[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2587522B2 - Generation method of extremely high vacuum environment - Google Patents

Generation method of extremely high vacuum environment

Info

Publication number
JP2587522B2
JP2587522B2 JP2184548A JP18454890A JP2587522B2 JP 2587522 B2 JP2587522 B2 JP 2587522B2 JP 2184548 A JP2184548 A JP 2184548A JP 18454890 A JP18454890 A JP 18454890A JP 2587522 B2 JP2587522 B2 JP 2587522B2
Authority
JP
Japan
Prior art keywords
high vacuum
magnetic field
vacuum environment
extremely high
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2184548A
Other languages
Japanese (ja)
Other versions
JPH0471633A (en
Inventor
一郎 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2184548A priority Critical patent/JP2587522B2/en
Publication of JPH0471633A publication Critical patent/JPH0471633A/en
Application granted granted Critical
Publication of JP2587522B2 publication Critical patent/JP2587522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は真空環境の発生方法に関する。特に、10-10P
a(10-12Torr)以下の極高真空環境の発生方法に関す
る。
The present invention relates to a method for generating a vacuum environment. In particular, 10 -10 P
The present invention relates to a method for generating an extremely high vacuum environment of a (10 -12 Torr) or less.

<従来の技術> 真空技術の利用は、金属、半導体、電子部品等広範囲
の分野にわたっており、特に発展のめざましい超LSIを
代表とする半導体製造にも大きな役割を果たしている。
<Conventional Technology> The use of vacuum technology covers a wide range of fields such as metals, semiconductors, and electronic components, and particularly plays a large role in semiconductor manufacturing typified by VLSI, which is undergoing remarkable development.

従来の技術においては、10-6〜10-9Pa程度の超高真空
環境は、ステンレス製またはアルミニウム製のチャンバ
内をイオンポンプ、クライオポンプ、サブメーションポ
ンプまたはこれらのポンプを組み合わせて使用し、排気
することにより、比較的容易に実現されてきた。また、
極高真空領域とよばれている10-10Pa以下の圧力環境の
実現には、上述した真空ポンプの性能を向上させるとと
もに、チャンバ内壁を鏡面研磨することにより、内壁か
らのガス発生を極力抑える方法が用いられている。従来
の最高到達真空度は10-10〜10-11Pa程度である。
In the prior art, an ultra-high vacuum environment of about 10 -6 to 10 -9 Pa uses an ion pump, a cryopump, a subtraction pump or a combination of these pumps in a stainless steel or aluminum chamber, By evacuating, it has been realized relatively easily. Also,
In order to realize a pressure environment of 10 -10 Pa or less, which is called an ultra-high vacuum area, the performance of the above-mentioned vacuum pump is improved, and gas generation from the inner wall is minimized by mirror-polishing the inner wall of the chamber A method is used. The conventional ultimate vacuum degree is about 10 -10 to 10 -11 Pa.

<発明が解決しようとする課題> ところが、上述した従来技術により実現されている10
-10〜10-11Pa程度の圧力環境よりさらに真空度を高めよ
うとした場合、真空チャンバ内壁や真空ポンプ材質から
発生するガスがポンプの排気能力を上回り、圧力を下げ
ることが非常に困難であった。
<Problems to be Solved by the Invention> However, the above-described prior art has realized 10
If it is attempted to further increase the degree of vacuum from a pressure environment of about -10 to 10-11 Pa, the gas generated from the inner wall of the vacuum chamber or the material of the vacuum pump exceeds the pumping capacity of the pump, and it is very difficult to lower the pressure. there were.

本発明では、このようなチャンバ内壁や真空ポンプ材
質からのガス発生の影響を受けず、より真空度の高い極
高真空を達成する方法を提供することにある。
An object of the present invention is to provide a method for achieving an extremely high vacuum with a higher degree of vacuum without being affected by gas generation from the inner wall of the chamber or the material of the vacuum pump.

<課題を解決するための手段> 上記問題点を解決するために、本発明の極高真空環境
の発生方法は、排気手段を備えた真空チャンバ内の一部
の空間の周囲にレーザ光を照射し、そのレーザ光で囲ま
れた空間の一部を磁場領域により囲んだ状態で、上記排
気手段により排気を行うことを特徴としている。
<Means for Solving the Problems> In order to solve the above problems, the method for generating an ultra-high vacuum environment according to the present invention irradiates a laser beam around a partial space in a vacuum chamber provided with an exhaust unit. Then, the air is exhausted by the exhaust means in a state where a part of the space surrounded by the laser light is surrounded by the magnetic field region.

<作用> 第2図は本発明の方法の原理を説明する図である。第
2図に基づいて以下に本発明の作用を説明する。
<Operation> FIG. 2 is a diagram illustrating the principle of the method of the present invention. The operation of the present invention will be described below with reference to FIG.

磁場2とレーザ光1とで囲まれた空間の外部から進入
してくる気体分子4はレーザ光により、極高真空中にお
いては効率よくイオン化され、イオン化された気体分子
5となる。イオン化された気体分子5は磁場2によりロ
ーレンツ力をうけるため進行方向が曲げられ、磁場2の
内部に進入できない。一方、磁場2の内部にある気体分
子4は磁場領域を出て、レーザ光1によりイオン化さ
れ、そのままチャンバの内壁に衝突し、再び中性化され
る。このように磁場で囲まれた空間はチャンバ内壁と直
接接触することはない。
The gas molecules 4 entering from the outside of the space surrounded by the magnetic field 2 and the laser light 1 are efficiently ionized by the laser light in an extremely high vacuum to become ionized gas molecules 5. Since the ionized gas molecules 5 are subjected to Lorentz force by the magnetic field 2, their traveling directions are bent and cannot enter the inside of the magnetic field 2. On the other hand, the gas molecules 4 inside the magnetic field 2 exit the magnetic field region, are ionized by the laser beam 1, collide with the inner wall of the chamber as they are, and are neutralized again. The space surrounded by the magnetic field does not directly contact the inner wall of the chamber.

<実施例> 本発明の方法を用いた実施例を第1図に示す。第1図
に基づいて、本発明方法を説明する。
<Example> An example using the method of the present invention is shown in FIG. The method of the present invention will be described with reference to FIG.

ステンレスチャンバ9は内部が空洞であり、円柱形状
を有している。またステンレスチャンバ9の上面中央に
は石英窓10が設けられている。この石英窓10の上方に
は、石英窓10に対向して光学系8が設けられ、その上方
にはレーザ高原7が設けられている。またチャンバ9に
は、排気を行うターボ分子ポンプ11およびロータリポン
プ12が直列に接続されている。また一方ではイオンポン
プ13が接続されている。さらに、二つのコイル3は石英
窓10を底面とする円柱をなす空間内に平行に置かれてい
る。
The interior of the stainless steel chamber 9 is hollow, and has a cylindrical shape. A quartz window 10 is provided at the center of the upper surface of the stainless steel chamber 9. An optical system 8 is provided above the quartz window 10 so as to face the quartz window 10, and a laser plateau 7 is provided above the optical system 8. Further, a turbo-molecular pump 11 and a rotary pump 12 for exhausting gas are connected in series to the chamber 9. On the other hand, an ion pump 13 is connected. Further, the two coils 3 are placed in parallel in a cylindrical space having the quartz window 10 as a bottom surface.

以上述べた構成からなる装置を用いて、まずチャンバ
9内部をターボ分子ポンプ11およびロータリポンプ12に
より10-5Pa程度に粗引きを行う。次にイオンポンプ13に
より排気を行い、10-9Pa程度まで真空度を上げる。この
状態のチャンバ9内に、XeCl,KrF,ArF等のエキシマレー
ザ1をレーザ光源7より照射する。このとき、レーザ光
1は光学系8により円柱状に広げられ、チャンバ9内の
一部の空間を囲む状態で照射される。次に、チャンバ9
内で円柱状のレーザ光1で囲まれる空間内に2個のリン
グコイル3をたがいに平行な位置に配置し、リングコイ
ル3に電流を流すことにより磁場Bを発生させる。この
磁場Bに囲まれた一部の空間が極高真空環境が実現され
る空間6である。
First, the interior of the chamber 9 is roughly evacuated to about 10 −5 Pa by the turbo molecular pump 11 and the rotary pump 12 using the apparatus having the above-described configuration. Next, air is evacuated by the ion pump 13 and the degree of vacuum is increased to about 10 −9 Pa. The excimer laser 1 such as XeCl, KrF, or ArF is irradiated from the laser light source 7 into the chamber 9 in this state. At this time, the laser beam 1 is spread in a columnar shape by the optical system 8 and is irradiated in a state surrounding a part of the space in the chamber 9. Next, chamber 9
A magnetic field B is generated by arranging two ring coils 3 at positions parallel to each other in a space surrounded by a cylindrical laser beam 1 in the inside, and passing a current through the ring coils 3. Part of the space surrounded by the magnetic field B is a space 6 in which an extremely high vacuum environment is realized.

極高真空環境が実現される空間6の外側の気体分子は
レーザ光1によりり極めて効率良くイオン化される。レ
ーザ光1の波長が短い程、イオン生成量が多い。本発明
で用いたレーザ光はXeCl,KrF,ArF等をイオン源として用
いられ、またこれらのレーザ光では後者になるほど波長
が短いことを利用してチャンバ1内の気体のイオン化率
を高めている。このようにイオン化された気体分子5は
磁場Bによりローレンツ力(F=qv×B)を受けるた
め、進行方向が曲げられ磁場B内部に進入できない。一
方、磁場B内部の気体分子は磁場B領域を出て、レーザ
光1によりイオン化されるだけで、そのままチャンバ9
の内壁に衝突し、気体分子となる。このように磁場B内
部の気体分子は減少していき、磁場B内部は周囲の空間
よりも真空度が高くなる。
Gas molecules outside the space 6 in which an extremely high vacuum environment is realized are extremely efficiently ionized by the laser light 1. The shorter the wavelength of the laser beam 1, the greater the amount of ion generation. The laser light used in the present invention uses XeCl, KrF, ArF, or the like as an ion source, and the ionization rate of gas in the chamber 1 is increased by utilizing the fact that the wavelength of the laser light is shorter as the latter. . Since the gas molecules 5 ionized in this way receive the Lorentz force (F = qv × B) by the magnetic field B, the traveling direction is bent and the gas molecules 5 cannot enter the magnetic field B. On the other hand, gas molecules inside the magnetic field B exit the magnetic field B region and are only ionized by the laser beam 1, and are not
Collides with the inner wall of the gas and becomes gas molecules. Thus, the gas molecules inside the magnetic field B decrease, and the degree of vacuum inside the magnetic field B becomes higher than the surrounding space.

<発明の効果> 以上述べたように、本発明では磁場領域で囲まれた空
間は、チャンバ内壁と直接接触していないので内壁から
のガス放出による真空度の劣化がない。したがって、10
-10以下の極高真空環境を容易に実現できる。
<Effect of the Invention> As described above, in the present invention, the space surrounded by the magnetic field region is not in direct contact with the inner wall of the chamber, so that the degree of vacuum does not deteriorate due to gas release from the inner wall. Therefore, 10
An extremely high vacuum environment of -10 or less can be easily realized.

さらに、今後ますますその重要性が増す不純物ダスト
粒子の汚染防止のための超クリーン化技術においても、
本発明の寄与するところは大きい。
Furthermore, in the ultra-clean technology for preventing the contamination of impurity dust particles, which will become increasingly important in the future,
The contribution of the present invention is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法による実施例を示す図、第2図は本
発明方法の原理作用を説明する図である。 1……レーザ光 2……磁場 3……コイル 4……気体分子 5……イオン化された気体分子 6……極高真空が実現される空間 7……レーザ 8……光学系 9……ステンレスチャンバ 10……石英窓 11……ターボ分子ポンプ 12……ロータリポンプ 13……イオンポンプ
FIG. 1 is a view showing an embodiment according to the method of the present invention, and FIG. 2 is a view for explaining the principle operation of the method of the present invention. DESCRIPTION OF SYMBOLS 1 ... Laser light 2 ... Magnetic field 3 ... Coil 4 ... Gas molecules 5 ... Ionized gas molecules 6 ... Space where ultra-high vacuum is realized 7 ... Laser 8 ... Optical system 9 ... Stainless steel Chamber 10: Quartz window 11: Turbo molecular pump 12: Rotary pump 13: Ion pump

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】極高真空環境を発生させる方法であって、
排気手段を備えた真空チャンバ内の一部の空間の周囲に
レーザ光を照射し、そのレーザ光で囲まれた空間の一部
を磁場領域により囲んだ状態で、上記排気手段により排
気を行うことを特徴とする極高真空環境の発生方法。
1. A method for generating an ultra-high vacuum environment, comprising:
Irradiating a laser beam around a part of a space in a vacuum chamber provided with an evacuation unit, and performing evacuation by the evacuation unit in a state where a part of the space surrounded by the laser beam is surrounded by a magnetic field region; A method for generating an extremely high vacuum environment characterized by the following.
JP2184548A 1990-07-11 1990-07-11 Generation method of extremely high vacuum environment Expired - Fee Related JP2587522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2184548A JP2587522B2 (en) 1990-07-11 1990-07-11 Generation method of extremely high vacuum environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2184548A JP2587522B2 (en) 1990-07-11 1990-07-11 Generation method of extremely high vacuum environment

Publications (2)

Publication Number Publication Date
JPH0471633A JPH0471633A (en) 1992-03-06
JP2587522B2 true JP2587522B2 (en) 1997-03-05

Family

ID=16155127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2184548A Expired - Fee Related JP2587522B2 (en) 1990-07-11 1990-07-11 Generation method of extremely high vacuum environment

Country Status (1)

Country Link
JP (1) JP2587522B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713772B2 (en) * 2001-07-05 2011-06-29 岐阜プラスチック工業株式会社 Pallet with hook bracket

Also Published As

Publication number Publication date
JPH0471633A (en) 1992-03-06

Similar Documents

Publication Publication Date Title
KR940000384B1 (en) Treating apparatus of plasma
JPH0770509B2 (en) Dry process equipment
WO2002080254A1 (en) Microwave plasma process device, plasma ignition method, plasma forming method, and plasma process method
JPH0430177B2 (en)
JP2938118B2 (en) Method and apparatus for evacuating hydrogen from vacuum vessel
JP2587522B2 (en) Generation method of extremely high vacuum environment
EP0469631B1 (en) Ion pump and vacuum pumping unit using the same
KR101008065B1 (en) Radiaton pressure vacuum pump
JP2004214480A (en) Aligner
KR970010266B1 (en) Plasma generating method and apparatus thereof
JPH08271700A (en) Electron beam source
JP2929149B2 (en) Plasma equipment
JPH03131024A (en) Semiconductor etching
JPH05299364A (en) Trap device
JPH0475336A (en) Method and apparatus for surface processing
JPH07272670A (en) Vacuum pump and its discharging method
US4915807A (en) Method and apparatus for processing a semiconductor wafer
JPS6132947A (en) Extra-high vacuum element for charged particle beam device
JPH0645094A (en) Method for generating plasma and device therefor
JPS62296358A (en) Ion beam device
JPH11336662A (en) Vacuum vessel and method for evacuating therefrom
JP2600055B2 (en) Cryopump
JPH04206518A (en) Photo-etching method
JPH06306601A (en) Evacuation structure of sputtering device
JPH0529266A (en) Electronic beam exciting dry etching method and device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees