[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2505608B2 - Antifouling equipment for structures in contact with seawater - Google Patents

Antifouling equipment for structures in contact with seawater

Info

Publication number
JP2505608B2
JP2505608B2 JP3319590A JP3319590A JP2505608B2 JP 2505608 B2 JP2505608 B2 JP 2505608B2 JP 3319590 A JP3319590 A JP 3319590A JP 3319590 A JP3319590 A JP 3319590A JP 2505608 B2 JP2505608 B2 JP 2505608B2
Authority
JP
Japan
Prior art keywords
conductive film
film
seawater
conductive
antifouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3319590A
Other languages
Japanese (ja)
Other versions
JPH03235793A (en
Inventor
正博 宇佐美
清美 友重
健二 植田
勉 堀口
弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Choryo Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3319590A priority Critical patent/JP2505608B2/en
Publication of JPH03235793A publication Critical patent/JPH03235793A/en
Application granted granted Critical
Publication of JP2505608B2 publication Critical patent/JP2505608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は船舶,海洋構造物等海水に接する構造物の防
汚装置に関する。
Description: TECHNICAL FIELD The present invention relates to an antifouling device for structures that come into contact with seawater, such as ships and marine structures.

〔従来の技術〕[Conventional technology]

船舶,海洋構造物等海水に接する構造物の防汚手段と
しては、従来、構造物の接水部分に防汚塗料を塗装する
手段が一般的に採用されている。
As a means for antifouling structures that come into contact with seawater such as ships and marine structures, a means for applying antifouling paint to the water contacting parts of the structures has been generally adopted.

しかしながら、このような手段では、次のような欠点
がある。
However, such means have the following drawbacks.

(1) 防汚染料の防汚成分溶出速度を調節することが
できないので、季節,海流,水質変化等に自在に対応す
ることができない。
(1) Since the elution rate of the antifouling component of the antifouling material cannot be adjusted, it is not possible to respond flexibly to the season, ocean currents, water quality changes, etc.

(2) 防汚染料中の毒物含有量に限度があるので、約
2年ごとに塗り替え作業が必要である。
(2) Since the content of poisonous substances in the antifouling material is limited, repainting work is required about every two years.

そこで本出願人は、さきに、特願昭61−247032号,特
願昭61−248897号をもって、第7図模式図に示すよう
に、海水01に接する構造物の外板を構成する鋼板02に、
エポキシ樹脂等の絶縁塗膜03と、カーボン粉等を有機質
バインダーに混合した導電塗膜04を塗り重ね、導電塗膜
04と鋼等からなる電気伝導体05との間に、直流電源06に
より導電塗膜04を(+)に、電気伝導体05を(−)にし
て通電し、導電塗膜04上に、海洋生物付着防止有効成分
を発生させる装置を提案した。
Therefore, the present applicant has previously filed Japanese Patent Application Nos. 61-247032 and 61-248897, as shown in the schematic diagram of FIG. 7, a steel plate 02 that constitutes the outer plate of a structure in contact with seawater 01. To
Insulating coating 03 such as epoxy resin and conductive coating 04 in which carbon powder is mixed with organic binder
Between the 04 and the electric conductor 05 made of steel or the like, the direct current power supply 06 sets the conductive coating film 04 to (+) and the electric conductor 05 is set to (-) to energize the conductive coating film 04 to the ocean. We proposed a device to generate active ingredients for biofouling prevention.

ところが、このような装置には、次のような不具合が
あることが判明した。
However, it has been found that such a device has the following problems.

(1) 海水01中に流出する電流密度をある一定値以上
に保持する必要があるが、導電塗膜04の消耗による抵抗
上昇のため通電端近くに電流密度が集中し、防汚有効範
囲が狭くなる。
(1) It is necessary to maintain the current density flowing into the seawater 01 at a certain value or more. Narrows.

(2) 導電塗膜04の膜厚のばらつきにより電流密度が
異なり、性能の維持が困難である。
(2) It is difficult to maintain the performance because the current density is different due to the variation in the film thickness of the conductive coating film 04.

(3) 電流密度の均一化には低抵抗の導電塗膜04が必
要であるが、そのためには多量の導電粉を混入する必要
があり製造が困難である。
(3) A low-resistance conductive coating film 04 is required to make the current density uniform, but a large amount of conductive powder needs to be mixed for that purpose, which makes manufacturing difficult.

そこで、本出願人は、さきに第8図模式図に示すよう
な装置を特願昭63−287190号として提案した。
Therefore, the present applicant previously proposed a device as shown in the schematic diagram of FIG. 8 as Japanese Patent Application No. 63-287190.

すなわち、同図において、第7図と同一の符番はそれ
ぞれ同図と同一の部材を示し、07は絶縁塗膜03の外側を
被覆する比抵抗の小さい金属,金属酸化物の薄板溶射
膜,融着膜又は蒸着膜からなり、通電端08が設けられて
いる第1の導電膜で、比抵抗の小さい金属としてはニッ
ケル,銅,チタン,アルミニウム,ニオブ等、金属酸化
物としてはマグネタイト,二酸化マンガン等がそれぞれ
使用できる。
That is, in the figure, the same reference numerals as those in FIG. 7 indicate the same members as those in the figure, and 07 indicates a metal having a low specific resistance for coating the outside of the insulating coating film 03, a thin film sprayed film of a metal oxide, A first conductive film that is a fusion film or a vapor deposition film and is provided with a current-carrying end 08. Nickel, copper, titanium, aluminum, niobium, and the like are used as metals having a low specific resistance, and magnetite and dioxide are used as metal oxides. Manganese etc. can be used respectively.

09は第1の導電膜07の外側を更に被覆する耐酸化性不
溶性物質と有機バインダーとからなる第2の導電膜で、
耐酸化性不溶性物質としてはグラファイト,カーボンブ
ラック,マグネタイト,白金属等が使用でき、有機バイ
ンダーとしてはエポキシ樹脂,ビニール樹脂,不飽和ポ
リエステル樹脂等が使用できる。またこの第2の導電膜
09は第1の導電膜07に比べ電気抵抗が大きくなってい
る。
Reference numeral 09 denotes a second conductive film that is formed of an oxidation resistant insoluble substance and an organic binder that further covers the first conductive film 07.
As the oxidation-resistant insoluble substance, graphite, carbon black, magnetite, white metal, etc. can be used, and as the organic binder, epoxy resin, vinyl resin, unsaturated polyester resin, etc. can be used. Also, this second conductive film
The electric resistance of 09 is higher than that of the first conductive film 07.

010は第2の導電膜09と対向して海水01中に設置され
た鉄,銅又は炭素等からなる陰極、011は第1の導電膜0
7の通電端08と陰極010との間に設置され、第1の導電膜
07から第2の導電膜09を通して陰極010の方向へ直流を
通電する直流電源、012は鋼板02と陰極010とを接続する
リード線である。
Reference numeral 010 is a cathode made of iron, copper, carbon or the like installed in seawater 01 so as to face the second conductive film 09, and 011 is the first conductive film 0.
The first conductive film is installed between the current-carrying end 08 of 7 and the cathode 010.
A direct current power source for supplying direct current from 07 to the cathode 010 through the second conductive film 09, and 012 is a lead wire connecting the steel plate 02 and the cathode 010.

このような装置において、第1の導電膜07から第2の
導電膜09を通して、海水01中の陰極010の方向へ直流電
流を流出させると、第2の導電膜09の表面は海洋生物付
着防止有効成分の膜に覆われ、海洋生物がその表面へ付
着することを防止する。
In such an apparatus, when a direct current is caused to flow from the first conductive film 07 through the second conductive film 09 toward the cathode 010 in the seawater 01, the surface of the second conductive film 09 prevents marine organisms from attaching. Covered with a film of the active ingredient, it prevents marine life from adhering to its surface.

この際の直流電流は、第1の導電膜07に設けられてい
る通電端08から、電気抵抗の小さい第1の導電膜07のベ
ース電流を通して第2の導電膜09の厚さ方向に供給され
ることになり、従って第2の導電膜09が消耗しても通電
端08近くに電流密度が集中するということはなく、安定
した均一な電流密度分布が長期にわたって維持でき、ひ
いては少ない消費電力で高性能な防汚効果を奏すること
ができる。
The direct current at this time is supplied from the current-carrying end 08 provided in the first conductive film 07 through the base current of the first conductive film 07 having a small electric resistance in the thickness direction of the second conductive film 09. Therefore, even if the second conductive film 09 is consumed, the current density does not concentrate near the current-carrying end 08, and a stable and uniform current density distribution can be maintained for a long period of time, which consumes less power. A high-performance antifouling effect can be achieved.

なお、リード線012により鋼板02を(−)電位に、第
1の導電膜07、第2の導電膜09を(+)電位になるよう
にしているので、第1の導電膜07、第2の導電膜09が局
部的に損傷破壊し鋼板02に露出部が生じたときには、第
1の導電膜07、第2の導電膜09から流出した直流電流の
一部が鋼板露出部に流入し、鋼板02から直流電源011の
(−)極に帰還され鋼板02の腐食を防止する。
Since the lead wire 012 makes the steel plate 02 have a (−) potential and the first conductive film 07 and the second conductive film 09 have a (+) potential, the first conductive film 07, the second conductive film 07, When the conductive film 09 is locally damaged and destroyed and an exposed part is formed on the steel plate 02, a part of the direct current flowing out from the first conductive film 07 and the second conductive film 09 flows into the exposed part of the steel plate, The steel plate 02 is returned to the (−) pole of the DC power supply 011 to prevent the steel plate 02 from being corroded.

なお第2の導電膜09が損傷破壊し第1の導電膜07が露
出した場合に、その化学的溶出を防ぐべく第1の導電膜
07の材料にチタン,ニオブ,金属酸化物等を用いること
は、この装置の長期的安定化のために有効である。
When the second conductive film 09 is damaged and destroyed and the first conductive film 07 is exposed, the first conductive film is prevented in order to prevent its chemical elution.
The use of titanium, niobium, metal oxides, etc. as the material of 07 is effective for long-term stabilization of this device.

しかしてこのような装置においては、第1の導電膜07
の鋼板02に平行な方向の電気抵抗R07<第2の導電膜09
の鋼板02に平行な方向の電気抵抗R09の関係があり、通
電端08から受ける電流の95%程度を第1の導電膜07内を
流し電流密度分布の均一化を図るには、R07/R09≦0.1が
好ましく、また第1の導電膜07、第2の導電膜09の厚さ
は体積抵抗率や導電膜09の通電や外界の影響による損耗
を考慮して決める必要がある。
However, in such a device, the first conductive film 07
Electrical resistance R 07 <second conductive film 09 parallel to steel plate 02 of
There is a relation of the electric resistance R 09 in the direction parallel to the steel plate 02, and in order to make about 95% of the current received from the current-carrying end 08 flow in the first conductive film 07 and to make the current density distribution uniform, R 07 / R 09 ≦ 0.1 is preferable, and the thicknesses of the first conductive film 07 and the second conductive film 09 must be determined in consideration of the volume resistivity, the conduction of the conductive film 09, and the wear due to the influence of the external environment.

次に実験例を第9図について説明すると、同図はこの
装置と従来装置における導電膜の通電端からの通電有効
距離を比較して示すもので、それぞれの導電膜の条件は
次の通りである。
Next, an experimental example will be described with reference to FIG. 9, which shows a comparison of the effective conduction distance from the conduction end of the conductive film in this device and the conventional device. The conditions of each conductive film are as follows. is there.

この装置 第1の導電膜07:抵抗 1.6×10-3Ω−m、 膜厚 20μm 第2の導電膜09:抵抗 30Ω−m、 膜厚 200μ 従来装置 導電塗膜 :抵抗 3Ω−m、 膜厚 200μ このような導電膜に通電端から80mA通電したとき、所
要電流密度Aを保持するのに従来装置(b)は3mである
のに対し、この装置(a)は45mまで有効である。また
この装置において第2の導電膜09の厚さを200μから100
μmまで変化しても有効距離は変化しなかったが、従来
装置では(c)のように1mに減少した。
This device First conductive film 07: Resistance 1.6 × 10 -3 Ω-m, film thickness 20 μm Second conductive film 09: Resistance 30 Ω-m, film thickness 200 μ Conventional device Conductive coating: Resistance 3 Ω-m, film thickness When a current of 80 μ is applied to such a conductive film from the current-carrying end, the conventional device (b) has a length of 3 m to maintain the required current density A, whereas this device (a) is effective up to 45 m. Further, in this device, the thickness of the second conductive film 09 is changed from 200 μ to 100 μm.
Although the effective distance did not change even if it changed to μm, it decreased to 1 m in the conventional device as shown in (c).

しかしながら、その後の研究によりこのような装置で
は、下記のような問題があることが判明した。
However, subsequent research has revealed that such a device has the following problems.

(1) 第1の導電膜07は原料が高価なので、それを構
造物全体に施工すると費用が嵩む。
(1) Since the raw material of the first conductive film 07 is expensive, the cost increases if it is applied to the entire structure.

(2) 第1の導電膜07は特に溶射により絶縁膜03上に
施工した場合、残留応力が発生するので、溶射膜の剥離
等の欠陥が生じ易い。
(2) When the first conductive film 07 is applied to the insulating film 03 by thermal spraying, residual stress is generated, so that defects such as peeling of the thermal sprayed film are likely to occur.

そこで本出願人はさらに特願平1−139973号をもっ
て、第10図模式図に示すように、第1の導電膜を平行帯
状又は格子状に形成することを特徴とする海水に接する
構造物の防汚装置を出願した。実施例を図面について説
明すると、第11図水平断面図において、011は絶縁塗膜0
3上に複数の平行帯状に付設されそれぞれ一端が通電端0
8に接続された第1の導電膜で、その材料は前記第1の
導電膜07のそれと同一であり、本実施例では作業性を考
えて、金属又は金属酸化物の薄層溶射膜を使用してい
る。
Therefore, the present applicant further discloses in Japanese Patent Application No. 1-139973, a structure in contact with seawater, characterized in that the first conductive film is formed in a parallel strip shape or a grid shape as shown in the schematic view of FIG. I applied for an antifouling device. An embodiment will be described with reference to the drawings. In the horizontal cross-sectional view of FIG.
Three parallel strips are attached to the top of the 3 and one end of each is a current-carrying end.
8 is a first conductive film connected to 8 and the material thereof is the same as that of the first conductive film 07. In this embodiment, a thin layer sprayed film of metal or metal oxide is used in consideration of workability. are doing.

2は第1の導電膜011の外側等を被覆する第2の導電
膜で、その材料は前記第2の導電膜09のそれと同一であ
る。
Reference numeral 2 denotes a second conductive film that covers the outside of the first conductive film 011 and the material thereof is the same as that of the second conductive film 09.

このような装置において、第1の導電膜001は複数の
平行帯状に付設されているので、全面塗装の第1の導電
膜07に比べて材料の物量が数分の1に節約できる。また
第1の導電膜001は帯状なので、各巾が小さくそれぞれ
の両側縁の残留応力が減少する。更に、第2の導電膜2
には導電性があるので、第1の導電膜001が全面塗装さ
れなくても第2の導電膜2の全面に電力を供給すること
ができる。
In such an apparatus, since the first conductive film 001 is provided in a plurality of parallel strips, the amount of material can be reduced to a fraction of that of the first conductive film 07 coated on the entire surface. Further, since the first conductive film 001 has a strip shape, each width is small and residual stress on both side edges is reduced. Furthermore, the second conductive film 2
Has electrical conductivity, it is possible to supply power to the entire surface of the second conductive film 2 without coating the entire surface of the first conductive film 001.

ここで、本実施例の効果を見るために、第12図正面図
に示すように、鋼板02に付設され通電端08を通して電力
が供給される左右1対の第1の導電膜001を第2の導電
膜2で覆って海上筏に吊下げた実験を行ったところ、第
1の導電膜001がアル溶射膜でここから電流密度1A/m2
下で直流電流を流し、第2の導電膜2が塗料樹脂ビニー
ルに導電顔料として粒径45μm以下のグラファイト粉毎
を体積濃度で40%混合し、それ等の膜厚を300μmとし
た場合の防汚有効長さlは1mであった。
Here, in order to see the effect of this embodiment, as shown in the front view of FIG. 12, a pair of left and right first conductive films 001 attached to the steel plate 02 and supplied with power through the current-carrying end 08 When an experiment was conducted in which the first conductive film 001 was an Al sprayed film and was covered with the conductive film 2 of No. 1 and was dc sprayed with a current density of 1 A / m 2 or less from the second conductive film. No. 2 was a paint resin vinyl, and 40% by volume of graphite powder having a particle diameter of 45 μm or less was mixed as a conductive pigment, and the antifouling effective length 1 was 1 m when the film thickness thereof was 300 μm.

次に、第13図水平断面図は第11図の変形例を示し、00
3は絶縁塗膜03上に縦横適宜間隔の格子状に付設され一
端が通電端08に接続された第1の導電膜、4は第1の導
電膜003等の外側を被覆する第2の導電膜であり、この
ような変形例においても、本実施例と実質的に同一の作
用効果を奏するほか、万一外力により第1の導電膜003
の一部が切断された場合、自動的に迂回路が形成されて
下流側への電力供給が維持できる特長がある。
Next, FIG. 13 is a horizontal sectional view showing a modification of FIG.
Reference numeral 3 is a first conductive film which is attached on the insulating coating film 03 in a grid pattern with vertical and horizontal intervals and one end of which is connected to the conducting end 08, and 4 is a second conductive film which covers the outside of the first conductive film 003 and the like. It is a film, and even in such a modified example, substantially the same operation and effect as in the present example are obtained, and the first conductive film 003 should be applied due to an external force.
When a part of is cut off, a detour is automatically formed and the power supply to the downstream side can be maintained.

更に、第14図模式図は第10図の変形例を示し、5は第
2の導電膜の抵抗を下げるために、金属系,グラフィイ
ト系で耐酸化性不溶性物質よりなる導電性顔料の量を増
加した塗料を第1の導電膜001等の上に直接塗装した第
2の導電膜下層、6は第2の導電膜の耐電解性を向上さ
せるために膜の気密性を良くする顔料の量を減少させた
塗料を第2の導電膜下層5の上に塗装した第2の導電膜
上層であり、このような変形例においても、上記実施例
と実質的に同一の作用効果を奏するほか、第2の導電膜
の抵抗を下げ、従って第1の導電膜001の平行間隔を大
きくすることができる特長がある。
Furthermore, the schematic diagram of FIG. 14 shows a modified example of FIG. 10, and 5 is the amount of the conductive pigment made of an oxidation resistant insoluble substance of a metal type or a graphite type in order to reduce the resistance of the second conductive film. The lower layer of the second conductive film obtained by directly coating the first conductive film 001 or the like with a coating having an increased water content, and 6 is a pigment that improves the airtightness of the film in order to improve the electrolytic resistance of the second conductive film. The second conductive film upper layer is obtained by coating the second conductive film lower layer 5 with the coating material of which the amount is reduced, and in such a modified example, substantially the same operation and effect as those of the above-described embodiment are obtained. The feature is that the resistance of the second conductive film can be lowered, and thus the parallel spacing of the first conductive film 001 can be increased.

因みに、第12図に示した要領と同一要領の海中基礎実
験を、塗料樹脂アクリル中に導電顔料として粒径45μm
以下のグラファイト粉末を体積濃度で60%混合し膜厚20
0μmとした第2の導電膜下層5に、ビニール樹脂中に
粒径45μm以下のグラファイト粉末を体積濃度で40%混
合し膜厚200μmとした第2の導電膜上層6を塗布した
ものについて行った結果、防汚有効長さlは5mであっ
た。
By the way, a submarine basic experiment similar to the procedure shown in Fig. 12 was conducted in paint resin acrylic with a particle size of 45 μm as a conductive pigment.
The following graphite powders are mixed at a volume concentration of 60% to a film thickness of 20
The second conductive film lower layer 5 having a thickness of 200 μm was applied to the second conductive film lower layer 5 having a thickness of 200 μm by mixing 40% by volume of graphite powder having a particle diameter of 45 μm or less in vinyl resin at a volume concentration of 0 μm. As a result, the antifouling effective length 1 was 5 m.

また、同上の実験で第2の導電膜下層5を塗料樹脂ア
クリル中に銅粉を体積濃度で30%混合し、膜厚200μm
とした場合の防汚有効長さlは15mであった。
Further, in the same experiment, the second conductive film lower layer 5 was mixed with 30% by volume of copper powder in paint resin acrylic, and the film thickness was 200 μm.
The antifouling effective length 1 was 15 m.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、その後の研究によりこのような装置で
は下記のような問題があることが判明した。
However, subsequent research has revealed that such a device has the following problems.

(1) 金属や金属酸化物の板を施工する場合、接着工
法を採ると、曲面などへの作業性が悪く、また板の自重
のため接着剤が硬化するまで支具で板を保持する必要が
あり、作業性が非常に悪く実用的でない。
(1) When applying a metal or metal oxide plate, if the adhesion method is adopted, workability on curved surfaces is poor, and it is necessary to hold the plate with braces until the adhesive hardens due to the weight of the plate. However, the workability is very poor and not practical.

(2) 一方、溶射法を適用すると作業性は向上する
が、施工後溶射面の粗度が大きく導電膜の耐久性を得る
ためには、その上の導電膜の厚みを厚くする必要がある
のみならず、溶射速度が遅くコスト高となる。
(2) On the other hand, if the spraying method is applied, the workability is improved, but in order to obtain the durability of the conductive film due to the high roughness of the sprayed surface after the construction, it is necessary to increase the thickness of the conductive film thereabove. Not only that, but the spraying rate is slow and the cost is high.

本発明はこのような事情に鑑みて提案されたもので、
薄厚の導電膜を迅速かつ低コストで施工する作業性及び
経済性に優れた海水に接する構造物の防汚装置を提供す
ることを目的とする。
The present invention has been proposed in view of such circumstances,
It is an object of the present invention to provide an antifouling device for a structure in contact with seawater, which is excellent in workability and cost efficiency for constructing a thin conductive film quickly and at low cost.

〔課題を解決するための手段〕[Means for solving the problem]

そのために本発明は、船舶,海洋構造物等海水に接す
る構造物の接水面を電気絶縁塗膜を介し被覆し比抵抗の
小さい金属又は金属酸化物の板,溶射膜,蒸着膜又は融
着膜からなりそれを平行帯状又は格子状に形成せしめそ
の一端に通電端が設けられている第1の導電膜と、上記
第1の導電膜の外側を被覆し耐酸化性不溶性物質と有機
バインダーとからなり上記第1の導電膜より電気抵抗の
大きい第2の導電膜と、上記第2の導電膜に対向し鉄,
銅又は炭素からなり海水中に設置された電気伝導体と、
上記第1の導電膜と上記電気伝導体との間に設置され上
記第1の導電膜から上記第2の導電膜を通して上記電気
伝導体方向に直流を通電する電源装置とを具えてなる構
造物の防汚装置において、上記第1の導電膜を金属又は
金属酸化物の箔又は薄板で形成することを特徴とする。
To this end, the present invention provides a metal or metal oxide plate, a sprayed film, a vapor-deposited film or a fused film having a small specific resistance by coating the water contact surface of a structure in contact with seawater such as a ship or an offshore structure with an electrically insulating coating film. And a first conductive film having a current-carrying end provided at one end thereof, which is formed in a parallel band shape or a lattice shape, and which covers the outer side of the first conductive film and contains an oxidation-resistant insoluble substance and an organic binder. And a second conductive film having a larger electric resistance than the first conductive film, and an iron film facing the second conductive film,
An electrical conductor made of copper or carbon installed in seawater,
A structure comprising a power supply device that is installed between the first conductive film and the electric conductor, and that applies a direct current from the first conductive film through the second conductive film toward the electric conductor. In the antifouling device, the first conductive film is formed of a foil or a thin plate of metal or metal oxide.

〔作用〕[Action]

(1) 薄板,箔は軽量で自由自在に加工できるので、
第1の導電膜は平面はもとより曲面にも容易に接着施工
できる。
(1) Since thin plates and foils are lightweight and can be processed freely,
The first conductive film can be easily attached to a curved surface as well as a flat surface.

(2) 特別な設備も必要なく、短時間で精度よく施工
でき、作業効率が大幅に向上できる。
(2) No special equipment is required, the work can be performed accurately in a short time, and work efficiency can be significantly improved.

〔実施例〕 本発明の一実施例を図面について説明すると、第1図
はその模式図、第2図は第1図のII−IIに沿った水平断
面図、第3図は第1図装置に関する海中基礎実験要領を
示す正面図、第4図は第2図の変形例を示す水平断面
図、第5図は第1図の変形例を示す同じく模式図、第6
図は第1図の第2の導電膜の電解耐久性の試験結果を示
す図である。
[Embodiment] An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view thereof, FIG. 2 is a horizontal sectional view taken along line II-II of FIG. 1, and FIG. FIG. 4 is a front view showing a basic experiment procedure in the sea, FIG. 4 is a horizontal sectional view showing a modification of FIG. 2, FIG. 5 is a schematic view showing a modification of FIG. 1, and FIG.
The figure shows the test results of the electrolytic durability of the second conductive film of FIG.

上図において、第7〜14図と同一の符番はそれぞれ第
7〜14図と同一の部材を示し、本発明が従来の装置と大
きく異なるところは、第1の導電膜を箔又は薄板で形成
したことにある。
In the above figure, the same reference numerals as in FIGS. 7 to 14 indicate the same members as in FIGS. 7 to 14, respectively, and the present invention is greatly different from the conventional device in that the first conductive film is a foil or a thin plate. It has been formed.

まず、第1図模式図及び第2図水平断面図において、
1は絶縁塗膜03上に複数の平行帯状に付設されそれぞれ
一端が通電端08に接続された第1の導電膜で、その材料
は第8図に示した第1の導電膜07のそれと同一であり、
本実施例では作業性を考えて金属又は金属酸化物200μ
m〜30μmの箔を使用している。
First, in the schematic view of FIG. 1 and the horizontal sectional view of FIG.
Reference numeral 1 denotes a first conductive film which is attached to the insulating coating film 03 in a plurality of parallel strips and has one end connected to the current-carrying end 08, the material of which is the same as that of the first conductive film 07 shown in FIG. And
In this embodiment, considering workability, a metal or metal oxide 200 μ
A foil of m to 30 μm is used.

2は第1の導電膜1の外側等を被覆する第2の導電膜
で、その材料は前記第2の導電膜09のそれと同一であ
る。なお、第1の導電膜1同士の接合ははんだ付けで可
能である。
Reference numeral 2 is a second conductive film that covers the outside of the first conductive film 1 and the like, and the material thereof is the same as that of the second conductive film 09. The first conductive films 1 can be joined to each other by soldering.

また、船内電源から通電用電極への配線及びその接続
は、電線の抵抗による電圧降下を小さくするために、太
めの電線を使用し、接続部ははんだ付け又はねじで行
う。
Wiring from the onboard power supply to the energizing electrode and its connection should be done by using a thicker electric wire to reduce the voltage drop due to the resistance of the electric wire, and the connection part should be soldered or screwed.

ここで、本実施例の効果を見るために、第3図正面図
に示すように、鋼板02に付設され通電端08を通して電力
が供給される左右1対の第1の導電膜1を第2の導電膜
2で覆って海上筏に吊下げた実験を行ったところ、第1
の導電膜1が50μmのアルミ箔でここから電流密度1A/m
2以下で直流電流を流し、第2の導電膜2が塗料樹脂ビ
ニールに導電顔料として粒径45μm以下のグラファイト
粉末を体積濃度で40%混合し、それ等の膜厚を300μm
とした場合の防汚有効長さlは2mであった。
Here, in order to see the effect of this embodiment, as shown in the front view of FIG. 3, a pair of left and right first conductive films 1 attached to the steel plate 02 and supplied with power through the current-carrying end 08 An experiment was conducted by covering it with a conductive film 2 of No. 1 and hanging it on a raft on the sea.
The conductive film 1 is made of aluminum foil with a thickness of 50 μm and the current density is 1 A / m
A DC current is applied at a temperature of 2 or less, and the second conductive film 2 mixes 40% by volume of graphite powder having a particle diameter of 45 μm or less as a conductive pigment into the coating resin vinyl, and the film thickness thereof is 300 μm.
The antifouling effective length 1 was 2 m.

なお、通電端の巾として30mmとしたがその接着作業に
要した時間は2分であった。一方、通電端をアルミ溶射
で行う場合、100μの厚さが必要で、所要時間は30分で
あった。
The width of the current-carrying end was 30 mm, but the time required for the bonding work was 2 minutes. On the other hand, when the current-carrying end is sprayed with aluminum, a thickness of 100μ is required, and the time required is 30 minutes.

次に、第4図水平断面図は第2図の変形例を示し、3
は絶縁塗膜03上に縦横適宜間隔の格子状に付設され一端
が通電端08に接続された第1の導電膜、4は第1の導電
膜3等の外側を被覆する第2の導電膜であり、このよう
な変形例においても、本実施例と実質的に同一の作用効
果を奏するほか、万一外力により第1の導電膜3の一部
が切断された場合、自動的に迂回路が形成されて下流側
への電力供給が維持できる特長がある。
Next, FIG. 4 is a horizontal sectional view showing a modification of FIG.
Is a first conductive film which is attached on the insulating coating film 03 in a grid pattern with appropriate vertical and horizontal intervals and one end of which is connected to the current-carrying end 08, and 4 is a second conductive film which covers the outside of the first conductive film 3 and the like. Even in such a modified example, substantially the same operation and effect as in the present embodiment are obtained, and in addition, if a part of the first conductive film 3 is cut by an external force, the detour is automatically performed. Is formed and the power supply to the downstream side can be maintained.

更に、第5図模式図は第1図の変形例を示し、5は第
2の導電膜の抵抗を下げるために、金属系,グラファイ
ト系で耐酸化性不溶性物質よりなる導電性顔料の量を増
加した塗料を第1の導電膜1等の上に直接塗装した第2
の導電膜下層、6は第2の導電膜の耐電解性を向上させ
るために膜の気密性を良くするため顔料の量を減少した
塗料を第2の導電膜下層5の上に塗装した第2の導電膜
上層であり、このような変形例においても、上記実施例
と実質的に同一の作用効果を奏するほか、第2の導電膜
の抵抗を下げ、従って第1の導電膜1の平行間隔を大き
くすることができる特長がある。
Further, the schematic diagram of FIG. 5 shows a modified example of FIG. 1, and 5 is a metal-based or graphite-based conductive pigment composed of an oxidation-resistant insoluble substance for reducing the resistance of the second conductive film. The second coating of the increased paint directly on the first conductive film 1 etc.
The conductive film lower layer 6 of the second conductive film is coated on the second conductive film lower layer 5 with a paint containing a reduced amount of pigment in order to improve the airtightness of the film in order to improve the electrolytic resistance of the second conductive film. The second conductive film is an upper layer of the second conductive film, and even in such a modified example, substantially the same action and effect as those in the above-described embodiment are obtained, and the resistance of the second conductive film is reduced, and thus the parallelism of the first conductive film 1 is improved. It has the feature that the interval can be increased.

因みに、第3図に示した要領と同一要領の海中基礎実
験を、塗料樹脂アクリル中に導電顔料として粒径45μm
以下のグラファイト粉末を体積濃度で60%混合し膜厚20
0μmとした第2の導電膜下層5に、ビニール樹脂中に
粒径45μm以下のグラファイト粉末を体積濃度で40%混
合し膜厚200μmとした第2の導電膜上層6を塗布した
ものについて行った結果、防汚有効長さlは5mであっ
た。
By the way, a basic experiment in the sea, which is the same as the procedure shown in Fig. 3, was conducted in paint resin acrylic with a particle size of 45 μm as a conductive pigment.
The following graphite powders are mixed at a volume concentration of 60% to a film thickness of 20
The second conductive film lower layer 5 having a thickness of 200 μm was applied to the second conductive film lower layer 5 having a thickness of 200 μm by mixing 40% by volume of graphite powder having a particle size of 45 μm or less in vinyl resin in a volume concentration. As a result, the antifouling effective length 1 was 5 m.

また、同上の実験で第2の導電膜下層5を塗料樹脂ア
クリル中に銅粉を体積濃度で30%混合し、膜厚200μm
とした場合の防汚有効長さlは15mであった。
Further, in the same experiment, the second conductive film lower layer 5 was mixed with 30% by volume of copper powder in paint resin acrylic, and the film thickness was 200 μm.
The antifouling effective length 1 was 15 m.

一方、第1の導電膜の上に第2の導電膜を塗装した場
合の電解耐久性を比較するために、第2の導電膜用の塗
料は塗料樹脂ビニールと導電顔料として粒径45μm以下
のグラファイト粉末を体積濃度で40%混合したものを用
いた。
On the other hand, in order to compare the electrolytic durability when the second conductive film is coated on the first conductive film, the paint for the second conductive film has a particle size of 45 μm or less as paint resin vinyl and conductive pigment. A mixture of 40% by volume of graphite powder was used.

これによると、第6図に示すように、本発明の適用に
より第2の導電膜の膜厚を100μm以上薄くできること
が判る。
According to this, as shown in FIG. 6, it is understood that the film thickness of the second conductive film can be reduced by 100 μm or more by applying the present invention.

〔発明の効果〕〔The invention's effect〕

これ等、実施例,変形例を通して説明した通り、本発
明によれば下記効果が奏せられる。
As described above with reference to the embodiments and modifications, the present invention has the following effects.

(1) 第1の導電膜をアルミ溶射膜からアルミ箔の接
着膜に変えることにより、性能は変化させることなく、
作業性を大幅に低減できる。
(1) By changing the first conductive film from an aluminum sprayed film to an adhesive film of aluminum foil, the performance does not change,
Workability can be significantly reduced.

(2) 上層用の膜厚を100μm以上薄くすることがで
きるようになり、経済性が向上する。
(2) The film thickness for the upper layer can be reduced by 100 μm or more, and the economical efficiency is improved.

要するに本発明によれば、船舶,海洋構造物等海水に
接する構造物の接水面を電気絶縁塗膜を介し被覆し比抵
抗の小さい金属又は金属酸化物の板,溶射膜,蒸着膜又
は融着膜からなりそれを平行帯状又は格子状に形成せし
めその一端に通電端が設けられている第1の導電膜と、
上記第1の導電膜の外側を被覆し耐酸化性不溶性物質と
有機バインダーとからなり上記第1の導電膜より電気抵
抗の大きい第2の導電膜と、上記第2の導電膜に対向し
鉄,銅又は炭素からなり海水中に設置された電気伝導体
と、上記第1の導電膜と上記電気伝導体との間に設置さ
れ上記第1の導電膜から上記第2の導電膜を通して上記
電気伝導体方向に直流を通電する電源装置とを具えてな
る構造物の防汚装置において、上記第1の導電膜を金属
又は金属酸化物の箔又は薄板で形成することにより、薄
厚の導電膜を迅速かつ低コストで施工する作業性及び経
済性に優れた海水に接する構造物の防汚装置を得るか
ら、本発明は産業上極めて有益なものである。
In short, according to the present invention, the water contact surface of a ship, a marine structure or the like that is in contact with seawater is covered with an electrically insulating coating film, and a metal or metal oxide plate having a small specific resistance, a sprayed film, a vapor deposition film or a fusion bond is formed. A first conductive film which is formed of a film and which is formed in a parallel band shape or a grid shape and has a current-carrying end at one end thereof;
A second conductive film that covers the outside of the first conductive film and is made of an oxidation-resistant insoluble substance and an organic binder and has a larger electric resistance than the first conductive film, and an iron that faces the second conductive film. , An electrical conductor made of copper or carbon that is placed in seawater, and the electrical conductor that is placed between the first conductive film and the electrical conductor and that passes from the first conductive film to the second conductive film. In a device for preventing soiling of a structure, which comprises a power supply device for applying a direct current to a conductor, a thin conductive film is formed by forming the first conductive film with a metal or metal oxide foil or thin plate. INDUSTRIAL APPLICABILITY The present invention is extremely useful industrially because it provides an antifouling device for a structure in contact with seawater, which is excellent in workability and economic efficiency for quick and low cost construction.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を鋼製構造物に適用した一実施例を示す
断面模式図、第2図は第1図のII−IIに沿った水平断面
図、第3図は第1図装置に関する海中基礎実験要領を示
す正面図、第4図は第2図の変形例を示す水平断面図、
第5図は第1図の変形例を示す同じく模式図、第6図は
第1図の第2の導電膜の電解耐久性の試験結果を示す図
である。 第7図は公知の海水に接する構造物の防汚装置を示す模
式図、第8図は本出願人の先願特願昭63−287190号に係
る海水に接する構造物の防汚装置を示す模式図、第9図
は第8図装置の導電有効距離を従来装置と比較して示す
線図、第10〜14図は特願平1−139973号に係るもので、
第10図はその断面模式図、第11図は第10図のII−II断面
図、第12図は第10図の海中実験要領を示す正面図、第13
図は第11図の変形例を示す同じく水平断面図、第14図は
第10図の変形例を示す同じく模式図である。 1……第1の導電膜、2……第2の導電膜、3……第1
の導電膜、4……第2の導電膜、5……第2の導電膜下
層、6……第2の導電膜上層、 01……海水、02……鋼板、03……絶縁塗膜、08……通電
端、010……陰極、011……直流電源、012……リード
線、 001……第1の導電膜、003……第1の導電膜。
FIG. 1 is a schematic sectional view showing an embodiment in which the present invention is applied to a steel structure, FIG. 2 is a horizontal sectional view taken along line II-II in FIG. 1, and FIG. 3 is related to the apparatus shown in FIG. The front view showing the basic experiment procedure in the sea, FIG. 4 is a horizontal sectional view showing a modification of FIG. 2,
FIG. 5 is a similar schematic view showing a modification example of FIG. 1, and FIG. 6 is a view showing a result of a test of electrolytic durability of the second conductive film of FIG. FIG. 7 is a schematic diagram showing a known antifouling device for a structure in contact with seawater, and FIG. 8 shows an antifouling device for a structure in contact with seawater according to Japanese Patent Application No. 63-287190 of the present applicant. Fig. 9 is a schematic diagram showing the effective conduction distance of the device of Fig. 8 in comparison with the conventional device, and Figs. 10 to 14 are related to Japanese Patent Application No. 1-139973.
FIG. 10 is a schematic sectional view thereof, FIG. 11 is a sectional view taken along line II-II of FIG. 10, and FIG. 12 is a front view showing the undersea experimental procedure of FIG.
11 is a horizontal sectional view showing a modification of FIG. 11, and FIG. 14 is a schematic view showing a modification of FIG. 1 ... first conductive film, 2 ... second conductive film, 3 ... first
Conductive film, 4 ... second conductive film, 5 ... second conductive film lower layer, 6 ... second conductive film upper layer, 01 ... seawater, 02 ... steel plate, 03 ... insulating coating film, 08 ... energizing end, 010 ... cathode, 011 ... DC power supply, 012 ... lead wire, 001 ... first conductive film, 003 ... first conductive film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 健二 長崎県長崎市飽の浦町5番7号 菱興ビ ル別館5階 長菱エンジニアリング株式 会社内 (72)発明者 堀口 勉 長崎県長崎市飽の浦町5番7号 菱興ビ ル別館5階 長菱エンジニアリング株式 会社内 (72)発明者 山崎 弘 長崎県長崎市飽の浦町5番7号 菱興ビ ル別館5階 長菱エンジニアリング株式 会社内 (56)参考文献 特開 昭64−87791(JP,A) 特開 昭63−101464(JP,A) 特開 平2−225574(JP,A) 特開 昭54−110588(JP,A) 特開 平2−147493(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Ueda Kenji Ueda 5-7, Atsunoura-machi, Nagasaki-shi, Nagasaki Ryoko Building Annex, 5th floor, Nagahishi Engineering Co., Ltd. No. 5-7 Ryoko Building Annex, 5th floor, within Nagahishi Engineering Co., Ltd. (72) Inventor Hiroshi Yamazaki No. 5 Satinoura-cho, Nagasaki City, Nagasaki Prefecture, No. 5 Ryoko Building, Annex, 5th floor Within Choryo Engineering Co., Ltd. (56) References JP-A 64-87791 (JP, A) JP-A 63-101464 (JP, A) JP-A 2-225574 (JP, A) JP-A 54-110588 (JP, A) JP-A 2 -147493 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】船舶,海洋構造物等海水に接する構造物の
接水面を電気絶縁塗膜を介し被覆し比抵抗の小さい金属
又は金属酸化物の板,溶射膜,蒸着膜又は融着膜からな
りそれを平行帯状又は格子状に形成せしめその一端に通
電端が設けられている第1の導電膜と、上記第1の導電
膜と、上記第1の導電膜の外側を被覆し耐酸化性不溶性
物質と有機バインダーとからなり上記第1の導電膜より
電気抵抗の大きい第2の導電膜と、上記第2の導電膜に
対向し鉄,銅又は炭素からなり海水中に設置された電気
伝導体と、上記第1の導電膜と上記電気伝導体との間に
設置され上記第1の導電膜から上記第2の導電膜を通し
て上記電気伝導体方向に直流を通電する電源装置とを具
えてなる構造物の防汚装置において、上記第1の導電膜
を金属又は金属酸化物の箔又は薄板で形成することを特
徴とする海水に接する構造物の防汚装置。
1. From a metal or metal oxide plate, a sprayed film, a vapor-deposited film, or a fusion-bonded film, which has a low specific resistance by covering the water contact surface of a ship, a marine structure or the like which is in contact with seawater with an electrically insulating coating film. A first conductive film having a current-conducting end formed at one end thereof by forming it in a parallel band shape or a grid shape, the first conductive film, and the outer side of the first conductive film to cover the oxidation resistance. A second conductive film made of an insoluble substance and an organic binder and having a larger electric resistance than the first conductive film, and an electrically conductive member made of iron, copper or carbon facing the second conductive film and placed in seawater. A power supply device that is installed between the first conductive film and the electric conductor and that applies a direct current from the first conductive film through the second conductive film toward the electric conductor. In the antifouling device for a structure, the first conductive film is made of metal or metal acid. Antifouling apparatus of the structure in contact with seawater, and forming a foil or sheet of an object.
JP3319590A 1990-02-14 1990-02-14 Antifouling equipment for structures in contact with seawater Expired - Fee Related JP2505608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3319590A JP2505608B2 (en) 1990-02-14 1990-02-14 Antifouling equipment for structures in contact with seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3319590A JP2505608B2 (en) 1990-02-14 1990-02-14 Antifouling equipment for structures in contact with seawater

Publications (2)

Publication Number Publication Date
JPH03235793A JPH03235793A (en) 1991-10-21
JP2505608B2 true JP2505608B2 (en) 1996-06-12

Family

ID=12379704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3319590A Expired - Fee Related JP2505608B2 (en) 1990-02-14 1990-02-14 Antifouling equipment for structures in contact with seawater

Country Status (1)

Country Link
JP (1) JP2505608B2 (en)

Also Published As

Publication number Publication date
JPH03235793A (en) 1991-10-21

Similar Documents

Publication Publication Date Title
KR930008997B1 (en) Anti-fouling device for afloaters
US7025013B1 (en) Multilayered submersible structure with fouling inhibiting characteristic
JP2505608B2 (en) Antifouling equipment for structures in contact with seawater
JPH0814036B2 (en) Antifouling equipment for structures in contact with seawater
JP3145390B2 (en) Conductive film for seawater electrolytic antifouling equipment
JPS6473094A (en) Method for preventing corrosion of steel structure in seawater
JP3207718B2 (en) Marine organism adhesion prevention coating
JP2575866B2 (en) Antifouling equipment for structures in contact with seawater
JP2601807B2 (en) Antifouling device and antifouling / anticorrosion device for structures in contact with seawater
JPS63101464A (en) Electrically conductive coating film for use in electrolysis of sea water
JPH02279772A (en) Anti-fouling apparatus for structure brought into contact with sea water
JPS61136689A (en) Device for preventing sticking of marine life
JP2505555B2 (en) Antifouling equipment for offshore structures
JPH0495597A (en) Pollution controller for structure adjoining to seawater
JPH0597091A (en) Fouling preventing device for structure contacting with sea water
JP2809351B2 (en) Antifouling and anticorrosion methods for hull skin in contact with seawater
JPH02196868A (en) Antifouling device for structure contacting with sea water
JP2915618B2 (en) Seawater electrolytic antifouling equipment for seawater contact structures
JPH03125690A (en) Antifouling device for construction touching seawater
JP2557936Y2 (en) Seawater electrolytic antifouling equipment
JPH03132495A (en) Contamination preventive device for structure in contact with sea water
JPH03235792A (en) Corrosion preventing contamination preventing device for stern part
JP2623407B2 (en) Shaft grounding equipment for ships
JPH0752167Y2 (en) Replaceable energizing antifouling cover for offshore structures
JPS6289884A (en) Apparatus for preventing corrosion of steel stock

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees