[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2518055B2 - Catadioptric optical system - Google Patents

Catadioptric optical system

Info

Publication number
JP2518055B2
JP2518055B2 JP1230156A JP23015689A JP2518055B2 JP 2518055 B2 JP2518055 B2 JP 2518055B2 JP 1230156 A JP1230156 A JP 1230156A JP 23015689 A JP23015689 A JP 23015689A JP 2518055 B2 JP2518055 B2 JP 2518055B2
Authority
JP
Japan
Prior art keywords
lens
refracting
image
mirror
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1230156A
Other languages
Japanese (ja)
Other versions
JPH0392809A (en
Inventor
仁志 向谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1230156A priority Critical patent/JP2518055B2/en
Publication of JPH0392809A publication Critical patent/JPH0392809A/en
Application granted granted Critical
Publication of JP2518055B2 publication Critical patent/JP2518055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は反射系と屈折系を用いた反射屈折式光学系に
関し、特に収差補正を良好に維持しつつFナンバー3.5
と大口径比化及びレンズ系全体の小型化を図った写真用
カメラやビデオカメラ等に好適な大口径比の反射屈折式
光学系に関するものである。
TECHNICAL FIELD The present invention relates to a catadioptric optical system using a reflecting system and a refracting system, and particularly, an F number of 3.5 while maintaining good aberration correction.
The present invention also relates to a catadioptric optical system having a large aperture ratio, which is suitable for a photographic camera, a video camera, etc., which has a large aperture ratio and a compact lens system.

(従来の技術) 従来より反射屈折式光学系は反射面を用いることによ
って色収差を極めて小さく、又反射面で発生するコマ収
差を屈折系を用いて補正することが容易で、又望遠比
(焦点距離に対する第1レンズ面から像面までの距離の
比)を小さくすることが出来る為、長焦点距離の光学系
に多く用いられている。
(Prior Art) Conventionally, a catadioptric optical system has an extremely small chromatic aberration by using a reflecting surface, and it is easy to correct coma aberration generated on the reflecting surface by using a refracting system. Since it is possible to reduce the ratio of the distance from the first lens surface to the image surface to the distance), it is often used in optical systems with a long focal length.

これら反射屈折式光学系は、例えば特公昭40−18354
号公報、特公昭43−5951号公報、特公昭60−18045号公
報、特開昭60−184223号公報等で提案されている。
These catadioptric optical systems are disclosed, for example, in Japanese Patent Publication No. 40-18354.
JP-B No. 43-5951, JP-B No. 60-18045, JP-A No. 60-184223, and the like.

しかしながら反射屈折式光学系は一般に口径比を大き
くし、かつレンズ系全体の小型化を行うのが難しい為、
従来は多くは口径比を犠牲にしてレンズ系全体の小型化
を図っていた。例えば特公昭60−32853号公報や特開昭6
2−184425号公報では口径比を犠牲にしてレンズ全長の
短縮化を図った反射屈折式光学系を提案している。
However, catadioptric optical systems generally have a large aperture ratio and it is difficult to downsize the entire lens system,
In the past, in many cases, the overall lens system was downsized at the expense of the aperture ratio. For example, Japanese Examined Patent Publication No. Sho 60-32853 and Japanese Unexamined Patent Publication No. Sho 6
Japanese Laid-Open Patent Publication No. 2-184425 proposes a catadioptric optical system in which the overall lens length is shortened at the expense of the aperture ratio.

(発明が解決しようとする問題点) 一般に反射屈折式光学系において大口径比化を図るに
は特に球面収差を良好に補正する必要がある。この場
合、主鏡と副鏡との間隔を広くするのが球面収差を良好
に補正するのに好ましい。しかしながら例えば特公昭40
−18354号公報で提案されているように、このような方
法をとると全系の焦点距離に比してレンズ全長が長く
(テレ比が大きくなり)、レンズ系全体が大型化し、又
主鏡に比して副鏡の屈折力が小さくなりすぎバックフォ
ーカスが短くなってくるという問題点が生じてくる。
(Problems to be Solved by the Invention) Generally, in order to increase the aperture ratio in a catadioptric optical system, it is necessary to particularly favorably correct spherical aberration. In this case, it is preferable to widen the distance between the primary mirror and the secondary mirror in order to satisfactorily correct spherical aberration. However, for example
As proposed in Japanese Patent Laid-Open No. 18354, when such a method is adopted, the total lens length is longer (the tele ratio is larger) than the focal length of the entire system, the entire lens system becomes large, and the primary mirror As compared with the above, there arises a problem that the refracting power of the secondary mirror becomes too small and the back focus becomes short.

この他、特公昭40−18354号公報や特開昭60−184223
号公報では主鏡の中央部に穴をあけてこの穴部にレンズ
系を支持しているが主鏡に穴をあけることは加工上大変
難しく、又レンズ系を保持するのが難しいという問題点
があった。
In addition, Japanese Patent Publication No. 40-18354 and Japanese Patent Laid-Open No. 60-184223
In the publication, a hole is formed in the center of the primary mirror and the lens system is supported in this hole. However, it is very difficult to form a hole in the primary mirror in terms of processing, and it is difficult to hold the lens system. was there.

又、反射屈折式光学系は多くの場合、副鏡により軸上
及び軸外光束が多くケラレ光量比が低下してくるという
問題点がある。
Further, in many cases, the catadioptric optical system has a problem in that the secondary mirror causes a large amount of on-axis and off-axis light beams, and the vignetting light amount ratio decreases.

本発明は反射系及び屈折系の各レンズ要素を適切に設
定することによりFナンバー3.5と反射屈折式光学系と
しての大口径比及び所定量のバックフォーカスを維持し
つつ、レンズ系全体の小型化を図り、又副鏡による光束
のケラレを少なくし、画面全体にわたり高い光学性能を
有した反射屈折式光学系の提供を目的とする。
The present invention downsizes the entire lens system while maintaining the F-number 3.5, a large aperture ratio as a catadioptric optical system, and a predetermined amount of back focus by appropriately setting each lens element of the reflection system and the refraction system. In addition, it is an object of the present invention to provide a catadioptric optical system having high optical performance over the entire screen by reducing vignetting of a light beam by a secondary mirror.

(問題点を解決するための手段) 本発明は反射屈折式光学系は、物体からの光束を順に
正のレンズL1を介し、物体側に凹面を向けたメニカス状
の像面側のレンズ面の周辺部を反射面M1とした屈折凹面
反射鏡L2で物体側へ屈折反射させ、該レンズL1を介し、
像面側のレンズ面を該レンズL1の物体側のレンズ面に接
合され物体側のレンズ面を反射面M2とした屈折反射鏡L3
で像面側へ反射させ、該レンズL1と両レンズ面が凸面で
像面側のレンズ面を該屈折凹面反射鏡の物体側のレンズ
面と接合させた正のレンズL4を介し、該屈折凹面反射鏡
L2の中央透過部を通過させた後、像面側に凹面を向けた
メニスカス状の負のレンズL5を介し、像面に導光する
際、全系の焦点距離をf、該屈折凹面反射鏡の焦点距離
をf2、該レンズL1と該屈折反射鏡L3で構成される系の焦
点距離をf3、該レンズL4の物体側のレンズ面の曲率半径
をR11、該レンズL1と該屈折凹面反射鏡L2の間隔をD2と
するとき 2.0<|f2/f3|<2.7 …(1) 0.1<D2/f<0.2 …(2) 0.01<R11/f<0.3 …(3) なる条件を満足することを特徴としている。
(Means for Solving Problems) The present invention is a catadioptric optical system, in which a light flux from an object is sequentially passed through a positive lens L1 and a meniscus image surface side lens surface with a concave surface facing the object side. By refracting and reflecting to the object side with a refracting concave reflecting mirror L2 having a peripheral surface as a reflecting surface M1, through the lens L1,
Refractive reflecting mirror L3 whose lens surface on the image side is cemented to the lens surface on the object side of the lens L1 and whose lens surface on the object side is the reflecting surface M2
The lens L1 and both lens surfaces are convex, and the lens surface on the image side is a positive lens L4 in which the lens surface on the image side is joined to the lens surface on the object side of the refracting concave reflecting mirror. Reflector
After passing through the central transmission part of L2, when the light is guided to the image surface through a meniscus negative lens L5 having a concave surface facing the image surface side, the focal length of the entire system is f, and the refractive concave reflection mirror F2, the focal length of the system composed of the lens L1 and the refracting reflector L3 is f3, the radius of curvature of the object side lens surface of the lens L4 is R11, the lens L1 and the refracting concave reflector When the distance of L2 is D2, 2.0 <| f2 / f3 | <2.7 (1) 0.1 <D2 / f <0.2 (2) 0.01 <R11 / f <0.3 (3) It has a feature.

(実施例) 第1図,第2図は各々本発明の数値実施例1,2のレン
ズ断面図である。同図において本実施例の反射屈折式光
学系の各光学要素を光束の進行順に説明する。
(Embodiment) FIGS. 1 and 2 are lens cross-sectional views of Numerical Embodiments 1 and 2 of the present invention, respectively. In the figure, each optical element of the catadioptric optical system of the present embodiment will be described in the order in which the light flux travels.

L1は両レンズ面が凸面の正のレンズ、L2は物体側に凹
面を向けたメニスカス形状で像面側のレンズ面の周辺部
を反射面M1、中心部分を透過面とし主鏡として使用する
屈折凹面反射鏡、L3は像面側のレンズ面をレンズL1の物
体側のレンズ面と接合し、又物体側のレンズ面(凸面)
を反射面M2とし副鏡として使用する屈折反射鏡、L4は両
レンズ面が凸面の正のレンズであり、像面側のレンズ面
は屈折凹面反射鏡L2の物体側のレンズ面と接合されてい
る。L5は像面側に凹面を向けたメニスカス状の負のレン
ズである。
L1 is a positive lens whose both lens surfaces are convex, L2 is a meniscus shape with the concave surface facing the object side, and the peripheral part of the image side lens surface is a reflecting surface M1, the central part is a transmitting surface and is a refraction used as a primary mirror. Concave reflecting mirror, L3 cements the image side lens surface to the object side lens surface of lens L1 and also the object side lens surface (convex surface)
Is a refracting mirror which is used as a secondary mirror with M2 as a reflecting surface, and L4 is a positive lens whose both lens surfaces are convex, and the image side lens surface is cemented with the object side lens surface of the refracting concave reflecting mirror L2. There is. L5 is a negative meniscus lens with a concave surface facing the image side.

尚、G1は着脱可能のフィルターであり、例えば絞りの
代わりに濃度の異ったNDフィイルターを交換的に挿着し
ている。G2はビデオカメラ等のときに使用されるローパ
スフィルター、赤外カットフィルター等の光学部材であ
る。Qは像面である。
Incidentally, G1 is a removable filter, for example, an ND filter having a different density is exchangeably inserted instead of the diaphragm. G2 is an optical member such as a low pass filter and an infrared cut filter used in a video camera or the like. Q is the image plane.

本実施例では同図に示すように体(不図示)からの光
束をレンズL1で集光し、屈折凹面反射鏡L2の屈折面と反
射面M1により物体側へ屈折反射させている。次いでレン
ズL1で屈折させ屈折反射鏡L3の反射面M2で物体側へ反射
させた後、レンズL1を介して屈折射出させている。そし
てレンズL4と屈折凹面反射鏡L2の中心部分の透過面とレ
ンズL5を順次屈折通過させた後、結像面Qに集光し、物
体像を形成している。
In this embodiment, as shown in the figure, a light beam from a body (not shown) is condensed by a lens L1 and refracted and reflected toward the object side by a refracting surface of a refracting concave reflecting mirror L2 and a reflecting surface M1. Next, the light is refracted by the lens L1, reflected by the reflecting surface M2 of the refracting mirror L3 toward the object side, and then refracted and emitted through the lens L1. Then, the lens L4, the transmission surface in the central portion of the refracting concave reflecting mirror L2, and the lens L5 are sequentially refracted and passed, and then condensed on the image forming surface Q to form an object image.

本実施例では以上のように各光学要素を設定すると共
に各光学要素を前述の条件式(1)〜(3)を満足させ
ることにより大口径比化及びレンズ系全体の小型化を図
り、又副鏡による光束のケラレの少ない高い光学性能を
有した反射屈折式光学系を得ている。
In this embodiment, by setting each optical element as described above and satisfying the above-mentioned conditional expressions (1) to (3) for each optical element, a large aperture ratio and a miniaturization of the entire lens system are achieved, and We have obtained a catadioptric optical system that has a high optical performance with less vignetting of the light flux by the secondary mirror.

次に前述の各条件式の技術的意味について説明する。 Next, the technical meanings of the above conditional expressions will be described.

条件式(1),(2)はレンズ系全体の小型化を図り
つつ、大口径比化を図る際に最も重要となる球面収差を
良好に補正する為のものである。即ち条件式(2)の如
く、主鏡M1と副鏡M2の間隔をある程度あけて球面収差を
良好に補正しつつ、主鏡系と副鏡系の屈折力(パワー)
を条件式(1)の如くバランス良く保ち、所定のバック
フォーカスを確保しつつレンズ全長の短縮化を効果的に
図っている。
Conditional expressions (1) and (2) are for satisfactorily correcting spherical aberration, which is the most important factor in achieving a large aperture ratio, while achieving downsizing of the entire lens system. That is, as in conditional expression (2), the primary mirror M1 and the secondary mirror M2 are spaced to some extent to correct spherical aberration well, and the refractive power of the primary mirror system and the secondary mirror system is improved.
Is maintained in a well-balanced manner as in the conditional expression (1), and a predetermined back focus is secured while effectively shortening the total lens length.

条件式(1)の上限値を越えるとバックフォーカスは
増大するが副鏡の屈折力が強くなりすぎ球面収差が補正
過剰となり、又負のペッツバール和が増大し像面湾曲を
良好に補正するのが難しくなってくる。又下限値を越え
ると大口径比を維持しつつ所定量のバックフォーカスを
得るのが難しくなってくる。
If the upper limit of conditional expression (1) is exceeded, the back focus will increase, but the refracting power of the secondary mirror will become too strong, spherical aberration will be overcorrected, and negative Petzval sum will increase, resulting in good correction of field curvature. Becomes difficult. If the lower limit is exceeded, it will be difficult to obtain a predetermined amount of back focus while maintaining a large aperture ratio.

条件式(2)の上限値を越えるとレンズ全長の短縮化
を図るのが難しくなり、又下限値を越えると高次の球面
収差が増大し、大口径比化を図るのが難しくなってく
る。
If the upper limit of conditional expression (2) is exceeded, it will be difficult to shorten the total lens length, and if the lower limit is exceeded, high-order spherical aberration will increase, making it difficult to achieve a large aperture ratio. .

条件式(3)は副鏡L3を通った後の光束を制御する為
の後部屈折レンズ系の主鏡L2に接合したレンズL4の物体
側のレンズ面の曲率半径を適切に設定する為のものであ
る。即ち副鏡L3で反射された収束光は球面収差とコマ収
差がバランス良く補正されている為、主鏡の中央部を透
過屈折光学系として利用する場合、主鏡の第1レンズ面
の強い屈折力の凹面の為、球面収差は補正過剰となって
くる。その為、本実施例では主鏡L2の物体側に条件式
(3)を満足する正のレンズL4を配置してこのときの補
正過剰の球面収差を良好に補正している。
Conditional expression (3) is for appropriately setting the radius of curvature of the object-side lens surface of the lens L4 cemented to the main mirror L2 of the rear refractive lens system for controlling the light flux after passing through the sub-mirror L3. Is. That is, since the convergent light reflected by the secondary mirror L3 is corrected for spherical aberration and coma in a well-balanced manner, when the central portion of the primary mirror is used as a transmissive refraction optical system, strong refraction of the first lens surface of the primary mirror Due to the concave surface of the force, spherical aberration is overcorrected. Therefore, in this embodiment, a positive lens L4 that satisfies the conditional expression (3) is arranged on the object side of the primary mirror L2, and the overcorrected spherical aberration at this time is satisfactorily corrected.

条件式(3)の条件値を越えると副鏡で反射された光
束が大きい入射角でレンズL4の第1レンズ面に入射する
為、球面収差が補正過剰となり、又下限値を越えるとバ
ックフォーカスが短くなりすぎるので良くない。
If the value of conditional expression (3) is exceeded, the light beam reflected by the secondary mirror will enter the first lens surface of the lens L4 at a large incident angle, resulting in overcorrection of spherical aberration. Is too short to be good.

本実施例ではこれら各条件式を満足させることによっ
て、良好に収差補正がなされた大口径でありながらレン
ズ全長の短い反射屈折式光学系を達成しているが、さら
に後部屈折レンズ系の後群に像面側に強い屈折力の凹面
を向けた負のメニスカスレンズ状のレンズL5を配置する
ことにより、特に非点収差をバランス良く補正し、視野
の拡大を図っている。
In this embodiment, by satisfying each of these conditional expressions, a catadioptric optical system having a large aperture with good aberration correction and a short overall lens length is achieved. By arranging a negative meniscus lens-shaped lens L5 with a concave surface having a strong refractive power facing the image plane side, astigmatism is corrected particularly well and a field of view is expanded.

尚、本実施例では副鏡M2を個性するレンズL3とレンズ
L1及び後部屈折レンズ系を構成するレンズL4と主鏡M1を
構成するレンズL2を接合しているが、これらを分離支持
しても本発明の目的を達成することができる。又、本実
施例ではフォーカスは正レンズL1と副鏡M2の張り合わせ
レンズの双方を移動させて行うのが収差補正上好ましい
が、レンズ系全体を移動させてフォーカスを行ってもよ
い。
In this embodiment, the lens L3 and the lens that characterize the secondary mirror M2
Although L1 and the lens L4 forming the rear refracting lens system and the lens L2 forming the main mirror M1 are cemented, the object of the present invention can be achieved by supporting them separately. Further, in the present embodiment, it is preferable to perform focusing by moving both the positive lens L1 and the cemented lens of the secondary mirror M2 for aberration correction, but the entire lens system may be moved for focusing.

次に本発明の数値実施例を示す。数値実施例において
Riは光の進行順に第i番目のレンズ面の曲率半径、Diは
光の進行順に第i番目のレンズ厚及び空気間隔、Niとν
iは各々光の進行順に第i番目のレンズのガラスの屈折
率とアッベ数である。但しDiは光の進行方向左方より右
方へ測った長さを正、その逆を負としている。
Next, numerical examples of the present invention will be shown. In the numerical example
Ri is the radius of curvature of the i-th lens surface in the order of light travel, Di is the i-th lens thickness and air gap in the order of light travel, Ni and ν
i is the refractive index and Abbe number of the glass of the i-th lens in the order in which light travels. However, Di is the length measured from the left to the right in the traveling direction of light, and the opposite is negative.

条件式 (1)=2.2973 (2)=1.1545 (3)=0.1400 条件式 (1)=2.368 (2)=0.1745 (3)=0.1181 (発明の効果) 本発明によれば前述の如く反射系と屈折系の各レンズ
要素を設定することにより、Fナンバー3.5程度の大口
径比化及びレンズ系全体の小型化を図りつつ画面全体に
わたり高い光学性能を有した反射屈折式光学系を達成す
ることができる。
Conditional expression (1) = 2.2973 (2) = 1.1545 (3) = 0.1400 Conditional expression (1) = 2.368 (2) = 0.1745 (3) = 0.1181 (Effect of the invention) According to the present invention, by setting each lens element of the reflection system and the refraction system as described above, an F number of about 3.5 is obtained. It is possible to achieve a catadioptric optical system having high optical performance over the entire screen while achieving a large aperture ratio and downsizing of the entire lens system.

【図面の簡単な説明】[Brief description of drawings]

第1,第2図は本発明の数値実施例1,2のレンズ断面図、
第3,第4図は本発明の数値実施例1,2の諸収差図であ
る。収差図において(A),(B)は撮影倍率βがβ=
0、β=−0.064のときである。 図中、dはd線、gはg線、ΔSはサジタル像面、ΔM
はメリディオナル像面、Qは像面である。
FIGS. 1 and 2 are lens sectional views of Numerical Examples 1 and 2 of the present invention.
3 and 4 are graphs showing various aberrations of Numerical Examples 1 and 2 of the present invention. In the aberration diagrams (A) and (B), the imaging magnification β is β =
0, β = −0.064. In the figure, d is the d line, g is the g line, ΔS is the sagittal image plane, and ΔM.
Is the meridional image plane, and Q is the image plane.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体からの光束を順に正のレンズL1を介
し、物体側に凹面を向けたメニスカス状の像面側のレン
ズ面の周辺部を反射面M1とした屈折凹面反射鏡L2で物体
側へ屈折反射させ、該レンズL1を介し、像面側のレンズ
面を該レンズL1の物体側のレンズ面に接合され物体側の
レンズ面を反射面M2とした屈折反射鏡L3で像面側へ反射
させ、該レンズL1と両レンズ面が凸面で像面側のレンズ
面を該屈折凹面反射鏡の物体側のレンズ面と接合させた
正のレンズL4を介し、該屈折凹面反射鏡L2の中央透過部
を通過させた後、像面側に凹面を向けたメニスカス状の
負のレンズL5を介し、像面に導光する際、全系の焦点距
離をf、該屈折凹面反射鏡の焦点距離をf2、該レンズL1
と該屈折反射鏡L3で構成される系の焦点距離をf3、該レ
ンズL4の物体側のレンズ面の曲率半径をR11、該レンズL
1と該屈折凹面反射鏡L2の間隔をD2とするとき 2.0<|f2/f3|<2.7 0.1<D2/f<0.2 0.01<R11/f<0.3 なる条件を満足することを特徴とする反射屈折式光学
系。
1. A refracting concave reflecting mirror L2 in which a light flux from an object is sequentially passed through a positive lens L1, and a peripheral portion of a meniscus-shaped image side lens surface having a concave surface facing the object side is a reflecting surface M1. Refraction reflection to the image side, and through the lens L1, the image-side lens surface is joined to the object-side lens surface of the lens L1 and the object-side lens surface is defined as the reflecting surface M2 by the refracting / reflecting mirror L3. To the lens L1 and both lens surfaces are convex surfaces, and the image side lens surface is joined to the object side lens surface of the refracting concave reflecting mirror through a positive lens L4, and the refracting concave reflecting mirror L2 After passing through the central transmission part, when the light is guided to the image surface through the meniscus negative lens L5 with the concave surface facing the image surface side, the focal length of the whole system is f, and the focal point of the refracting concave reflecting mirror. Distance f2, the lens L1
, F3 is the focal length of the system composed of the refracting mirror L3, R11 is the radius of curvature of the lens surface of the lens L4 on the object side, and
Catadioptric, characterized by satisfying the condition of 2.0 <| f2 / f3 | <2.7 0.1 <D2 / f <0.2 0.01 <R11 / f <0.3, where D2 is the distance between the refracting concave reflecting mirror L2 and 1 Optical system.
JP1230156A 1989-09-05 1989-09-05 Catadioptric optical system Expired - Fee Related JP2518055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230156A JP2518055B2 (en) 1989-09-05 1989-09-05 Catadioptric optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230156A JP2518055B2 (en) 1989-09-05 1989-09-05 Catadioptric optical system

Publications (2)

Publication Number Publication Date
JPH0392809A JPH0392809A (en) 1991-04-18
JP2518055B2 true JP2518055B2 (en) 1996-07-24

Family

ID=16903475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230156A Expired - Fee Related JP2518055B2 (en) 1989-09-05 1989-09-05 Catadioptric optical system

Country Status (1)

Country Link
JP (1) JP2518055B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4350203B2 (en) * 1999-05-14 2009-10-21 キヤノン株式会社 Optical device for optical communication
US6560039B1 (en) 1999-09-28 2003-05-06 Tropel Corporation Double mirror catadioptric objective lens system with three optical surface multifunction component
JP6917000B2 (en) * 2016-12-28 2021-08-11 株式会社タムロン Catadioptric system and imaging device
JP2021067861A (en) * 2019-10-25 2021-04-30 株式会社ニコン Imaging device
JP6886061B1 (en) * 2020-05-21 2021-06-16 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Imaging lens of catadioptric system
JP7051940B2 (en) * 2020-06-23 2022-04-11 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Imaging lens of catadioptric system

Also Published As

Publication number Publication date
JPH0392809A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
JP2682053B2 (en) Small zoom lens
JP3074026B2 (en) Super wide-angle zoom lens
JPH06201988A (en) Large aperture ratio internal focusing telephoto lens
JP3306129B2 (en) Standard lens
JP3652179B2 (en) Zoom lens
JPH05224119A (en) Large-diameter intermediate telephoto lens
JPH06300965A (en) Wide-angle lens
JPH0961708A (en) Standard lens system
JPH07140388A (en) Zoom lens
JP2000028919A (en) Middle telephotographic lens
JPH06308383A (en) Intermediate telephoto lens for underwater camera
JP2518055B2 (en) Catadioptric optical system
JP2546293B2 (en) Small zoom lens
JP3234618B2 (en) Large aperture medium telephoto lens
JPH0713704B2 (en) Wide-angle lens
JP4817551B2 (en) Zoom lens
JPH0318162B2 (en)
JPH05346542A (en) Small-sized two-group zoom lens
JP3706827B2 (en) Zoom lens and optical apparatus having the same
JPH07318798A (en) Photographic lens
JP2706789B2 (en) Large aperture ratio lens for close-up photography
JPH05173067A (en) Large-diameter wide angle lens
JP3689356B2 (en) Medium telephoto lens
JPH08220435A (en) Compact zoom lens with reduced sensitivity with reference toaspherical decentration
JPH08114742A (en) Optical system for composite camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees