diameter of 40 mm and has a notch in the AA direction. The stepped hole member 1 is entirely cylindrical and has a slit in the BB direction. In the AA direction, only the end faces are joined, in the BB direction, only the radial direction is joined, and in the other, both are joined. The molding density of both members was 6.8 g / cm 3 , and the outer diameter dimension of the shaft member and the inner diameter dimension of the hole member were set to be the same.

各組成の両部材圧粉体を準備し、各組成の全部の組合
せ都合324種類を、ハンドプレスで丁寧に嵌合した。
Both member green compacts of each composition were prepared, and 324 kinds of all combinations of each composition were carefully fitted with a hand press.

溶浸銅は実施例1と同じCu−Co材料で、溶浸率が90%
になるよう重量を調整した。ここで溶浸率は[溶浸後の
計算密度−圧粉体密度]÷[圧粉体計算空孔率×1/100
×溶浸銅比重]×100である。
The infiltrated copper is the same Cu-Co material as in Example 1, and the infiltration rate is 90%.
The weight was adjusted so that Here, the infiltration rate is [calculated density after infiltration-compacted powder density] / [compacted powder calculated porosity x 1/100]
X Specific gravity of infiltrated copper] x 100.

組合せた試料は軸部材2を上側にして、その上に溶浸
銅をのせ、温度1130℃、分解アンモニアガス中で焼結お
よび溶浸した。
The combined sample was placed with the shaft member 2 on the upper side, infiltrated copper placed thereon, and sintered and infiltrated in a decomposed ammonia gas at a temperature of 1130 ° C.

そして、溶浸した各試料について気密試験を行なっ
た。その結果を第2表に示す。○印は漏れがないもの、
*は漏れがあったものを表わしている。
An airtight test was performed on each infiltrated sample. Table 2 shows the results. ○ indicates no leakage,
* Indicates that there was a leak.

なお、試験方法は第2図の断面図のように、下端面と
上部の内孔を塞ぎ、内孔空間に圧力7kg/cm2の圧縮空気
を導入し、試料を水中に沈めた。
In the test method, as shown in the sectional view of FIG. 2, the lower end surface and the inner hole at the upper portion were closed, compressed air having a pressure of 7 kg / cm 2 was introduced into the inner hole space, and the sample was immersed in water.

第2表において、漏れを生じた試料は、第1表の熱膨
張率と照合すると、昇温中に軸部材2は孔部材1より膨
張するか、溶浸後に軸部材の膨張量が少なすぎるかの材
料組合せであることがわかる。
In Table 2, the leaked sample is compared with the coefficient of thermal expansion in Table 1 so that the shaft member 2 expands more than the hole member 1 during the temperature rise, or the expansion amount of the shaft member is too small after infiltration. It can be seen that this is a material combination.

漏れのない組合せのうち、傾向が明確な例は組成番号
1〜6の組合せである。軸部材より孔部材の炭素量が0.
2%以上多い関係がある。このような炭素量の関係は組
成番号7〜10,11〜14,15〜18でも同様な傾向を示してい
る。
Among the leak-free combinations, the examples in which the tendency is clear are the compositions having composition numbers 1 to 6. The carbon content of the hole member is less than that of the shaft member.
There is a relationship of more than 2%. Such a relationship of carbon amount also shows the same tendency in the composition numbers 7 to 10, 11 to 14, and 15 to 18.

これは、従来の焼結接合方法で行なわれている軸部材
の方の炭素量を多くするという考え方と全く反対であ
る。
This is completely opposite to the concept of increasing the carbon content of the shaft member, which is used in the conventional sintering joining method.

リンを含む材料の組合せにおいて、リン量の傾向は明
確に現われていないが、炭素含有量が同じ組合せのと
き、軸部材のリン量が多いと良い結果を示している。
In the combination of materials containing phosphorus, the tendency of the amount of phosphorus is not clearly shown, but when the combination of carbon contents is the same, good results are shown when the amount of phosphorus in the shaft member is large.

ニッケルを含む材料の組合せは、炭素の作用が出てい
て、ニッケルの傾向は明確でない。
In the combination of materials containing nickel, the action of carbon is exerted, and the tendency of nickel is not clear.

また、異なる成分中の組合せであっても所定の要件を
満たしていれば、良好な接合が得られることがわかる。
Further, it is found that good bonding can be obtained even if the combination of different components satisfies the predetermined requirements.

以上、第1表および第2表より、良好な接合が得られ
た条件は次の通りである。
As described above, from Tables 1 and 2, the conditions under which good bonding was obtained are as follows.

まず、昇温中の熱膨張率は軸部材2より孔部材1が0.
04〜0.66%大きい組合せである。隙間が大きければ端部
の接触がよくなる傾向にあるから、0.04%以上大きい組
合せであればよい。
First, the coefficient of thermal expansion during the temperature rise was 0.
It is a combination that is 04 to 0.66% larger. If the gap is large, the contact of the ends tends to be good, so a combination of 0.04% or more is sufficient.

次に、溶浸後の冷却過程の熱膨張率は、軸部材2より
孔部材1が0.05%大きい組合せないし軸部材の方が1.36
%大きい組合せの範囲内である。孔部部材の方が0.05%
大きいことは、本試料の場合には部材間隔が0.02mmある
ことになる。また軸部材の方が大きいことは、隙間がほ
とんど無くよい接合が得られる反面、孔部材を外側に押
し広げていることになり、薄肉の部材を用いなければな
らない形状の場合は、膨張率の差が小さい組成組合せに
した方がよい。
Next, regarding the coefficient of thermal expansion in the cooling process after infiltration, the combination in which the hole member 1 is 0.05% larger than the shaft member 2 or the shaft member is 1.36.
% Within the range of large combinations. 0.05% for hole members
A large value means that the member interval is 0.02 mm in the case of this sample. In addition, the fact that the shaft member is larger means that there is almost no gap and good joining can be obtained, but on the other hand, the hole member is pushed outward, and in the case where a thin member must be used, the expansion coefficient It is better to use a composition combination with a small difference.

なお、本実施例で示した成分系以外であっても、本発
明の要件に合致した部材組合せであれば同じ効果が得ら
れることはいうまでもない。
Needless to say, the same effect can be obtained even if the component system is other than the component system shown in this example as long as it is a member combination that meets the requirements of the present invention.

また、第3図(イ),(ロ),(ハ),(ニ)に示す
ものは、本願製造方法により得られる各種機械部品の適
用例を示す断面図であるが、その他種々な形態が考えら
れる。
Further, FIGS. 3 (a), (b), (c), and (d) are cross-sectional views showing application examples of various mechanical parts obtained by the manufacturing method of the present application. Conceivable.

以上のように、本発明方法によれば、溶浸後からの冷
却過程で孔部材が軸部材より多く相対的に収縮して径方
向の接合が行われる前に、予め、加熱過程で孔部材と軸
部材間に隙間を形成するものである。このため、隙間形
成のとき、軸部材が自重で落下し、軸部材の端面と孔部
材の段との確実な接触がなされることから、径方向のみ
ならず端面方向の十分な接合をも図ることができ、ま
た、溶浸材が溶けて当該隙間が満たされた後、冷却過程
による接合がなされることから、溶浸を十分に行うこと
ができ、部材間の気密性も向上する等の効果がある。
As described above, according to the method of the present invention, the hole member is preliminarily heated in the heating process before the hole member is relatively contracted more than the shaft member in the cooling process after the infiltration and the radial joining is performed. And a gap is formed between the shaft member and the shaft member. Therefore, when the gap is formed, the shaft member falls by its own weight, and the end face of the shaft member and the step of the hole member are surely contacted with each other, so that not only the radial direction but also the end face direction is sufficiently joined. Further, after the infiltrant is melted and the gap is filled, the joining is performed by the cooling process, so that the infiltration can be sufficiently performed and the airtightness between the members is improved. effective.

【図面の簡単な説明】[Brief description of drawings]

第1図は圧粉体の熱膨張率を説明するための概念図、第
2図は本発明に用いられる試料の形状および気密性試験
方法を説明する説明図、第3図は本発明により得られる
部材の組合せ形態を示す断面図である。 1……孔部材 2……軸部材 3……溶浸材
FIG. 1 is a conceptual diagram for explaining the coefficient of thermal expansion of a green compact, FIG. 2 is an explanatory diagram for explaining the shape and airtightness test method of a sample used in the present invention, and FIG. 3 is obtained by the present invention. It is sectional drawing which shows the combination form of the member to be made. 1 ... Hole member 2 ... Shaft member 3 ... Infiltration material

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄系金属粉末を圧縮して軸部を有する圧粉
体と、段付きの孔部を有する圧粉体をそれぞれ成形し、
段付きの孔部材に軸部材を嵌め合せた状態で溶浸材とと
もに加熱し焼結および銅溶浸することにより複雑形状の
機械部品を得る方法において、 上記溶浸材の融点に達するまでの加熱過程における両部
材接合径の寸法変化は相対的に孔部材が軸部材より0.04
%以上膨脹して接合部に隙間を生じ、かつ、溶浸後から
の冷却過程で孔部材が軸部材より0.05%の膨脹状態より
相対的に収縮する関係を持つ、組成が異なる両部材の組
合せを特徴とする溶浸接合焼結機械部品の製造方法。
1. An iron-based metal powder is compressed to form a green compact having a shaft portion and a green compact having a stepped hole portion, respectively.
In the method of obtaining a mechanical part with a complicated shape by heating with an infiltrant in a state in which a shaft member is fitted in a stepped hole member, sintering and copper infiltration, heating until reaching the melting point of the infiltrant The dimensional change of the joint diameter of both members in the process is 0.04
% And expands to form a gap in the joint, and in the cooling process after infiltration, the hole member has a relative contraction from the expanded state of 0.05% from the shaft member, a combination of both members with different compositions A method for manufacturing an infiltration-bonded sintered machine part, characterized by:
【請求項2】孔部材圧粉体の炭素量を軸部材よりも重量
比で0.02%以上多くしたことを特徴とする特許請求の範
囲第1項記載の溶浸接合焼結機械部品の製造方法。
2. The method for producing an infiltration-bonded sintered machine component according to claim 1, wherein the carbon content of the green compact of the hole member is increased by 0.02% or more by weight ratio than that of the shaft member. .
JP62295891A 1987-11-24 1987-11-24 Method for manufacturing infiltration-bonded sintered machine parts Expired - Fee Related JP2521778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295891A JP2521778B2 (en) 1987-11-24 1987-11-24 Method for manufacturing infiltration-bonded sintered machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295891A JP2521778B2 (en) 1987-11-24 1987-11-24 Method for manufacturing infiltration-bonded sintered machine parts

Publications (2)

Publication Number Publication Date
JPH01136906A JPH01136906A (en) 1989-05-30
JP2521778B2 true JP2521778B2 (en) 1996-08-07

Family

ID=17826499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295891A Expired - Fee Related JP2521778B2 (en) 1987-11-24 1987-11-24 Method for manufacturing infiltration-bonded sintered machine parts

Country Status (1)

Country Link
JP (1) JP2521778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192083A (en) * 2013-04-16 2013-07-10 苏州莱特复合材料有限公司 Production process of copper-infiltrated parts by powder metallurgy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597405A (en) * 1979-01-18 1980-07-24 Toshiba Corp Coupling method of sintered parts
JPS5842702A (en) * 1981-09-04 1983-03-12 Hitachi Powdered Metals Co Ltd Production of composite sintered parts

Also Published As

Publication number Publication date
JPH01136906A (en) 1989-05-30

Similar Documents

Publication Publication Date Title
US6706239B2 (en) Method of co-forming metal foam articles and the articles formed by the method thereof
US3960554A (en) Powdered metallurgical process for forming vacuum interrupter contacts
US5972521A (en) Expanded metal structure and method of making same
EP0194504B1 (en) Composite body and method of manufacturing the same
JP2521778B2 (en) Method for manufacturing infiltration-bonded sintered machine parts
EP0048496B1 (en) Method for bonding sintered metal pieces
US5174952A (en) Process for the powder-metallurgical production of a workpiece
US6843823B2 (en) Liquid phase sintered braze forms
US3611546A (en) Method of highly-densifying powdered metal
KR100790003B1 (en) Sliding bearing with oil pocket
US4107392A (en) High temperature abrasion-resistant material and method of producing same
EP1850989A1 (en) Method of forming powder metal components having surface densification
KR100789994B1 (en) Bush type sliding bearing comprising of sintered segments with sloped joining surface
JPS6119703A (en) Preparation of copper infiltrated ferrous sintered body
JPS5834524B2 (en) How to join sintered metal
JP2581793B2 (en) Infiltration joining method for sintered members
JP7447795B2 (en) Brazing material for joining ferrous sintered parts and method for manufacturing ferrous sintered parts
KR101075116B1 (en) Method of sintered sliding bearing
JPS58189305A (en) Production of sintered body having through-hole or the like
JPH05156319A (en) Cylindrical or columnar ceramic-metal composite with functionally gradient layer radially formed and its production
JPS59153802A (en) Production of sintered body
JPH06287610A (en) Cemented carbide material combined with different compositions and its production and spike made of cemented carbide material combined with different compositions
JPS5992161A (en) Joining method of sintered metal
JPS623202B2 (en)
KR100261058B1 (en) Method of manufacturing a sintered alloy material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees