[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2504595B2 - Compression type heat pump device - Google Patents

Compression type heat pump device

Info

Publication number
JP2504595B2
JP2504595B2 JP1322309A JP32230989A JP2504595B2 JP 2504595 B2 JP2504595 B2 JP 2504595B2 JP 1322309 A JP1322309 A JP 1322309A JP 32230989 A JP32230989 A JP 32230989A JP 2504595 B2 JP2504595 B2 JP 2504595B2
Authority
JP
Japan
Prior art keywords
load
temperature
control
temperature control
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1322309A
Other languages
Japanese (ja)
Other versions
JPH03181750A (en
Inventor
敏和 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1322309A priority Critical patent/JP2504595B2/en
Publication of JPH03181750A publication Critical patent/JPH03181750A/en
Application granted granted Critical
Publication of JP2504595B2 publication Critical patent/JP2504595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、温調対象を冷却又は加熱して温調するの
に、その温調負荷に応じて圧縮機をインバータ制御する
インバータ制御手段を設けた圧縮式ヒートポンプ装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention provides an inverter control means for inverter-controlling a compressor according to a temperature control load for cooling or heating a temperature control target to control the temperature. The present invention relates to a provided compression heat pump device.

〔従来の技術〕[Conventional technology]

上記の如き圧縮式ヒートポンプ装置では、温調負荷に
応じて圧縮機をインバータ制御するにあたり圧縮機保護
上の理由で圧縮機の下限回転数が存在することから、温
調負荷についてインバータ制御の対応下限負荷値(換言
すれば、インバータ制御における出力周波数の下限値)
が存在し、この対応下限負荷値よりも温調負荷が小さい
過小負荷の状況では、圧縮機のインバータ制御による温
調出力の調整ができなくなることに対し、従来、このよ
うな過小負荷状況ではインバータ制御に代えて、温調負
荷に応じた圧縮機のON−OFF制御を実施するようにした
ものがある。
In the compression heat pump device as described above, there is a lower limit rotation speed of the compressor for the purpose of protecting the compressor in controlling the inverter according to the temperature control load. Load value (in other words, lower limit value of output frequency in inverter control)
However, under the condition that the temperature control load is smaller than the corresponding lower limit load value, the temperature control output cannot be adjusted by the inverter control of the compressor. In some cases, instead of the control, ON-OFF control of the compressor according to the temperature control load is performed.

第4図及び第5図は夫々、この種の従来装置の装置構
成を示し、第4図は流路7における循環流体を蒸発器4
の吸熱機能により冷却温調する場合の装置構成、また、
第5図は流路7における循環流体を凝縮器2の放熱機能
により加熱温調する場合の装置構成を示す。
FIGS. 4 and 5 respectively show the device configuration of a conventional device of this type, and FIG.
Device configuration when cooling temperature is controlled by the heat absorption function of
FIG. 5 shows an apparatus configuration in which the circulating fluid in the flow path 7 is heated and controlled by the heat radiation function of the condenser 2.

第4図及び第5図において、S1は温調負荷に応じた圧
縮機制御のための制御指標として蒸発器4の冷却部や凝
縮器2の加熱部を通過した循環流体の温度(すなわち調
整温度)を検出する温度センサ、12はこの温度センサS1
の検出温度に基づき圧縮機1をインバータ制御するイン
バータ制御器、19はインバータ制御に代えての補助制御
として温度センサS1の検出温度に基づき圧縮機1をON−
OFF制御するON−OFF制御器、11は回転センサS2により検
出されるインバータ制御状態での圧縮機回転数が下限回
転数まで低下したとき、温調負荷がインバータ制御器12
の対応下限負荷値以上になったと判定して、圧縮機制御
をインバータ制御器12によるインバータ制御から上記の
ON−OFF制御器19によるON−OFF制御に切り換える制御切
換用の判定手段である。
In FIG. 4 and FIG. 5, S 1 is a control index for controlling the compressor according to the temperature control load, and the temperature of the circulating fluid that has passed through the cooling part of the evaporator 4 and the heating part of the condenser 2 (that is, adjustment). Temperature sensor for detecting temperature), 12 is this temperature sensor S 1
An inverter controller that controls the compressor 1 based on the detected temperature of the compressor 1, 19 is an auxiliary control instead of the inverter control, and the compressor 1 is turned on based on the detected temperature of the temperature sensor S 1.
An ON-OFF controller for OFF control, 11 is an inverter controller 12 when the temperature control load detected by the rotation sensor S 2 and the compressor speed in the inverter control state drops to the lower limit speed.
Corresponding lower limit load value or more, it is determined that the compressor control from the inverter control by the inverter controller 12
It is a judgment means for control switching for switching to ON-OFF control by the ON-OFF controller 19.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、ON−OFF制御の場合、頻繁なON−OFFのために
圧縮機や圧縮機用モータの耐用年数が低下する問題があ
り、また、圧縮機のON−OFFによる調整温度の変動が大
きいため、温調精度がインバータ制御を実施する通常負
荷状況に比べ過小負荷状況において大きく低下する問題
があった。
However, in the case of ON-OFF control, there is a problem that the useful life of the compressor and compressor motor decreases due to frequent ON-OFF, and there is a large fluctuation in the adjustment temperature due to ON-OFF of the compressor. However, there is a problem that the temperature control accuracy is greatly reduced in the underload condition as compared with the normal load condition in which the inverter control is executed.

殊に、温調精度の低下については、ON−OFF制御にお
いて余り短い周期でON−OFFを行うと圧縮機用モータを
焼損する危険性があって、ON−OFFの周期をある程度以
上の長さに制限する必要があることから、ON期間及びOF
F期間の夫々で生じる調整温度変化がさらに大きなもの
となり、このため、上記温調精度の低下が一層顕著なも
のとなっていた。
In particular, regarding the decrease in temperature control accuracy, there is a risk of burning the compressor motor if ON-OFF is performed with a too short cycle in the ON-OFF control, and the ON-OFF cycle is longer than a certain length. ON period and OF
The change in the adjustment temperature that occurs in each of the F periods becomes even larger, and thus the decrease in the temperature adjustment accuracy becomes more remarkable.

本発明の目的は、以上の実情に鑑み、温調負荷がイン
バータ制御の対応下限負荷値よりも小さい過小負荷状況
での温調を、圧縮機や圧縮機用モータの耐用年数低下を
招くことなく、また、高精度に行えるようにする点にあ
る。
In view of the above circumstances, the object of the present invention is to control the temperature in an underload condition in which the temperature control load is smaller than the corresponding lower limit load value of the inverter control without causing a reduction in the service life of the compressor or the compressor motor. Also, there is a point to be able to perform with high accuracy.

〔課題を解決するための手段〕[Means for solving the problem]

・請求項1に係る発明の特徴構成は、 温調対象を冷却又は加熱して温調するのに、その温調
負荷に応じて圧縮機をインバータ制御するインバータ制
御手段を設ける構成において、 温調対象と負荷増大側に状態変化させる負荷増強手段
と、 この負荷増強手段が非作用の状態での温調負荷が前記
インバータ制御手段の対応下限負荷値よりも小さい過小
負荷状況か否かを判定する負荷判定手段と、 この負荷判定手段の判定結果に基づいて、前記の過小
負荷状況のときに前記負荷増強手段を作用させる補助制
御手段を設けたことにある。
The feature of the invention according to claim 1 is that the temperature control is performed by cooling or heating an object to be temperature-controlled, and an inverter control means for inverter-controlling the compressor according to the temperature control load is provided. A load increasing means for changing the state to the target and the load increasing side, and it is determined whether or not the temperature control load in a state in which the load increasing means is inactive is an underload condition smaller than the corresponding lower limit load value of the inverter control means. The load determining means and the auxiliary control means for actuating the load increasing means in the underload situation are provided based on the determination result of the load determining means.

・請求項2に係る発明の特徴構成は、請求項1に係る発
明において、 前記補助制御手段は、前記の過小負荷状況においては
温調負荷を前記インバータ制御手段の対応下限負荷値以
上の一定目標値に保つように、前記負荷増強手段の作用
度を調整する構成としてあることにある。
The characteristic configuration of the invention according to claim 2 is the invention according to claim 1, wherein the auxiliary control means sets the temperature control load to a constant target equal to or higher than the corresponding lower limit load value of the inverter control means in the underload situation. The degree of action of the load increasing means is adjusted so as to maintain the value.

〔作 用〕[Work]

・請求項1に係る発明では、負荷増強手段を作用させて
温調対象を負荷増大側に状態変化させることにより、作
為的に温調負荷を本来の温調負荷(すなわち、負荷増強
手段が非作用の状態での温調負荷)よりも増大させる
が、本来の温調負荷そのものがインバータ制御手段の対
応下限負荷値以上である場合には、負荷増強手段を作用
させず、本来の温調負荷のままで、その温調負荷に応じ
てインバータ制御手段により圧縮機をインバータ制御す
ることで、温調出力と温調負荷とのバランス調整を行
う。
In the invention according to claim 1, the load control means is actuated to change the state of the temperature control target to the load increasing side, so that the temperature control load is intentionally changed to the original temperature control load (that is, the load control means is not However, if the original temperature control load itself is equal to or higher than the corresponding lower limit load value of the inverter control means, the load increasing means is not operated and the original temperature control load is applied. As it is, the inverter control means performs inverter control of the compressor in accordance with the temperature control load, thereby adjusting the balance between the temperature control output and the temperature control load.

これに対し、負荷状況について、本来の温調負荷(負
荷増強手段が非作用の状態での温調負荷)がインバータ
制御手段の対応下限負荷値よりも小さい過小負荷状況で
あると負荷判定手段が判定すると、この判定に基づき補
助制御手段により負荷増強手段を作用させることで温調
負荷を本来の温調負荷よりも増大させ、これにより、こ
の過小負荷状況についても、装置上ではインバータ制御
手段の対応下限負荷値以上の温調負荷での温調運転、す
なわち、下限回転数以上の圧縮機運転を継続したままで
の温調出力と温調負荷とのバランス調整を可能にする。
On the other hand, regarding the load situation, the load determination means determines that the original temperature regulation load (the temperature regulation load when the load increasing means is inactive) is smaller than the corresponding lower limit load value of the inverter control means. When the determination is made, the auxiliary control means actuates the load intensifying means based on this determination to increase the temperature control load above the original temperature control load. A temperature adjustment operation with a temperature adjustment load equal to or higher than the corresponding lower limit load value, that is, a balance adjustment between the temperature adjustment output and the temperature adjustment load while continuing the compressor operation equal to or higher than the lower limit rotation speed is enabled.

・請求項2に係る発明では、前記の過小負荷状況におい
て、温調負荷をインバータ制御手段の対応下限負荷値以
上の一定目標値に保つように、負荷増強手段の作用度を
調整する(すなわち、本来の温調負荷からの作為的負荷
増大量を調整する)ことにより、本来の温調負荷が比較
的大きい場合には負荷増強手段による温調負荷の増大量
が小さくなるようにし、これにより、過小負荷状況にお
いて本来の温調負荷の大小に係わらず常に一定の大きな
温調負荷増大を行うに比べ、作為的に温調負荷を増大さ
せた上で温調を行うといったエネルギ浪費(すなわち、
冷却温調の場合では温調対象をあえて加熱した上で冷却
温調するといったエネルギ浪費、また、加熱温調の場合
では温調対象をあえて冷却した上で加熱温調するといっ
たエネルギ浪費)を少なくする。
In the invention according to claim 2, in the above-mentioned underload condition, the degree of action of the load intensifying means is adjusted so as to maintain the temperature control load at a constant target value equal to or higher than the corresponding lower limit load value of the inverter control means (that is, By adjusting the amount of artificial load increase from the original temperature control load), when the original temperature control load is relatively large, the increase amount of the temperature control load by the load intensifying means becomes small. In comparison with the case where the temperature control load is constantly increased regardless of the size of the original temperature control load in an excessively low load situation, energy is wasted by performing temperature control after the temperature control load is intentionally increased (that is,
In the case of cooling temperature control, less energy is wasted by intentionally heating the temperature control target and then cooling temperature control, and in the case of heating temperature control, less energy waste is required by intentionally cooling the temperature control target and then heating temperature control). To do.

なお、このエネルギ浪費の低減効果は、上記の一定目
標値としてインバータ制御手段の対応下限負荷値に等し
い値を採用した場合に最大となる。
The effect of reducing the energy waste is maximized when a value equal to the corresponding lower limit load value of the inverter control means is adopted as the constant target value.

〔発明の効果〕〔The invention's effect〕

・請求項1に係る本発明によれば、本来の温調負荷がイ
ンバータ制御手段の対応下限負荷値よりも小さい過小負
荷状況においても、下限回転数以上の圧縮機運転を継続
したままで温調出力と温調負荷とのバランス調整を行え
るから、従来装置の如きON−OFF制御の採用を不要にし
て、頻繁なON−OFFによる圧縮機や圧縮機用モータの耐
用年数の低下を防止でき、また、圧縮機のON−OFFによ
る調整温度の変動を無くして過小負荷状況での温調精度
を向上し得る。
According to the present invention according to claim 1, even in an underload condition in which the original temperature control load is smaller than the corresponding lower limit load value of the inverter control means, the temperature control is performed while the compressor operation above the lower limit rotation speed is continued. Since it is possible to adjust the balance between the output and the temperature control load, it is not necessary to use ON-OFF control as in conventional devices, and it is possible to prevent the useful life of compressors and compressor motors from decreasing due to frequent ON-OFF. Further, it is possible to improve the temperature control accuracy in an underload condition by eliminating the fluctuation of the regulated temperature due to ON / OFF of the compressor.

因みに、上記の如き過小負荷状況において、下限回転
数以上の圧縮機運転を継続しながら、温調出力と温調負
荷とのバランス調整を可能にするのに、別方式として
は、特開昭62−196555号公報に示されるように、冷却温
調の場合につき、圧縮機の低圧側の検出圧力に応じて、
圧縮機をインバータ制御し、かつ、蒸発器における冷却
温調対象の検出温度に応じて、蒸発器出口の電動弁によ
り冷媒循環量を調整するといった構成で、圧縮機が下限
回転数以下となるような上記の如き過小負荷状況が生じ
た場合には、圧縮機を強制的に下限回転数に保持し、ま
た、この保持により圧縮機の低圧側圧力がさらに低下傾
向となることに対し、圧縮機の低圧側と高圧側とを結ぶ
バイパス管を開いて高圧ガスを低圧側に導くことによ
り、低圧側圧力が停止用圧力スイッチの設定値にまで低
下しないようにして、圧縮機の継続運転を可能にしたも
のがある。
By the way, in the above-mentioned underload condition, another method is available to enable the balance adjustment between the temperature control output and the temperature control load while continuing the compressor operation at the lower limit rotation speed or more. As shown in Japanese Patent Laid-Open No. 196555, in the case of cooling temperature control, depending on the detected pressure on the low pressure side of the compressor,
The compressor is controlled by an inverter, and the refrigerant circulation amount is adjusted by an electrically operated valve at the evaporator outlet according to the detected temperature of the cooling temperature control target in the evaporator. When the above-mentioned underload situation occurs, the compressor is forcibly held at the lower limit rotation speed, and this holding causes the pressure on the low pressure side of the compressor to further decrease. By opening the bypass pipe connecting the low-pressure side and the high-pressure side of the high-pressure gas and guiding the high-pressure gas to the low-pressure side, the pressure on the low-pressure side does not drop to the set value of the stop pressure switch, and the compressor can continue operating. There is something I did.

しかし、このような別方式では、バイパス管の開閉に
よる冷媒回路側での冷媒循環経路の切り換えを伴う為、
また、この経路切り換えが、圧力差の大きい圧縮機の低
圧側と高圧側との短絡及び短絡遮断である為、通常負荷
状況での運転と過小負荷状況での運転との切り換えの際
に、冷媒回路の運転が不安になり易く、殊に、過小負荷
状況と通常負荷状況との境目において冷却温調負荷が変
動するようなときには、バイパス管の開閉が繰り返され
て冷媒循環経路の切り換えが頻繁となることで、この不
安定化が特に顕著となり、そして、このような運転切り
換え時における冷媒回路運転の不安定化の為に、装置耐
用年数の低下や温調精度の低下を招く。
However, such another method involves switching the refrigerant circulation path on the refrigerant circuit side by opening and closing the bypass pipe,
Further, since this path switching is a short-circuit and short-circuit interruption between the low pressure side and the high pressure side of the compressor with a large pressure difference, the refrigerant is switched between the operation under the normal load condition and the operation under the underload condition. The operation of the circuit tends to become uneasy, especially when the cooling temperature control load fluctuates at the boundary between the underload condition and the normal load condition, the opening and closing of the bypass pipe is repeated and the refrigerant circulation path is frequently switched. As a result, this instability becomes particularly noticeable, and the instability of the refrigerant circuit operation at the time of such operation switching causes a decrease in the service life of the device and a decrease in the temperature control accuracy.

また、バイパス管を開いた過小負荷状況での運転にお
いて、バイパス管の容量調整弁により、低圧側への高圧
ガスの短絡還流量を調整するにしても、上記の如く圧縮
機の低圧側と高圧側との圧力差が大きいことから、短絡
還流量を弁により精度良くかつ安定的に調整することは
難しくて、冷媒の循環状態(特に冷媒回路における圧力
分布)が変動し易く、また、この変動により凝縮器にお
ける放熱能力の変動といったことにも付随し、この為、
蒸発器出口の電動弁で冷媒循環量を調整するにしても、
その調整が不安定となって、やはり、通常負荷状況での
運転に比べ、過小負荷状況での運転において温調精度が
低下してしまう。
In addition, even when the short-circuit recirculation amount of high-pressure gas to the low-pressure side is adjusted by the capacity adjustment valve of the bypass pipe during operation in an under-loaded condition in which the bypass pipe is open, the high-pressure side and high-pressure side of the compressor are Since the pressure difference with the side is large, it is difficult to accurately and stably adjust the short-circuit recirculation amount with a valve, and the circulation state of the refrigerant (particularly the pressure distribution in the refrigerant circuit) easily fluctuates. Therefore, it also accompanies the fluctuation of the heat radiation capacity in the condenser.
Even if you adjust the refrigerant circulation amount with the electric valve at the evaporator outlet,
As a result, the adjustment becomes unstable, and as a result, the temperature control accuracy decreases in the operation under the underload condition as compared with the operation under the normal load condition.

この点、請求項1に係る発明によれば、圧縮機の低圧
側と高圧側を短絡するなどの冷媒回路側の切り換えは行
うことなく、負荷増強手段による温調負荷そのものの増
大をもって、過小負荷状況における下限回転数以上での
圧縮機運転を可能にするから、上記の如き運転切り換え
に伴う冷媒回路運転の不安定化や、過小負荷状況での運
転における冷媒循環状態の変動を回避でき、このことか
ら、上記の別方式に比べ、装置耐久性の向上、及び、過
小負荷状況での温調精度の向上という所期目的を一層効
果的に達成することができる。
In this respect, according to the first aspect of the present invention, the under load is increased by increasing the temperature control load itself by the load increasing means without switching the refrigerant circuit side such as short-circuiting the low pressure side and the high pressure side of the compressor. Since it is possible to operate the compressor at the lower limit rotation speed or more in the situation, it is possible to avoid the instability of the refrigerant circuit operation due to the operation switching as described above and the fluctuation of the refrigerant circulation state in the operation in the underload condition. Therefore, compared with the other method described above, it is possible to more effectively achieve the intended purpose of improving the durability of the device and improving the accuracy of temperature control in an underloaded condition.

・請求項2に係る発明によれば、請求項1に係る発明の
上記効果に加え、エネルギ浪費の防止により運転コスト
の上昇を抑止できる。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, an increase in operating cost can be suppressed by preventing energy waste.

〔実施例〕〔Example〕

・第1実施例 第1図は冷却温調運転での装置構成を示し、5は圧縮
機1、凝縮器2、膨張弁3、蒸発器4の順に冷媒を循環
させる冷媒流路、7は熱負荷部6と蒸発器4の熱交換部
とにわたり温調対象空気を循環させる負荷側流路、8aは
凝縮器2の熱交換部に大気を導く大気供給路、8bは凝縮
器2の熱交換部から熱交換済の大気を導出する大気放出
路であり、凝縮器2においてその放熱作用により大気に
対し放熱しながら、蒸発器4においてその吸熱作用によ
り温調対象空気を冷却温調する圧縮式ヒートポンプ利用
の冷却装置としてある。
First Embodiment FIG. 1 shows the device configuration in the cooling temperature control operation, 5 is a refrigerant flow path for circulating the refrigerant in the order of the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4, and 7 is heat. A load-side flow path that circulates air to be temperature-controlled over the load section 6 and the heat exchange section of the evaporator 4, 8a is an atmosphere supply path that guides the atmosphere to the heat exchange section of the condenser 2, and 8b is heat exchange of the condenser 2. Is a discharge path for releasing the heat-exchanged atmosphere from the section, and is a compression type that cools the temperature of the temperature-controlled air by the endothermic action of the evaporator 4 while radiating heat to the atmosphere by the heat radiating action of the condenser 2. It is used as a cooling device using a heat pump.

なお、この冷却装置は上記の熱負荷部6を室内とし、
かつ、温調対象空気を室内空気とする使用形態において
冷房機となる。
In addition, in this cooling device, the above-mentioned heat load part 6 is made into a room,
In addition, the air conditioner serves as the air conditioner in the usage mode in which the temperature-controlled air is the indoor air.

9は蒸発器4の熱交換部へ送るべく熱負荷部6から導
出した温調対象空気の一部を外部へ放出する排気路、10
は排気路9への一部放出を経て蒸発器4の熱交換部へ送
る温調対象空気に対し大気(外気)を混入する換気路で
あり、これら排気路9及び換気路10には流量調整弁V1,V
2を介装してある。
Reference numeral 9 denotes an exhaust passage for discharging a part of the temperature control target air derived from the heat load portion 6 to the heat exchange portion of the evaporator 4, and 10
Is a ventilation path that mixes the atmosphere (outside air) with the temperature-controlled air that is sent to the heat exchange section of the evaporator 4 after being partially discharged to the exhaust path 9. Valve V 1 , V
2 is installed.

S1は蒸発器4の熱交換部から送出される温調対象空気
の温度(すなわち、冷却温調後の温度)を検出する温度
センサ、S2は圧縮機1の回転数を検出する回転数センサ
であり、これらセンサS1,S2の検出情報に基づき、圧縮
機1及び上記流量調整弁V1,V2を自動操作する制御構成
として、次の(イ)〜(ニ)の制御手段を装備してあ
る。
S 1 is a temperature sensor that detects the temperature of the temperature-controlled air sent from the heat exchange section of the evaporator 4 (that is, the temperature after cooling temperature control), and S 2 is the rotation speed that detects the rotation speed of the compressor 1. As a control configuration for automatically operating the compressor 1 and the flow rate adjusting valves V 1 and V 2 based on the detection information of the sensors S 1 and S 2 , the following control means (a) to (d) are provided. Equipped.

(イ)回転数検出センサS2、及び、後述の制御切換手段
14からの情報に基づいてインバータ制御と補助制御との
切り換えを統括指示をする手段であって、インバータ制
御状態では、回転数検出センサS2の検出回転数が圧縮機
1の下限回転数(一般に30rpm程度)よりも大きいと
き、インバータ制御の継続実施を指示し、かつ、そのイ
ンバータ制御の実施状態において回転数検出センサS2
検出回転数が圧縮機1の下限回転数に低下すると、過小
負荷状況になったとして補助制御を指示する制御切換用
の判定手段11、 (ロ)判定手段11からインバータ制御が指示されると、
そのインバータ制御として、蒸発器4の熱交換部から送
出される温調対象空気の温度を設定温度範囲内に維持す
るように、温度センサS1の検出温度に基づき圧縮機1を
インバータ制御(具体的には、圧縮機用電動モータの回
転数をインバータ制御)するインバータ制御器12、 (ハ)判定手段11から補助制御が指示されると、その補
助制御として、蒸発器4の熱交換部から送出される温調
対象空気の温度を設定温度範囲内に維持するように、温
度センサS1の検出温度に基づき両流量調整弁V1,V2を開
度制御する補助制御器13、 (ニ)補助制御器13による補助制御状態において、流両
調整弁V1,V2が最小開度(最小流量状態)となり、か
つ、温度センサS1の検出温度が前記設定温度範囲の上限
を上回ると、通常負荷状況になったとして判定手段11に
補助制御からインバータ制御への復帰を指示するインバ
ータ制御復帰用の制御切換手段14。
(B) Rotation speed detection sensor S 2 and control switching means described later
It is a means for instructing the switching between the inverter control and the auxiliary control based on the information from 14, and in the inverter control state, the rotation speed detected by the rotation speed detection sensor S 2 is the lower limit rotation speed of the compressor 1 (generally, 30 rpm), an instruction to continue the inverter control is issued, and when the rotational speed detected by the rotational speed detection sensor S 2 drops to the lower limit rotational speed of the compressor 1 in the inverter control execution state, an excessive underload occurs. When the situation is a situation, the determination means 11 for control switching for instructing the auxiliary control, (b) When the inverter control is instructed from the determination means 11,
As the inverter control, the compressor 1 is inverter-controlled (specifically, based on the temperature detected by the temperature sensor S 1 so that the temperature of the temperature-controlled air sent from the heat exchange section of the evaporator 4 is maintained within a set temperature range. Specifically, when the auxiliary control is instructed from the inverter controller 12 for controlling the rotation speed of the compressor electric motor (inverter control), and (c) the determination means 11, the auxiliary control is performed from the heat exchange section of the evaporator 4. Auxiliary controller 13, which controls the opening of both flow rate adjusting valves V 1 , V 2 based on the temperature detected by temperature sensor S 1 so that the temperature of the temperature-controlled air to be sent out is maintained within the set temperature range, ) In the auxiliary control state by the auxiliary controller 13, when the flow control valves V 1 and V 2 have the minimum opening (minimum flow rate state) and the temperature detected by the temperature sensor S 1 exceeds the upper limit of the set temperature range. , The judgment means 11 is supplemented when the normal load condition is reached. Inverter control return control switching means 14 for instructing return from auxiliary control to inverter control.

なお、インバータ制御状態では両流量調整弁V1,V2
全閉とし、また、補助制御状態では圧縮機回転数を下限
回転数に維持するようにしてある。
In the inverter control state, both flow rate adjusting valves V 1 and V 2 are fully closed, and in the auxiliary control state, the compressor rotation speed is maintained at the lower limit rotation speed.

つまり、上記の装置構成において、インバータ制御器
12は、冷却温調の負荷に応じて圧縮器1をインバータ制
御するインバータ制御手段を構成し、 換気路10及びそれに介装の流量調整弁V2は、温調対象
空気への外気混入という形態で、温調対象空気を負荷増
大側に状態変化(すなわち温度上昇)させる負荷増強手
段を構成し、 判定手段11及び制御切換手段14は、上記の負荷増強手
段が非作用の状態での冷却温調の負荷が前記インバータ
制御手段の対応下限負荷値よりも小さい過負荷状況であ
るか否かを判定する負荷判定手段を構成し そして、補助制御器13は、この負荷判定手段の判定結
果に基づき、上記の過負荷状況において負荷増強手段を
作用させるとともに、冷却温調の負荷を前記インバータ
制御手段の対応下限負荷値に等しい一定目標値に保つよ
うに負荷増強手段の作用度を調整する補助制御手段を構
成する。
That is, in the above device configuration, the inverter controller
Reference numeral 12 constitutes an inverter control means for controlling the compressor 1 by an inverter according to the load of the cooling temperature control, and the ventilation path 10 and the flow rate adjusting valve V 2 provided therein are such that the outside air is mixed into the temperature control target air. Thus, the load increasing means for changing the state of the temperature-controlled air to the load increasing side (that is, temperature increase) is configured, and the determining means 11 and the control switching means 14 are the cooling temperature in a state where the load increasing means is inactive. Configure a load determination means for determining whether or not the key load is an overload condition smaller than the corresponding lower limit load value of the inverter control means, and the auxiliary controller 13 is based on the determination result of the load determination means. An auxiliary system for operating the load intensifying means in the above-mentioned overload condition and adjusting the degree of action of the load intensifying means so as to keep the cooling temperature control load at a constant target value equal to the corresponding lower limit load value of the inverter control means. Configure the means.

・第2実施例 第2図は加熱温調運転での装置構成を示し、5は圧縮
機1、凝縮器2、膨張弁3、蒸発器4の順に冷媒を循環
させる冷媒流路、7は熱負荷部6と凝縮器2の熱交換部
とにわたり温調対象空気を循環させる負荷側流路、8aは
蒸発器4の熱交換部に大気を導く大気供給路、8bは蒸発
器4の熱交換部から熱交換済の大気を導出する大気放出
路であり、蒸発器4においてその吸熱作用により大気か
ら吸熱しながら、凝縮器2においてその放熱(加熱)作
用により温調対象空気を加熱温調する圧縮式ヒートポン
プ利用の加熱装置としてある。
Second Embodiment FIG. 2 shows a device configuration in the heating temperature control operation, 5 is a refrigerant flow path for circulating the refrigerant in the order of the compressor 1, the condenser 2, the expansion valve 3 and the evaporator 4, and 7 is heat. A load side flow path that circulates the temperature-controlled air over the load section 6 and the heat exchange section of the condenser 2, 8a is an atmosphere supply path that guides the atmosphere to the heat exchange section of the evaporator 4, and 8b is heat exchange of the evaporator 4. Is an atmosphere discharge path for leading out the heat-exchanged atmosphere from the portion, and heat-adjusts the temperature of the temperature-controlled air by the heat radiating (heating) function of the condenser 2 while absorbing heat from the atmosphere by the heat absorbing function of the evaporator 4. It is a heating device using a compression heat pump.

なお、この加熱装置は上記の熱負荷部6を室内とし、
かつ、温調対象空気を室内空気とする使用形態において
暖房機となる。
In addition, in this heating device, the above-mentioned heat load unit 6 is made into a room,
Moreover, it becomes a heater in a usage pattern in which the temperature-controlled air is indoor air.

9は凝縮器2の熱交換部へ送るべく熱負荷部6から導
出した温調対象空気の一部を外部へ放出する排気路、10
は排気路9への一部放出を経て凝縮器2の熱交換部へ送
る温調対象空気に対し大気(外気)を混入する換気路で
あり、これら排気路9及び換気路10には流量調整弁V1,V
2を介装してある。
Reference numeral 9 denotes an exhaust path for discharging a part of the temperature control target air derived from the heat load section 6 to the heat exchange section of the condenser 2, and 10
Is a ventilation path that mixes the atmosphere (outside air) with the temperature-controlled air that is sent to the heat exchange section of the condenser 2 after being partially discharged to the exhaust path 9. Valve V 1 , V
2 is installed.

S1は凝縮器2の熱交換部から送出される温調対象空気
の温度(すなわち、加熱温調後の温度)を検出する温度
センサ、S2は圧縮機1の回転数を検出する回転数センサ
であり、これらセンサS1,S2の検出情報に基づき、圧縮
機1及び上記流量調整弁V1,V2を自動操作する制御構成
として、次の(イ′)〜(ニ′)の制御手段を装備して
ある。
S 1 is a temperature sensor that detects the temperature of the temperature-controlled air sent from the heat exchange section of the condenser 2 (that is, the temperature after heating temperature control), and S 2 is the rotation speed that detects the rotation speed of the compressor 1. A sensor is a control configuration for automatically operating the compressor 1 and the flow rate adjusting valves V 1 and V 2 based on the detection information of the sensors S 1 and S 2 , and has the following (a ′) to (d ′). Equipped with control means.

(イ′)の回転数検出センサS2、及び、後述の制御切換
手段14からの情報に基づいてインバータ制御と補助制御
との切り換えを統括指示する手段であって、インバータ
制御状態では、回転数検出センサS2の検出回転数が圧縮
機1の下限回転数(一般に30rpm程度)よりも大きいと
き、インバータ制御の継続実施を指示し、かつ、そのイ
ンバータ制御の実施状態において回転数検出センサS2
検出回転数が圧縮機1の下限回転数に低下すると、過小
負荷状況になったとして補助制御を指示する制御切換用
の判定手段11、 (ロ′)判定手段11からインバータ制御が指示される
と、そのインバータ制御として、凝縮器2の熱交換部か
ら送出される温調対象空気の温度を設定温度範囲内に維
持するように、温度センサS1の検出温度に基づき圧縮機
1をインバータ制御(具体的には、圧縮機用電動モータ
の回転数をインバータ制御)するインバータ制御器12、 (ハ′)判定手段11から補助制御が指示されると、その
補助制御として、凝縮器2の熱交換部から送出される温
調対象空気の温度を設定温度範囲内に維持するように、
温度センサS1の検出温度に基づき両流量調整弁V1,V2
開度制御する補助制御器13、 (ニ′)補助制御器13による補助制御状態において、流
量調整弁V1,V2が最小開度(最小流量状態)となり、か
つ、温度センサS1の検出温度が前記設定温度範囲の下限
を下回ると、通常負荷状況になったとして判定手段11に
補助制御からインバータ制御への復帰を指示するインバ
ータ制御復帰用の制御切換手段14。
(B) is a means for instructing switching between inverter control and auxiliary control based on information from the rotation speed detection sensor S 2 and control switching means 14 described later. When the rotation speed detected by the detection sensor S 2 is higher than the lower limit rotation speed of the compressor 1 (generally about 30 rpm), the rotation speed detection sensor S 2 is instructed to continue execution of the inverter control and in the execution state of the inverter control. When the detected rotation speed of 1 is lowered to the lower limit rotation speed of the compressor 1, the control means for judging the switching 11 and (b ') for judging the auxiliary control as if the underload condition occurs, the inverter control is instructed. As its inverter control, the compressor 1 is turned on based on the temperature detected by the temperature sensor S 1 so that the temperature of the temperature-controlled air sent from the heat exchange section of the condenser 2 is maintained within the set temperature range. When the auxiliary control is instructed from the inverter controller 12 for controlling the burner control (specifically, the rotation speed of the electric motor for the compressor is controlled by the inverter) and the (c ′) determination means 11, the condenser 2 is used as the auxiliary control. In order to maintain the temperature of the temperature controlled air sent from the heat exchange part of
Auxiliary controller 13 for controlling the opening of both flow rate adjusting valves V 1 , V 2 based on the temperature detected by temperature sensor S 1 , (d) In the auxiliary control state by auxiliary controller 13, flow rate adjusting valves V 1 , V 2 Is the minimum opening (minimum flow rate state) and the temperature detected by the temperature sensor S 1 is below the lower limit of the set temperature range, it is judged that the normal load condition has occurred and the judgment means 11 returns from the auxiliary control to the inverter control. Inverter control recovery control switching means 14.

なお、インバータ制御状態では両流量調整弁V1,V2
全閉とし、また、補助制御状態では圧縮機回転数を下限
回転数に維持するようにしてある。
In the inverter control state, both flow rate adjusting valves V 1 and V 2 are fully closed, and in the auxiliary control state, the compressor rotation speed is maintained at the lower limit rotation speed.

つまり、上記の装置構成において、インバータ制御器
12は、加熱温調の負荷に応じて圧縮機1をインバータ制
御するインバータ制御手段を構成し、 換気路10及びそれに介装の流量調整弁V2は、温調対象
空気への外気混入という形態で、温調対象空気を負荷増
大側に状態変化(すなわち温度低下)させる負荷増強手
段を構成し、 判定手段11及び制御切換手段14は、上記の負荷増強手
段が非作用の状態での加熱温調の負荷が前記インバータ
制御手段の対応下限負荷値よりも小さい過負荷状況であ
るか否かを判定する負荷判定手段を構成し そして、補助制御器13は、この負荷判定手段の判定結
果に基づき、上記の過負荷状況において負荷増強手段を
作用させるとともに、加熱温調の負荷を前記インバータ
制御手段の対応下限負荷値に等しい一定目標値に保つよ
うに負荷増強手段の作用度を調整する補助制御手段を構
成する。
That is, in the above device configuration, the inverter controller
Reference numeral 12 constitutes an inverter control means for controlling the compressor 1 by an inverter in accordance with the load of the heating temperature control, and the ventilation path 10 and the flow rate adjusting valve V 2 provided therein are such that the outside air is mixed into the temperature control target air. Thus, the load increasing means for changing the state of the temperature-controlled air to the load increasing side (that is, the temperature decreasing) is configured, and the determining means 11 and the control switching means 14 are the heating temperature in a state where the load increasing means is inactive. Configure a load determination means for determining whether or not the key load is an overload condition smaller than the corresponding lower limit load value of the inverter control means, and the auxiliary controller 13 is based on the determination result of the load determination means. , An auxiliary system for operating the load intensifying means in the above-mentioned overload condition and adjusting the degree of action of the load intensifying means so as to maintain the heating temperature control load at a constant target value equal to the corresponding lower limit load value of the inverter control means. Configure the means.

なお、第1実施例における圧縮ヒートポンプ利用の冷
却装置を冷房機として使用する場合や、第2実施例にお
ける圧縮ヒートポンプ利用の加熱装置を暖房機として使
用する場合には、圧縮機1、凝縮器2、膨張弁3、蒸発
器4からなるヒートポンプ部分、センサS1,S2、制御手
段11〜14、並びに、ブロアBなどの主要機器を、第3図
に示す如き一個の装置ケース16に収納して、この装置ケ
ース16に対し空気循環用流路7の往路・復路、大気供給
路8a、及び、大気放出路8bを接続するパッケージエアコ
ン型の冷房機・暖房機としてもよい。
When the cooling device using the compression heat pump in the first embodiment is used as an air conditioner, or when the heating device using the compression heat pump in the second embodiment is used as a heater, the compressor 1 and the condenser 2 are used. , The expansion valve 3, the heat pump portion including the evaporator 4, the sensors S 1 and S 2 , the control means 11 to 14, and the blower B and other main components are housed in a single device case 16 as shown in FIG. Then, a packaged air conditioner type air conditioner / heater which connects the forward / backward paths of the air circulation flow path 7, the atmosphere supply path 8a, and the atmosphere discharge path 8b to the device case 16 may be used.

また、この際、蒸発器4の熱交換部で冷却温調した空
気の一部や、凝縮器2の熱交換部で加熱温調した空気の
一部をパッケージエアコン設置室に対し吹き出す吹出口
17を装置ケーシング16に形成し、これにより、この吹出
口17からの冷風ないし温風の吹き出しをもってパッケー
ジエアコン設置室を合わせ冷房ないし暖房するようにし
てもよく。
At this time, a part of the air whose cooling temperature is controlled in the heat exchange part of the evaporator 4 and a part of the air whose heating temperature is controlled in the heat exchange part of the condenser 2 are blown out to the package air conditioner installation chamber.
It is also possible to form 17 in the device casing 16 and thereby cool or heat the packaged air-conditioner installation chamber together by blowing cold air or warm air from the air outlet 17.

さらに、上記の吹出口17に吹出風量を調整するスライ
ド式ダンパ18を設け、このダンパ18の調整によりパッケ
ージエアコン設置室の冷房強度や暖房強度を適宜調整で
きるようにしてもよい。
Further, a slide damper 18 for adjusting the amount of blown air may be provided at the blowout port 17 so that the cooling strength and the heating strength of the package air conditioner installation room can be adjusted appropriately by adjusting the damper 18.

〔別実施例〕[Another embodiment]

(1)冷却温調において放熱源には、大気の他、自然水
やクーリングタワーからの冷却水など適当なものを採用
でき、加熱温調において吸熱源には、大気の他、自然水
や排水など適当なものを採用できる。
(1) In the cooling temperature control, not only the atmosphere but also natural water or cooling water from the cooling tower can be used as the heat radiation source. In the heating temperature control, the heat absorption source can be natural air or drainage in addition to the atmosphere. Any suitable one can be adopted.

(2)冷却温調において負荷部6は冷房対象空間、冷凍
室、冷蔵室など、どのようなものであってもよく、加熱
温調において熱負荷部6は暖房対象空間や給湯設備であ
ってもよい。
(2) In the cooling temperature control, the load unit 6 may be any space such as a cooling target space, a freezing room, and a refrigerating room. In the heating temperature control, the heat load unit 6 is a heating target space or a hot water supply facility. Good.

(3)冷却温調や加熱温調における温調対象は空気の
他、水やブラインであってもよい。
(3) The temperature control target in the cooling temperature control or the heating temperature control may be water or brine in addition to air.

(4)温調負荷に応じたインバータ制御や補助制御を検
出情報に基づき実施する場合、その検出情報としては、
前述の実施例の如く蒸発器4や凝縮器2の熱交換部を通
過した後の温調対象の温度を採用するに代え、蒸発器4
や凝縮器2の熱交換部へ送る温調対象の温度、蒸発器4
や凝縮器2の温度、あるいは、冷媒の圧力など適当なも
のを採用できる。
(4) When the inverter control or the auxiliary control according to the temperature control load is performed based on the detection information, the detection information is as follows.
Instead of adopting the temperature of the temperature control target after passing through the heat exchange parts of the evaporator 4 and the condenser 2 as in the above-described embodiment, the evaporator 4 is used.
And the temperature of the temperature control target sent to the heat exchange section of the condenser 2, the evaporator 4
A suitable temperature such as the temperature of the condenser 2 or the pressure of the refrigerant can be used.

(5)冷却温調での負荷増強手段としては、前述の実施
例の如き外気混入方式を採用する他、大気放出路8bから
の加熱空気を温調対象空気に混入する方式、あるいは、
熱交換器や加熱器を採用する方式など適当な方式を採用
でき、また、加熱温調での負荷増強手段としては、前述
の実施例の如き外気混入方式を採用する他、大気放出路
8bからの冷却空気を温調対象空気に混入する方式、ある
いは、熱交換器を採用する方式など適当な方式を採用で
きる。
(5) As the load increasing means in the cooling temperature control, the method of mixing the outside air as in the above-described embodiment is adopted, or the method of mixing the heated air from the atmosphere discharge passage 8b into the temperature control target air, or
An appropriate method such as a method using a heat exchanger or a heater can be adopted, and as the load increasing means in heating temperature control, the outside air mixing method as in the above-mentioned embodiment is adopted, and the atmosphere discharge path is used.
An appropriate method such as a method of mixing the cooling air from 8b with the air to be temperature-controlled or a method of using a heat exchanger can be adopted.

なお、過小負荷状況において、温調負荷を負荷増強手
段により増大させた状態で温調を実施することは、単純
に見ればエネルギ浪費の増大となるが、室内空気を温調
対象とする冷房や暖房において、前述の実施例の如く温
調対象空気への外気混入という形態で温調負荷を増大さ
せる方式を採用する場合、この外気混入による消費エネ
ルギの増大は、外気混入による室内換気状態の向上とい
う形で補償される。
It should be noted that, in an underload condition, performing the temperature control in a state where the temperature control load is increased by the load intensifying means results in an increase in energy waste simply. In the heating, when adopting the method of increasing the temperature control load by mixing the outside air into the temperature-controlled air as in the above-described embodiment, the increase in energy consumption due to the outside air mixture improves the indoor ventilation state due to the outside air mixture. Will be compensated in the form.

(6)制御系の具体構成は種々の構成変更が可能であ
り、例えば、制御切換手段14の機能を判定手段11に備え
させたり、制御系構築にマイコンを用いるなどが可能で
ある。
(6) The specific configuration of the control system can be modified in various ways. For example, the function of the control switching means 14 can be provided in the determination means 11, or a microcomputer can be used to construct the control system.

尚、特許請求の範囲の項に図面との対照を便利にする
ために符号を記すが、該記入により本発明は添付図面の
構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図、第3図は本発明の実施例を示し、第1
図は冷却温調運転での装置構成を示すブロック図、第2
図は加熱温調運転での装置構成を示すブロック図、第3
図はパッケージ型エアコンの斜視図である。 第4図、第5図は従来例を示し、第4図は従来における
冷却温調運転での装置構成を示すブロック図、第5図は
従来における加熱温調運転での装置構成を示すブロック
図である。 1……圧縮機、 12……インバータ制御手段、 10,V2……負荷増強手段、 11,14……負荷判定手段、 13……補助制御手段。
FIG. 1, FIG. 2 and FIG. 3 show an embodiment of the present invention.
The figure is a block diagram showing the device configuration in the cooling temperature control operation, the second
The figure is a block diagram showing the device configuration in the heating temperature control operation,
The figure is a perspective view of a package type air conditioner. 4 and 5 show a conventional example, FIG. 4 is a block diagram showing a device configuration in a conventional cooling temperature control operation, and FIG. 5 is a block diagram showing a device configuration in a conventional heating temperature control operation. Is. 1 ... Compressor, 12 ... Inverter control means, 10, V 2 ...... Load increase means, 11,14 ...... Load determination means, 13 …… Auxiliary control means.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】温調対象を冷却又は加熱して温調するの
に、その温調負荷に応じて圧縮機(1)をインバータ制
御するインバータ制御手段(12)を設けた圧縮式ヒート
ポンプ装置であって、 温調対象を負荷増大側に状態変化させる負荷増強手段
(10,V2)と、 この負荷増強手段(10,V2)が非作用の状態での温調負
荷が前記インバータ制御手段(12)の対応下限負荷値よ
りも小さい過小負荷状況か否かを判定する負荷判定手段
(11,14)と、 この負荷判定手段(11,14)の判定結果に基づいて、前
記の過小負荷状況のときに前記負荷増強手段(10,V2
を作用させる補助制御手段(13)を設けた圧縮式ヒート
ポンプ装置。
1. A compression type heat pump device provided with an inverter control means (12) for controlling the compressor (1) by an inverter according to the temperature control load for cooling or heating a temperature control target to control the temperature. there, the load enhancement device for a state change of the temperature control target load increase side (10, V 2), the load enhancement device (10, V 2) is temperature control load at the non-operating state the inverter control means The load judgment means (11, 14) for judging whether or not the underload condition is smaller than the corresponding lower limit load value of (12), and the above-mentioned underload based on the judgment result of the load judgment means (11, 14). In the situation, the load increasing means (10, V 2 )
Compression heat pump device provided with auxiliary control means (13) for operating
【請求項2】前記補助制御手段(13)は、前記の過小負
荷状況において温調負荷を前記インバータ手段(12)の
対応下限負荷値以上の一定目標値に保つように、前記負
荷増強手段(10,V2)の作用度を調整する構成としてあ
る請求項1記載の圧縮式ヒートポンプ装置。
2. The load control means (13) for maintaining the temperature control load at a constant target value equal to or higher than a corresponding lower limit load value of the inverter means (12) in the underload condition. The compression heat pump device according to claim 1, wherein the compression heat pump device is configured to adjust the degree of action of 10, V 2 ).
JP1322309A 1989-12-11 1989-12-11 Compression type heat pump device Expired - Lifetime JP2504595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322309A JP2504595B2 (en) 1989-12-11 1989-12-11 Compression type heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322309A JP2504595B2 (en) 1989-12-11 1989-12-11 Compression type heat pump device

Publications (2)

Publication Number Publication Date
JPH03181750A JPH03181750A (en) 1991-08-07
JP2504595B2 true JP2504595B2 (en) 1996-06-05

Family

ID=18142192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322309A Expired - Lifetime JP2504595B2 (en) 1989-12-11 1989-12-11 Compression type heat pump device

Country Status (1)

Country Link
JP (1) JP2504595B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848480B2 (en) * 2006-09-14 2011-12-28 株式会社前川製作所 Process air temperature control method and apparatus for desiccant air conditioner
JP5811499B2 (en) * 2011-11-10 2015-11-11 三浦工業株式会社 Water heating system
JP5811498B2 (en) * 2011-11-10 2015-11-11 三浦工業株式会社 Water heating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55168132U (en) * 1979-05-21 1980-12-03
JPS55168134U (en) * 1979-05-21 1980-12-03
JPS62196555A (en) * 1986-02-24 1987-08-29 三洋電機株式会社 Refrigerator

Also Published As

Publication number Publication date
JPH03181750A (en) 1991-08-07

Similar Documents

Publication Publication Date Title
WO2009119023A1 (en) Freezing apparatus
KR101317980B1 (en) Air conditioner
JP4479275B2 (en) Air conditioner
JP6079006B2 (en) Fuel cell vehicle air conditioner
JPH10114214A (en) Air-conditioning control device for automobile
JP2504595B2 (en) Compression type heat pump device
JP2004036940A (en) Air conditioner
JP4074422B2 (en) Air conditioner and its control method
US20060207273A1 (en) Method of controlling over-load cooling operation of air conditioner
JP4390401B2 (en) Hot water storage hot water source
JP4259693B2 (en) Air conditioner
JP2598080B2 (en) Air conditioner
KR100544707B1 (en) Water-cooled air conditioner and control method
JPH07151420A (en) Air conditioner with water heater
KR100667097B1 (en) Operation method of multi air conditioner
JP4194286B2 (en) Air conditioner
KR20020015561A (en) Method for controlling fan of airconditioner
JPH10332186A (en) Air conditioner
JP2001133016A (en) Controller for air conditioner
KR20020015565A (en) Method for controlling fan of airconditioner
JP3384712B2 (en) How to check the operation of the variable flow valve of the air conditioner
KR0140567B1 (en) Control method of indoor / outdoor fan of combined cooling / heating air conditioner
KR100625471B1 (en) Multi air conditioner and control method
KR20040003687A (en) A control method of air conditioner
JP2000097511A (en) Refrigerant heating type air conditioner