[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2500522B2 - Refrigeration system operation controller - Google Patents

Refrigeration system operation controller

Info

Publication number
JP2500522B2
JP2500522B2 JP2409251A JP40925190A JP2500522B2 JP 2500522 B2 JP2500522 B2 JP 2500522B2 JP 2409251 A JP2409251 A JP 2409251A JP 40925190 A JP40925190 A JP 40925190A JP 2500522 B2 JP2500522 B2 JP 2500522B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
expansion valve
electric expansion
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2409251A
Other languages
Japanese (ja)
Other versions
JPH04251158A (en
Inventor
正美 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2409251A priority Critical patent/JP2500522B2/en
Publication of JPH04251158A publication Critical patent/JPH04251158A/en
Application granted granted Critical
Publication of JP2500522B2 publication Critical patent/JP2500522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍装置の運転制御装置
に係り、特にサ―モオフ,再起動の繰り返しによる圧縮
機の発停回数の低減に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a refrigerating machine, and more particularly to reducing the number of times of starting and stopping of a compressor by repeating thermo-off and restart.

【0002】[0002]

【従来の技術】従来より、例えば特開昭60―1850
76号公報に開示される如く、圧縮機、熱源側熱交換
器、電動膨張弁及び利用側熱交換器を順次接続した冷媒
回路を備えた冷凍装置の運転制御装置として、冷媒の過
熱度又は過冷却度を検出し、通常冷房運転時は過熱度
を、通常暖房運転時は過冷却度をそれぞれ所定値に保持
するよう上記電動膨張弁の開度を制御する一方、冷凍装
置の運転開始時には、電動膨張弁の開度を運転モ―ドに
応じて予め設定された所定開度に制御することにより、
目標開度への速やかな収束を図ろうとするものは公知の
技術である。
2. Description of the Related Art Conventionally, for example, JP-A-60-1850.
As disclosed in Japanese Patent Laid-Open No. 76-76, as an operation control device of a refrigerating apparatus having a refrigerant circuit in which a compressor, a heat source side heat exchanger, an electric expansion valve, and a use side heat exchanger are sequentially connected, the degree of superheat of refrigerant or Detecting the degree of cooling, the degree of superheat during normal cooling operation, while controlling the opening of the electric expansion valve to maintain the degree of supercooling at a predetermined value during normal heating operation, respectively, at the start of operation of the refrigeration system, By controlling the opening of the electric expansion valve to a predetermined opening preset according to the operating mode,
A known technique is to try to achieve a prompt convergence to a target opening.

【0003】[0003]

【発明が解決しようとする課題】ところで、最適の冷凍
効果を与える吐出冷媒の最適温度を制御目標値として電
動膨張弁の開度を制御するようにした冷凍装置の運転制
御装置においては、通常、吐出冷媒温度の過上昇から圧
縮機を保護すべく吐出冷媒温度が所定温度以上に達する
と、圧縮機を所定時間の間停止させるいわゆるサ―モオ
フ状態にするとともに、所定時間が経過するとサ―モオ
ン状態に切換えて圧縮機を再起動させるようになされて
いるが、斯かる冷凍装置の運転制御装置について、上記
従来のもののように電動膨張弁の初期開度を一定に設定
した場合、下記のような問題があった。
By the way, in the operation control device of the refrigeration system, which controls the opening of the electric expansion valve with the optimum temperature of the discharged refrigerant giving the optimum refrigeration effect as the control target value, In order to protect the compressor from excessive rise in the discharge refrigerant temperature, when the discharge refrigerant temperature reaches or exceeds the specified temperature, the compressor is stopped for a specified time, the so-called thermo-off state is set, and when the specified time elapses, the thermo-on state is established. It is designed to switch to the state and restart the compressor.However, in the operation control device for such a refrigeration system, when the initial opening of the electric expansion valve is set to a constant value as in the conventional device described above, There was a problem.

【0004】すなわち、図5に示すように、電動膨張弁
の初期開度を一定値に設定して運転を開始した後、運転
中に冷媒回路中に冷媒が滞溜する等により冷媒循環量が
不足すると、吐出冷媒温度が上昇し、それに応じて電動
膨張弁の開度も目標値制御により増大するが、冷媒循環
量が不足している条件下では吐出冷媒温度の上昇を抑制
できず、吐出冷媒温度が所定温度以上となって圧縮機が
サ―モオフ停止する(図中の時刻x1 )。そして、所定
時間経過後に、電動膨張弁の初期開度を一定値に設定し
て再起動する(図中の時刻x1 )と、冷媒の循環量が不
足しているような条件下では、吐出冷媒温度が再び上昇
して所定温度に達し、圧縮機がサ―モオフ停止する(図
中の時刻x2 )。そして、一定時間が経過するとサ―モ
オンに切換わり再起動する(図中の時刻x3 )が、すぐ
に吐出冷媒温度が上昇してサ―モオフになる(図中の時
刻x4 )という過程が繰り返されることになる(図中の
時刻x5 以下)。そして、吐出冷媒状態が定常状態にな
るまでに、サ―モオン・サ―モオフの切換わりによる圧
縮機の発停がなんども繰り返されることにより、運転効
率と信頼性の低下を招く虞れがあった。
That is, as shown in FIG. 5, after the initial opening of the electric expansion valve is set to a constant value and the operation is started, the refrigerant circulation amount is reduced due to the accumulation of the refrigerant in the refrigerant circuit during the operation. When insufficient, the discharged refrigerant temperature rises, and the opening degree of the electric expansion valve also increases accordingly, but under the condition that the refrigerant circulation amount is insufficient, it is not possible to suppress the rise of the discharged refrigerant temperature, The refrigerant temperature rises above a predetermined temperature, and the compressor stops thermo-off (time x1 in the figure). Then, after the elapse of a predetermined time, the initial opening of the electric expansion valve is set to a constant value and restarted (time x1 in the figure), and under the condition that the circulation amount of the refrigerant is insufficient, the discharged refrigerant is discharged. The temperature rises again and reaches a predetermined temperature, and the compressor stops thermo-off (time x2 in the figure). Then, after a certain period of time, the process switches to thermo-on and restarts (time x3 in the figure), but immediately the temperature of the discharged refrigerant rises to thermo-off (time x4 in the figure). Will be performed (time x5 or less in the figure). Then, until the discharged refrigerant state reaches a steady state, the compressor may be repeatedly started and stopped due to switching between thermo-on and thermo-off, which may lead to a decrease in operating efficiency and reliability. It was

【0005】本発明は、上記のような圧縮機の起動時に
おけるサ―モオン・サ―モオフの繰り返しが冷媒回路の
いずれかにおける冷媒の滞溜に起因する点に鑑みなされ
たものであり、このような冷媒の滞溜が生じるような条
件下では、冷媒循環量を確保する手段を講ずることによ
り、圧縮機の発停回数を低減し、もって、運転効率及び
信頼性の向上を図ることにある。
The present invention has been made in view of the fact that the repetition of thermo-on / thermo-off at the time of starting the compressor as described above is caused by the retention of the refrigerant in any one of the refrigerant circuits. Under such a condition that the refrigerant remains stagnant, it is possible to reduce the number of times of starting and stopping the compressor by improving the efficiency and reliability of the compressor by taking measures to secure the refrigerant circulation amount. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の解決手段は、再起動時における電動膨張弁
の初期開度を前回起動時における初期開度よりも増大さ
せることにある。
To achieve the above object, the solution means of the present invention is to increase the initial opening degree of the electric expansion valve at the time of restarting more than the initial opening degree at the time of previous starting.

【0007】具体的には、請求項1の発明の講じた手段
は、図1に示すように、圧縮機(1)、熱源側熱交換器
(3)、電動膨張弁(5)及び利用側熱交換器(6)を
順次接続してなる冷媒回路(9)を備えた冷凍装置を前
提とする。
Specifically, the means taken by the invention of claim 1 is, as shown in FIG. 1, a compressor (1), a heat source side heat exchanger (3), an electric expansion valve (5) and a utilization side. It is assumed that the refrigerating apparatus has a refrigerant circuit (9) in which heat exchangers (6) are sequentially connected.

【0008】そして、冷凍装置の運転制御装置として、
冷凍装置の運転開始時における上記電動膨張弁(5)の
初期開度を一定値に設定する初期開度設定手段(51)
と、吐出冷媒温度を検出する吐出温度検出手段(Th2)
と、該吐出温度検出手段(Th2)の出力を受け、最適な
冷凍効果を与える吐出冷媒の最適温度を制御目標値とし
て上記電動膨張弁(5)の開度を制御する開度制御手段
(53)と、上記吐出温度検出手段(Th2)の出力を受
け、吐出冷媒温度が所定温度以上に達すると、上記圧縮
機(1)を所定時間の間停止させた後再起動させる運転
制御手段(50)とを設けるものとする。
As an operation control device for the refrigeration system,
Initial opening setting means (51) for setting the initial opening of the electric expansion valve (5) to a constant value at the start of operation of the refrigeration system.
And a discharge temperature detecting means (Th2) for detecting the discharge refrigerant temperature
And an opening control means (53) for controlling the opening of the electric expansion valve (5) by receiving the output of the discharge temperature detection means (Th2) and using the optimum temperature of the discharge refrigerant that gives the optimum refrigeration effect as a control target value. ) And the output of the discharge temperature detecting means (Th2), and when the discharge refrigerant temperature reaches or exceeds a predetermined temperature, the operation control means (50) for stopping and restarting the compressor (1) for a predetermined time. ) And shall be provided.

【0009】さらに、上記運転制御手段(50)による
圧縮機(1)の再起動時における電動膨張弁(5)の初
期開度を前回起動時の初期開度よりも所定開度増大させ
るよう変更する開度増大手段(52)を設ける構成とし
たものである。
Further, the initial opening degree of the electric expansion valve (5) when the compressor (1) is restarted by the operation control means (50) is changed to be increased by a predetermined opening degree from the initial opening degree at the previous startup. The opening degree increasing means (52) is provided.

【0010】[0010]

【作用】以上の構成により、本発明では、冷凍装置の運
転開始時、初期開度設定手段(51)により電動膨張弁
(5)の初期開度が一定値に設定され、その後、開度制
御手段(53)により、吐出冷媒温度が最適温度に収束
するよう電動膨張弁(5)の開度が目標値制御される。
そのとき、冷凍装置の運転中に冷媒回路(9)内で冷媒
の滞溜等により圧縮機(1)への冷媒循環量の不足が生
じると、吐出冷媒温度が上昇し、それに応じて目標値制
御される電動膨張弁(5)の開度は徐々に増大するが、
吐出冷媒温度の上昇は急激なので電動膨張弁(5)の開
度制御では十分追随できずに、吐出冷媒温度が所定温度
を越えることになる。そして、運転制御手段(53)に
より、圧縮機(1)が所定時間の間停止した後再起動す
ると、吐出冷媒温度が再び所定温度以上となって、サ―
モオフ、再起動,サ―モオフ,…が繰り返される虞れが
あるが、本発明では、開度増大手段(52)により、運
転制御手段(53)による再起動時における電動膨張弁
(5)の初期開度が前回起動時における初期開度よりも
所定開度増大するよう変更されるので、冷媒の循環量が
多い状態で起動するので、吐出冷媒温度の上昇に対する
電動膨張弁(5)の開度制御の追随性が次第に良くな
り、その後、吐出冷媒温度の上昇が漸次抑制されて定常
状態に収束することになる。したがって、サ―モオフ,
再起動,…の繰り返しによる圧縮機(1)の頻繁な発停
が防止され、空調効果の悪化が回避されるとともに、信
頼性が向上することになる。
With the above construction, in the present invention, the initial opening of the electric expansion valve (5) is set to a constant value by the initial opening setting means (51) at the start of operation of the refrigeration system, and then the opening control is performed. The opening degree of the electric expansion valve (5) is controlled by the target value by the means (53) so that the discharged refrigerant temperature converges to the optimum temperature.
At that time, when the refrigerant circulation amount to the compressor (1) becomes insufficient due to the accumulation of the refrigerant in the refrigerant circuit (9) during the operation of the refrigeration system, the discharged refrigerant temperature rises and the target value is accordingly increased. The controlled opening of the electric expansion valve (5) gradually increases,
Since the discharge refrigerant temperature rises rapidly, the opening degree control of the electric expansion valve (5) cannot be sufficiently followed, and the discharge refrigerant temperature exceeds a predetermined temperature. Then, when the operation control means (53) restarts the compressor (1) after stopping it for a predetermined time, the temperature of the discharged refrigerant again becomes equal to or higher than the predetermined temperature, and the temperature rises.
Although there is a risk that the moff, restart, thermo-off, ... Are repeated, in the present invention, the opening degree increasing means (52) causes the operation control means (53) to restart the electric expansion valve (5). Since the initial opening is changed so as to be increased by a predetermined opening from the initial opening at the time of the previous startup, the engine is started in a state in which the refrigerant circulation amount is large. Therefore, the opening of the electric expansion valve (5) against the rise of the discharged refrigerant temperature is opened. The followability of the degree control gradually improves, and thereafter, the rise of the discharge refrigerant temperature is gradually suppressed and converges to a steady state. Therefore, the thermo-off,
Frequent start / stop of the compressor (1) due to repeated restarts, ... Is prevented, deterioration of the air conditioning effect is avoided, and reliability is improved.

【0011】[0011]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0012】図2は本発明を適用した空気調和装置の冷
媒配管系統を示し、(1)は圧縮機、(2)は冷房運転
時には図中実線のごとく、暖房運転時には図中破線のご
とく切換わる四路切換弁、(3)は冷房運転時には凝縮
器として、暖房運転時には蒸発器として機能する熱源側
熱交換器である室外熱交換器、(4)は液冷媒を貯留す
るためのレシ―バ、(5)は冷媒の減圧機能と冷媒流量
の調節機能とを有する電動膨張弁、(6)は室内に設置
され、冷房運転時には蒸発器として、暖房運転時には凝
縮器として機能する利用側熱交換器である室内熱交換
器、(7)は圧縮機(1)の吸入管に介設され、吸入冷
媒中の液冷媒を除去するためのアキュムレ―タである。
FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied. An alternate four-way switching valve, (3) an outdoor heat exchanger that is a heat source side heat exchanger that functions as a condenser during cooling operation, and as an evaporator during heating operation, and (4) is a receiver for storing liquid refrigerant. A bar (5) is an electric expansion valve having a function of decompressing the refrigerant and a function of adjusting the flow rate of the refrigerant, and (6) is installed indoors and functions as an evaporator during cooling operation and as a condenser during heating operation. An indoor heat exchanger, which is an exchanger, (7) is an accumulator for removing the liquid refrigerant in the suction refrigerant, which is provided in the suction pipe of the compressor (1).

【0013】上記各機器(1)〜(7)は冷媒配管
(8)により順次接続され、冷媒の循環により熱移動を
生ぜしめるようにした冷媒回路(9)が構成されてい
る。なお、(13)は室外熱交換器(3)の液管側に介
設された過冷却用キャピラリチュ―ブである。
The above-mentioned devices (1) to (7) are sequentially connected by a refrigerant pipe (8), and a refrigerant circuit (9) is constructed so as to cause heat transfer by circulation of the refrigerant. Incidentally, (13) is a supercooling capillary tube provided on the liquid pipe side of the outdoor heat exchanger (3).

【0014】ここで、上記冷媒回路(9)の圧縮機
(1)吐出側には、吐出冷媒中の油を回収するための油
回収器(10)が介設されていて、該油回収器(10)
から圧縮機(1)−アキュムレ―タ(7)間の吸入管ま
で、油回収器(10)の油を圧縮機(1)の吸入側に戻
すための油戻し通路(11)が流量調節弁(12)を介
して設けられている。
On the discharge side of the compressor (1) of the refrigerant circuit (9), an oil recovery unit (10) for recovering the oil in the discharged refrigerant is provided. (10)
From the compressor to the suction pipe between the compressor (1) and the accumulator (7), an oil return passage (11) for returning the oil of the oil recovery device (10) to the suction side of the compressor (1) has a flow control valve. It is provided through (12).

【0015】また、冷媒回路(9)の液管において、上
記レシ―バ(4)と電動膨張弁(5)とは、電動膨張弁
(5)がレシ―バ(4)の下部つまり液部に連通するよ
う共通路(8a)に直列に配置されており、共通路(8
a)のレシ―バ(4)上部側の端部である点(P)と室
外熱交換器(3)との間は、室外熱交換器(3)からレ
シ―バ(4)への冷媒の流通のみを許容する第1逆止弁
(D1)を介して第1流入路(8b)により、上記共通
路(8a)の点(P)と室内熱交換器(6)との間は室
内熱交換器(6)からレシ―バ(4)への冷媒の流通の
みを許容する第2逆止弁(D2)を介して第2流入路
(8c)によりそれぞれ接続されている一方、共通路
(8a)の上記電動膨張弁(5)他端側の端部である点
(Q)と上記第1逆止弁(D1)−室外熱交換器(3)
間の点(S)との間は電動膨張弁(5)から室外熱交換
器(3)への冷媒の流通のみを許容する第3逆止弁(D
3)を介して第1流出路(8d)により、共通路(8
a)の上記点(Q)と上記第2逆止弁(D2)−室内熱
交換器(6)間の点(R)との間は電動膨張弁(5)か
ら室内熱交換器(6)への冷媒の流通のみを許容する第
4逆止弁(D4)を介して第2流出路(8e)によりそ
れぞれ接続されている。また、上記共通路(8a)のレ
シ―バ上流側の1点(W)と第2流出路(8e)の第4
逆止弁(D4)上流側の点(U)との間には、キャピラ
リチュ―ブ(C)を介設してなる液封防止バイパス路
(8f)が設けられており、圧縮機(1)の停止時にお
ける液封を防止するようになされている。
In addition, in the liquid pipe of the refrigerant circuit (9), the receiver (4) and the electric expansion valve (5) are the lower portion of the receiver (4), that is, the liquid portion. Are arranged in series with the common path (8a) so as to communicate with the common path (8a).
The refrigerant from the outdoor heat exchanger (3) to the receiver (4) is provided between the outdoor heat exchanger (3) and the point (P), which is the upper end of the receiver (4) of a). Between the point (P) of the common path (8a) and the indoor heat exchanger (6) by the first inflow path (8b) via the first check valve (D1) that allows only the flow of While being connected by the second inflow passage (8c) via the second check valve (D2) that allows only the flow of the refrigerant from the heat exchanger (6) to the receiver (4), the common passage Point (Q) at the other end of the electric expansion valve (5) of (8a) and the first check valve (D1) -outdoor heat exchanger (3).
A third check valve (D) that allows only the refrigerant to flow from the electric expansion valve (5) to the outdoor heat exchanger (3) between the point (S) and the point (S).
3) via the first outflow path (8d) to the common path (8
From the electric expansion valve (5) to the indoor heat exchanger (6) between the point (Q) in a) and the point (R) between the second check valve (D2) and the indoor heat exchanger (6). The second outflow passages (8e) are connected to each other via the fourth check valve (D4) that allows only the flow of the refrigerant to and from the refrigerant. Also, one point (W) on the receiver upstream side of the common path (8a) and the fourth point of the second outflow path (8e).
A liquid-sealing prevention bypass passage (8f) provided with a capillary tube (C) is provided between the check valve (D4) and a point (U) on the upstream side, and the compressor (1 ) Is designed to prevent liquid sealing when stopped.

【0016】また、空気調和装置には、センサ類が配置
されていて、(Th2)は圧縮機(1)の吐出管に配置さ
れ、吐出管温度を検出する吐出管センサ、(Thc)は室
外熱交換器(3)の液管に配置され、冷房運転時には冷
媒の凝縮温度、暖房運転時には冷媒の蒸発温度を検出す
る外熱交センサ、(Tha)は室外熱交換器(3)の空気
吸込口に配置され、外気温度を検出する外気温センサ、
(The)は室内熱交換器(6)の液管に配置され、冷房
運転時には蒸発温度、暖房運転時には凝縮温度を検出す
る内熱交センサ、(Thr)は室内熱交換器(6)の空気
吸込口に配置され、吸込空気温度を検出する室温セン
サ、(HPS)は高圧側圧力が上限に達すると作動して異
常停止させる高圧作動圧力スイッチ、(LPS)は低圧側
圧力が下限に達すると作動して異常停止させる低圧作動
圧力スイッチであって、上記各センサ類は、空気調和装
置の運転を制御するためのコントロ―ラ(図示せず)に
信号の入力可能に接続されており、該コントロ―ラによ
り、センサの信号に応じて各機器の運転を制御するよう
になされている。
Further, the air conditioner is provided with sensors, (Th2) is arranged in the discharge pipe of the compressor (1), a discharge pipe sensor for detecting the discharge pipe temperature, and (Thc) is outdoor. An external heat exchange sensor which is arranged in the liquid pipe of the heat exchanger (3) and detects the condensation temperature of the refrigerant during the cooling operation and the evaporation temperature of the refrigerant during the heating operation, (Tha) is the air intake of the outdoor heat exchanger (3) An outside air temperature sensor placed in the mouth to detect the outside air temperature,
(The) is arranged in the liquid pipe of the indoor heat exchanger (6), an internal heat exchange sensor for detecting the evaporation temperature during the cooling operation and the condensation temperature during the heating operation, and (Thr) is the air inside the indoor heat exchanger (6). A room temperature sensor that is located at the suction port and detects the temperature of the intake air, (HPS) is a high pressure operating pressure switch that operates and abnormally stops when the high pressure side pressure reaches the upper limit, and (LPS) is when the low pressure side pressure reaches the lower limit. A low-pressure operating pressure switch for operating and abnormally stopping, wherein the sensors are connected to a controller (not shown) for controlling the operation of the air conditioner so that signals can be input to the controller. The controller controls the operation of each device according to the signal from the sensor.

【0017】上記冷媒回路(9)において、冷房運転時
には、室外熱交換器(3)で凝縮液化された液冷媒が第
1流通路(8b)から共通路(8a)に流れてレシ―バ
(4)に貯溜され、電動膨張弁(5)で減圧された後、
第2流出路(8e)を経て室内熱交換器(6)で蒸発し
て圧縮機(1)に戻る循環となる。また、暖房運転時に
は、室内熱交換器(6)で凝縮液化された液冷媒が第2
流通路(8c)から共通路(8a)に流れてレシ―バ
(4)に貯溜され、電動膨張弁(5)で減圧された後、
第1流出路(8d)を経て室外熱交換器(3)で蒸発し
て圧縮機(1)に戻る循環となる。
In the refrigerant circuit (9), during the cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows from the first flow passage (8b) to the common passage (8a) and the receiver ( After being stored in 4) and decompressed by the electric expansion valve (5),
The circulation is returned to the compressor (1) by evaporating in the indoor heat exchanger (6) via the second outflow passage (8e). During the heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) is
After flowing from the flow passage (8c) to the common passage (8a), stored in the receiver (4) and decompressed by the electric expansion valve (5),
The circulation is performed by evaporating in the outdoor heat exchanger (3) through the first outflow passage (8d) and returning to the compressor (1).

【0018】ここで、上記コントロ―ラによる冷房運転
時の制御内容について、図3のフロ―チャ―トに基づき
説明する。空気調和装置の運転を開始すると、まず、ス
テップST1で、サ―モオフ回数Up を初期値「0」に
設定し、ステップST2で、電動膨張弁(5)(500
パルスで全開となる)の初期開度Po を式 Po =25
0+Up ×50(パルス)に基づき設定する。つまり、
空気調和装置の運転開始直後は、Po =250(パル
ス)になる。次に、ステップST3,ST4,ST5
で、室外ファン(図示せず)、四路切換弁(2)及び圧
縮機(1)を順次オンにして、ステップST6で、上記
吐出管センサ(Th2)で検出された吐出冷媒温度T2 を
入力し、ステップST7で電動膨張弁(5)の開度Pを
目標値制御する。すなわち、上記内熱交センサ(The)
で検出された冷媒の蒸発温度Te と、上記外熱交センサ
(Thc)で検出された冷媒の凝縮温度Tc とから、式
Tk =4−1.13Te +1.72Tc に基づき、装置
の最適な冷凍効果を与える最適温度Tk を演算し、吐出
冷媒温度T2 がこの最適温度Tk に収束するように電動
膨張弁(5)の開度Pを制御する。
Here, the control contents during the cooling operation by the controller will be described based on the flowchart of FIG. When the operation of the air conditioner is started, first, at step ST1, the thermo-off count Up is set to an initial value "0", and at step ST2, the electric expansion valve (5) (500
The initial opening Po of the pulse (fully opened) is Po = 25
Set based on 0 + Up x 50 (pulse). That is,
Immediately after the start of operation of the air conditioner, Po = 250 (pulses). Next, steps ST3, ST4 and ST5
Then, the outdoor fan (not shown), the four-way switching valve (2) and the compressor (1) are sequentially turned on, and in step ST6, the discharge refrigerant temperature T2 detected by the discharge pipe sensor (Th2) is input. Then, in step ST7, the opening P of the electric expansion valve (5) is controlled to a target value. That is, the internal heat exchange sensor (The)
From the evaporation temperature Te of the refrigerant detected by the above and the condensation temperature Tc of the refrigerant detected by the external heat exchange sensor (Thc),
Based on Tk = 4-1.13Te + 1.72Tc, the optimum temperature Tk that gives the optimum refrigerating effect of the device is calculated, and the electric expansion valve (5) is opened so that the discharged refrigerant temperature T2 converges to this optimum temperature Tk. Control the degree P.

【0019】そして、この電動膨張弁(5)開度Pの目
標値制御を行っている間に吐出冷媒温度T2 が上昇し
て、ステップST8の判別で、吐出冷媒温度T2 がサ―
モオフ設定値135℃を越える状態が100秒間継続す
ると、圧縮機(1)保護等のために、ステップST9に
進み、空気調和装置の運転開始後のサ―モオフ回数Up
を1だけ積算して、ステップST10で、圧縮機(1)
をサ―モオフ停止させた後、ステップST11で、サ―
モオフ後3分間待ってから、上記ステップST2に制御
に戻る。
Then, while the target value control of the opening P of the electric expansion valve (5) is being performed, the discharge refrigerant temperature T2 rises, and the discharge refrigerant temperature T2 is determined by the determination in step ST8.
If the temperature exceeds the set value of 135 ° C for 100 seconds, the process proceeds to step ST9 to protect the compressor (1) and so on, and the number of thermo-offs Up after the start of operation of the air conditioner Up
Is added by 1, and in step ST10, the compressor (1)
After stopping the thermostat, in step ST11,
After waiting 3 minutes after the power-off, the process returns to step ST2.

【0020】上記フロ―において、ステップST10,
ST11からステップST3,ST4,ST5の制御に
より本発明の運転制御手段(50)が構成され、ステッ
プST1及びST2の制御により初期開度設定手段(5
1)が構成されている。また、ステップST9及びST
2の制御により開度増大手段(52)が構成され、ステ
ップST7の制御により開度制御手段(53)が構成さ
れている。
In the above flow, step ST10,
The operation control means (50) of the present invention is configured by the control of ST11 to steps ST3, ST4, ST5, and the initial opening setting means (5) is controlled by the control of steps ST1 and ST2.
1) is configured. Also, steps ST9 and ST
The opening degree increasing means (52) is configured by the control of step 2, and the opening degree control means (53) is configured by the control of step ST7.

【0021】したがって、上記実施例では、空気調和装
置の運転開始時、初期開度設定手段(51)により電動
膨張弁(5)の初期開度Po が一定値(205パルス)
に設定され、その後、開度制御手段(53)により、吐
出冷媒温度T2 が最適温度Tk に収束するよう電動膨張
弁(5)の開度Pが目標値制御される。そのとき、図4
に示すように、空気調和装置の運転中に冷媒回路(9)
内で冷媒の滞溜等により圧縮機(1)への冷媒循環量の
不足が生じると、吐出冷媒温度T2 が上昇し、それに応
じて目標値制御される電動膨張弁(5)の開度Pは徐々
に増大するが、吐出冷媒温度T2 の上昇は急激なので、
電動膨張弁(5)の開度Pの制御では間に合わないこと
がある。その後、電動膨張弁(5)の開度Pが許容最大
値(例えば480パルス程度の開度)に達すると、吐出
冷媒温度T2 の上昇を抑制することができず、所定温度
(サ―モオフ設定値135℃)を越えることになる(図
中の時刻to )。そして、運転制御手段(53)によ
り、圧縮機(1)を所定時間(3分間)の間停止させる
いわゆるサ―モオフ状態に維持した後、圧縮機(1)を
再起動させるよう制御される。しかし、冷媒の循環量が
不足しているような状況下では、圧縮機(1)の再起動
後、電動膨張弁(5)の初期開度Po を一定値に設定し
て運転を継続しても、吐出冷媒温度T2 が再びサ―モオ
フの設定値(135℃)を越えて再度サ―モオフ、再起
動,サ―モオフ,…が繰り返されることになり、空調効
果を損ねるだけでなく、圧縮機(1)の頻繁な発停によ
り信頼性を損ねる虞れがある。特に、上記実施例のよう
に、定容量形の圧縮機(1)を使用し、吐出冷媒温度T
2 を制御指標として電動膨張弁(5)の開度を調節する
ものでは、簡素な構成により高い空調効果が得られる利
点があるが、反面、圧縮機(1)の容量が固定されるた
めに吐出冷媒温度T2 の過上昇を抑制できない虞れがあ
る。
Therefore, in the above embodiment, when the operation of the air conditioner is started, the initial opening degree setting means (51) sets the initial opening degree Po of the electric expansion valve (5) to a constant value (205 pulses).
After that, the opening degree control means (53) controls the opening degree P of the electric expansion valve (5) by the target value so that the discharged refrigerant temperature T2 converges to the optimum temperature Tk. At that time,
As shown in, the refrigerant circuit (9) during operation of the air conditioner
When the refrigerant circulation amount to the compressor (1) becomes insufficient due to the accumulation of refrigerant in the inside, the discharged refrigerant temperature T2 rises, and the opening P of the electric expansion valve (5) whose target value is controlled accordingly. Gradually increases, but since the discharge refrigerant temperature T2 rises sharply,
The control of the opening degree P of the electric expansion valve (5) may not be in time. After that, when the opening degree P of the electric expansion valve (5) reaches an allowable maximum value (for example, an opening degree of about 480 pulses), the rise of the discharge refrigerant temperature T2 cannot be suppressed, and the predetermined temperature (thermo-off setting Value 135 ° C.) (time to in the figure). Then, the operation control means (53) controls to restart the compressor (1) after maintaining it in a so-called thermo-off state in which the compressor (1) is stopped for a predetermined time (3 minutes). However, in a situation where the circulation amount of the refrigerant is insufficient, after restarting the compressor (1), the initial opening degree Po of the electric expansion valve (5) is set to a constant value to continue the operation. However, the discharge refrigerant temperature T2 again exceeds the thermo-off set value (135 ° C), and thermo-off, restart, thermo-off, etc. are repeated again, which not only impairs the air conditioning effect but also compresses it. Frequent start and stop of the machine (1) may impair reliability. In particular, as in the above embodiment, the constant capacity type compressor (1) is used, and the discharge refrigerant temperature T
Adjusting the opening of the electric expansion valve (5) using 2 as a control index has the advantage that a high air conditioning effect can be obtained with a simple configuration, but on the other hand, the capacity of the compressor (1) is fixed. There is a possibility that the excessive rise of the discharge refrigerant temperature T2 cannot be suppressed.

【0022】ここで、上記実施例では、開度増大手段
(52)により、運転制御手段(53)による再起動時
における電動膨張弁(5)の初期開度Po が前回起動時
における初期開度よりも所定開度(50パルス)増大す
るよう変更される。すなわち、図4に示すように、時刻
t1 で初期開度Po を300パルスに増大させて再起動
した後、吐出冷媒温度T2 が再び上昇してサ―モオフ設
定値(135℃)を越え(図中の時刻t2 )、サ−モオ
フになったとき、次の再起動時(図中の時刻t3 )に
は、電動膨張弁(5)の初期開度Po が350パルスに
設定される。したがって、このような電動膨張弁(5)
の初期開度Po の増大変更により、冷媒の循環量ある程
度確保された状態から運転が開始されるので、開度制御
手段(53)による電動膨張弁(5)の開度制御の追随
性が再起動の都度良くなり、その後、吐出冷媒温度T2
の上昇が漸次抑制されて定常状態に収束することにな
る。したがって、サ―モオフ,再起動,…の繰り返しに
よる圧縮機(1)の頻繁な発停が防止され、空調効果の
悪化を回避しうるとともに、信頼性の向上を図ることが
できることになる。
Here, in the above embodiment, the opening degree increasing means (52) causes the initial opening degree Po of the electric expansion valve (5) at the time of restarting by the operation control means (53) to be the initial opening degree at the previous starting time. It is changed so as to increase by a predetermined opening (50 pulses). That is, as shown in FIG. 4, after the initial opening Po is increased to 300 pulses and restarted at time t1, the discharge refrigerant temperature T2 rises again and exceeds the thermo-off set value (135 ° C.) (see FIG. At the middle time t2), when the thermostat is turned off, at the next restart (time t3 in the figure), the initial opening degree Po of the electric expansion valve (5) is set to 350 pulses. Therefore, such an electric expansion valve (5)
Since the operation is started from a state in which the circulation amount of the refrigerant is secured to some extent by changing the initial opening Po of the above, the followability of the opening control of the electric expansion valve (5) by the opening control means (53) is re-established. It becomes better each time it starts up, and then the discharged refrigerant temperature T2
The rise of is gradually suppressed and converges to a steady state. Therefore, frequent start / stop of the compressor (1) due to repeated thermo-off, restart, ... Is prevented, deterioration of the air conditioning effect can be avoided, and reliability can be improved.

【0023】なお、上記実施例では、冷房運転について
説明したが、本発明は冷房運転だけでなく暖房運転につ
いても適用しうることはいうまでもない。
Although the cooling operation has been described in the above embodiment, it goes without saying that the present invention can be applied not only to the cooling operation but also to the heating operation.

【0024】[0024]

【発明の効果】以上説明したように、本発明の冷凍装置
の運転制御装置によれば、冷凍装置の運転開始時に電動
膨張弁の初期開度を一定値に設定した後、吐出冷媒温度
を最適温度に収束させるよう電動膨張弁の開度を目標値
制御して、冷凍装置の運転中に吐出冷媒温度が所定温度
以上になると圧縮機を所定時間の間サ―モオフ停止させ
た後再起動させるとともに、再起動時における電動膨張
弁の初期開度を前回起動時における初期開度よりも所定
開度増大させるようにしたので、冷媒循環量の不足によ
り吐出冷媒温度が上昇して圧縮機がサ―モオフ停止して
も、その後再起動,サ―モオフの過程が何回も繰り返さ
れるのを防止することができ、圧縮機の発停回数の低減
により、空調効果及び信頼性の向上を図ることができ
る。
As described above, according to the operation control device for the refrigeration system of the present invention, the discharge refrigerant temperature is optimized after the initial opening of the electric expansion valve is set to a constant value at the start of the operation of the refrigeration system. The electric expansion valve opening is controlled to a target value so that it converges to the temperature, and if the discharge refrigerant temperature rises above a predetermined temperature during operation of the refrigeration system, the compressor is stopped after thermostating for a predetermined time and then restarted. At the same time, the initial opening of the electric expansion valve at the time of restart is set to be larger than the initial opening at the previous startup by a predetermined amount, so that the discharge refrigerant temperature rises due to insufficient refrigerant circulation and the compressor is supported. -Even if the power-off is stopped, it is possible to prevent the process of restarting and the power-off after that being repeated many times, and to improve the air conditioning effect and reliability by reducing the number of times the compressor is started and stopped. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the air conditioning apparatus according to the embodiment.

【図3】コントロ―ラの制御内容を示すフロ―チャ―ト
図である。
FIG. 3 is a flowchart showing the control contents of the controller.

【図4】実施例における吐出冷媒温度及び電動膨張弁開
度の時間変化図である。
FIG. 4 is a time change diagram of a discharged refrigerant temperature and an electric expansion valve opening degree in the embodiment.

【図5】従来例における吐出冷媒温度及び電動膨張弁開
度の時間変化図である。
FIG. 5 is a time change diagram of discharged refrigerant temperature and electric expansion valve opening degree in a conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器(熱源側熱交換器) 5 電動膨張弁 6 室内熱交換器(利用側熱交換器) 9 冷媒回路 50 運転制御手段 51 初期開度設定手段 52 開度増大手段 53 開度制御手段 Th2 吐出管センサ(吐出温度検出手段) 1 Compressor 3 Outdoor Heat Exchanger (Heat Source Side Heat Exchanger) 5 Electric Expansion Valve 6 Indoor Heat Exchanger (Use Side Heat Exchanger) 9 Refrigerant Circuit 50 Operation Control Means 51 Initial Opening Setting Means 52 Opening Increasing Means 53 Opening degree control means Th2 discharge pipe sensor (discharge temperature detection means)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(1)、熱源側熱交換器(3)、
電動膨張弁(5)及び利用側熱交換器(6)を順次接続
してなる冷媒回路(9)を備えた冷凍装置において、冷
凍装置の運転開始時における上記電動膨張弁(5)の初
期開度を一定値に設定する初期開度設定手段(51)
と、吐出冷媒温度を検出する吐出温度検出手段(Th2)
と、該吐出温度検出手段(Th2)の出力を受け、最適な
冷凍効果を与える吐出冷媒の最適温度を制御目標値とし
て上記電動膨張弁(5)の開度を制御する開度制御手段
(53)と、上記吐出温度検出手段(Th2)の出力を受
け、吐出冷媒温度が所定温度以上に達すると、上記圧縮
機(1)を所定時間の間サ―モオフ停止させた後再起動
させるよう制御する運転制御手段(50)とを備えると
ともに、上記運転制御手段(50)による圧縮機(1)
の再起動時における電動膨張弁(5)の初期開度を前回
起動時の初期開度よりも所定開度増大させるよう変更す
る開度増大手段(52)を備えたことを特徴とする冷凍
装置の運転制御装置。
1. A compressor (1), a heat source side heat exchanger (3),
In a refrigeration system provided with a refrigerant circuit (9) in which an electric expansion valve (5) and a utilization side heat exchanger (6) are sequentially connected, the electric expansion valve (5) is initially opened at the start of operation of the refrigeration system. Opening degree setting means (51) for setting the degree to a constant value
And a discharge temperature detecting means (Th2) for detecting the discharge refrigerant temperature
And an opening control means (53) for controlling the opening of the electric expansion valve (5) by receiving the output of the discharge temperature detection means (Th2) and using the optimum temperature of the discharge refrigerant that gives the optimum refrigeration effect as a control target value. ) And the output of the discharge temperature detecting means (Th2), and when the discharge refrigerant temperature reaches or exceeds a predetermined temperature, the compressor (1) is controlled to stop after thermostating for a predetermined time and then restart. And a compressor (1) by the operation control means (50).
Of the electric expansion valve (5) at the time of restarting the vehicle, the refrigeration apparatus comprising opening degree increasing means (52) for changing the initial opening degree by a predetermined amount from the initial opening degree at the previous startup. Operation control device.
JP2409251A 1990-12-28 1990-12-28 Refrigeration system operation controller Expired - Fee Related JP2500522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2409251A JP2500522B2 (en) 1990-12-28 1990-12-28 Refrigeration system operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2409251A JP2500522B2 (en) 1990-12-28 1990-12-28 Refrigeration system operation controller

Publications (2)

Publication Number Publication Date
JPH04251158A JPH04251158A (en) 1992-09-07
JP2500522B2 true JP2500522B2 (en) 1996-05-29

Family

ID=18518599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2409251A Expired - Fee Related JP2500522B2 (en) 1990-12-28 1990-12-28 Refrigeration system operation controller

Country Status (1)

Country Link
JP (1) JP2500522B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334222B2 (en) * 1992-11-20 2002-10-15 ダイキン工業株式会社 Air conditioner
JP3341486B2 (en) * 1994-09-30 2002-11-05 ダイキン工業株式会社 Operation control device for air conditioner
JP3448432B2 (en) * 1996-07-17 2003-09-22 株式会社エヌ・ティ・ティ ファシリティーズ Control device for air conditioner
JPH11325635A (en) * 1998-05-20 1999-11-26 Toshiba Corp Air conditioner
JP4110716B2 (en) * 2000-07-14 2008-07-02 ダイキン工業株式会社 Refrigeration equipment
JP4874138B2 (en) * 2007-03-14 2012-02-15 三菱電機株式会社 Heat pump type water heater
JP5175063B2 (en) * 2007-05-17 2013-04-03 株式会社不二工機 Valve control device
JP2012002426A (en) * 2010-06-16 2012-01-05 Denso Corp Heat pump cycle
JP5858022B2 (en) * 2013-10-24 2016-02-10 ダイキン工業株式会社 Air conditioner
JP6785880B2 (en) * 2016-12-27 2020-11-18 三菱電機株式会社 Air conditioner
CN110966709B (en) * 2018-09-29 2021-05-11 青岛海尔空调器有限总公司 Method and device for determining initial opening degree of electronic expansion valve
JP7216309B2 (en) * 2021-05-07 2023-02-01 ダイキン工業株式会社 air conditioner

Also Published As

Publication number Publication date
JPH04251158A (en) 1992-09-07

Similar Documents

Publication Publication Date Title
JPH07120121A (en) Drive controller for air conditioner
JP2500522B2 (en) Refrigeration system operation controller
JP2500519B2 (en) Operation control device for air conditioner
JPH07120120A (en) Drive controller for air conditioner
JP2551238B2 (en) Operation control device for air conditioner
JP4269476B2 (en) Refrigeration equipment
JP2500517B2 (en) Refrigeration system operation controller
JP3191719B2 (en) Oil return operation control device for refrigeration equipment
JPH09236336A (en) Operation controller for air conditioner
JP2546069B2 (en) Refrigeration system operation controller
JP2500520B2 (en) Refrigerator protection device
JP2555779B2 (en) Operation control device for air conditioner
JP2522116B2 (en) Operation control device for air conditioner
JP2503784B2 (en) Operation control device for air conditioner
JP2001272144A (en) Air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JP3343915B2 (en) Defrost control device
JP2503785B2 (en) Operation control device for air conditioner
JPH0526543A (en) Refrigerating plant
JPH10132406A (en) Refrigerating system
JP2503743B2 (en) Refrigeration system operation controller
JP2687727B2 (en) Compressor protection device for refrigeration equipment
JP2500518B2 (en) Refrigeration system operation controller
JPH0626688A (en) Operating controller of air conditioner
JPH05288386A (en) Operation controller for outdoor fan in air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees