[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2585740B2 - Automatic analyzers and reaction vessels - Google Patents

Automatic analyzers and reaction vessels

Info

Publication number
JP2585740B2
JP2585740B2 JP63210740A JP21074088A JP2585740B2 JP 2585740 B2 JP2585740 B2 JP 2585740B2 JP 63210740 A JP63210740 A JP 63210740A JP 21074088 A JP21074088 A JP 21074088A JP 2585740 B2 JP2585740 B2 JP 2585740B2
Authority
JP
Japan
Prior art keywords
reaction
stirring
reaction vessel
disk
stirrer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63210740A
Other languages
Japanese (ja)
Other versions
JPH01229974A (en
Inventor
文寿 浜崎
肇 別井
恭子 今井
広 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63210740A priority Critical patent/JP2585740B2/en
Priority to DE3838361A priority patent/DE3838361A1/en
Publication of JPH01229974A publication Critical patent/JPH01229974A/en
Priority to US07/793,650 priority patent/US5272092A/en
Application granted granted Critical
Publication of JP2585740B2 publication Critical patent/JP2585740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/20Mixing the contents of independent containers, e.g. test tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/452Magnetic mixers; Mixers with magnetically driven stirrers using independent floating stirring elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00435Refrigerated reagent storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0446Combinations of the above
    • G01N2035/0448Combinations of the above composed of interchangeable ring elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1079Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices with means for piercing stoppers or septums

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動分析装置および反応容器に係り、特に
反応容器内の液を攪拌するのに好適な自動分析装置およ
び反応容器に関する。
Description: TECHNICAL FIELD The present invention relates to an automatic analyzer and a reaction vessel, and more particularly to an automatic analyzer and a reaction vessel suitable for stirring a liquid in the reaction vessel.

〔従来の技術〕[Conventional technology]

従来の臨床用自動分析装置では、反応容器に添加した
試料と試薬を攪拌する場合に、例えば特開昭57−82769
号に示されているように順位攪拌位置に位置づけられた
反応容器内に同じ攪拌棒を挿入してかきまぜることによ
り混合するのが一般的であつた。しかしながら、このよ
うな攪拌方法は反応液相互のキヤリオーバを完全に除去
することが困難である。そこで反応液に非接触攪拌する
ことが考えられるようになつた。
In a conventional clinical automatic analyzer, when a sample and a reagent added to a reaction vessel are stirred, for example, Japanese Patent Laid-Open No. 57-82769 is used.
In general, mixing was carried out by inserting and stirring the same stirring rod into a reaction vessel positioned in the order stirring position as shown in the above item. However, it is difficult for such a stirring method to completely remove the carryover between the reaction solutions. Therefore, non-contact stirring of the reaction solution has been considered.

特開昭57−42325号は、ターンテーブル上に配列され
た反応容器列の内周側に複数の反応容器の外壁と接触す
る円板を設け、この円板を往復運動させることにより反
応容器を従動回転させる混合方法を示している。
JP-A-57-42325 discloses a method in which a disk is provided on the inner peripheral side of a row of reaction vessels arranged on a turntable so as to come into contact with the outer walls of a plurality of reaction vessels, and the disc is reciprocated to move the reaction vessel. 3 shows a mixing method of driven rotation.

一方、分析計の機能のない攪拌装置ではあるが、特開
昭52−143551号は、矩形のプラスチツク製板にX方向お
よびY方向に多数の希釈液室を形成し、その板に水平に
振動を与えることによつて液をかきまぜる方法を示して
いる。この例では、単なる振動だけによつては完全なか
きまぜを行うことができないことを考慮し、板の一端を
支柱で支え、電磁石等を働かせて板に円弧状の振動を与
えるようにしている。
On the other hand, although it is a stirrer without the function of an analyzer, Japanese Patent Application Laid-Open No. 52-143551 discloses that a large number of diluent chambers are formed in a rectangular plastic plate in the X and Y directions, and the plate is vibrated horizontally. Shows how to stir the liquid by giving In this example, in consideration of the fact that complete stirring cannot be performed only by simple vibration, one end of the plate is supported by a column, and an electromagnet or the like is operated to apply an arc-shaped vibration to the plate.

また、特開昭61−56972号は、複数の試料セルをセツ
トしたセルホルダを直線的に移送して、各試料セルを順
次測定位置に移行させ、測定後セルホルダに逆送して戻
る分光光度計において、セルホルダの駆動源に正転,逆
転の信号を交互に与えて試料セルを前後方向に動揺し試
料を攪拌することを示している。
Japanese Patent Application Laid-Open No. 61-56972 discloses a spectrophotometer in which a cell holder in which a plurality of sample cells are set is linearly transferred, each sample cell is sequentially shifted to a measurement position, and after measurement, the spectrophotometer is returned to the cell holder and returned. In the figure, a normal rotation signal and a reverse rotation signal are alternately applied to the drive source of the cell holder to swing the sample cell back and forth, thereby stirring the sample.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

自動分析装置では、多数の試料を効率的に処理しなけ
ればならないため、被攪拌液間にキヤリオーバのない攪
拌動作を短時間で実行しなければならない。
In an automatic analyzer, since a large number of samples must be efficiently processed, a stirring operation without carryover between liquids to be stirred must be performed in a short time.

特開昭57−42325号は、反応容器自体を自転させるこ
とによつて内部の液を攪拌することができるが、攪拌装
置の機構が複雑である。特開昭52−143551号は、希釈棒
を次々と各希釈液室に挿入して試料を順次希釈するもの
であり、攪拌時のキヤリオーバの影響について配慮して
いない。特開昭61−56972号は、角型セルを前後方向に
揺動させるだけであるため、試料セル内の液が十分に混
合されるのに比較的長時間を要する。
In JP-A-57-42325, the internal liquid can be stirred by rotating the reaction vessel itself, but the mechanism of the stirring device is complicated. Japanese Patent Application Laid-Open No. 52-143551 discloses a method of sequentially diluting a sample by inserting a diluting rod into each diluting liquid chamber one after another, and does not consider the effect of carryover during stirring. In Japanese Patent Application Laid-Open No. 61-56972, since the rectangular cell is only swung in the front-back direction, it takes a relatively long time for the liquid in the sample cell to be sufficiently mixed.

本発明の目的は、簡単な構成で反応容器内の液の攪拌
を効率的に行い得る自動分析装置を提供することにあ
る。
An object of the present invention is to provide an automatic analyzer capable of efficiently stirring a liquid in a reaction vessel with a simple configuration.

本発明の他の目的は、試料および試薬の添加から反応
液の測定までの期間の間攪拌を繰り返し行うことを可能
にして試料と試薬の反応を促進することができる自動分
析装置を提供することにある。
Another object of the present invention is to provide an automatic analyzer capable of promoting a reaction between a sample and a reagent by allowing repeated stirring during a period from addition of a sample and a reagent to measurement of a reaction solution. It is in.

本発明のもう1つの目的は、反応液間のキヤリオーバ
のない攪拌を容易に実行し得る自動分析装置を提供する
ことにある。
Another object of the present invention is to provide an automatic analyzer capable of easily performing stirring without carryover between reaction solutions.

本発明の他の目的は、液の攪拌効果を高めることがで
き、取扱の容易な反応容器を提供することにある。
Another object of the present invention is to provide a reaction vessel which can enhance the effect of stirring the liquid and is easy to handle.

〔課題を解決するための手段〕[Means for solving the problem]

本発明では、攪拌ボールの入つた反応容器を反応デイ
スクに配列し、反応デイスクを弧状に高速往復動させて
振動し、この振動によつて反応容器内の攪拌ボールを回
動させて反応容器内の液を攪拌するように構成した。
In the present invention, the reaction vessel containing the stirring ball is arranged on the reaction disk, and the reaction disk is reciprocated at high speed in an arc shape to vibrate. The vibration causes the stirring ball in the reaction vessel to rotate, thereby causing the inside of the reaction vessel to rotate. The liquid was stirred.

〔作用〕[Action]

反応デイスクを適正な条件で弧状に往復動振動させる
と、反応デイスク上に配列された反応容器内の液中に沈
められている攪拌ボールに運動エネルギーが与えられ
る。これにともなつて攪拌ボールは運動を始めるが、反
応容器の内壁によつて運動の方向が制限されるので、攪
拌ボールは反応容器の中で回転し、被攪拌液を攪拌する
ことになる。
When the reaction disk is vibrated reciprocally in an arc shape under appropriate conditions, kinetic energy is given to a stirring ball submerged in a liquid in a reaction vessel arranged on the reaction disk. Accordingly, the stirring ball starts to move, but since the direction of movement is restricted by the inner wall of the reaction vessel, the stirring ball rotates in the reaction vessel and stirs the liquid to be stirred.

本発明の望ましい実施例では、効率の良い攪拌を得る
ために振幅が0.8〜3.0mmであり周波数が10〜40Hzの振動
条件で反応デイスクを高速往復動する。攪拌ボールの直
径を反応容器の内径の半分以下とし、被攪拌液に対する
攪拌ボールの比重を4以上とすることにより反応容器か
らの液の飛び出し等のない好適な攪拌が実行される。ま
た、反応デイスク上のそれぞれの反応容器内に攪拌ボー
ルが入れられるので、攪拌ボールを介在しての反応液間
のキヤリオーバは生じない。
In a preferred embodiment of the present invention, the reaction disk is reciprocated at a high speed under a vibration condition of an amplitude of 0.8 to 3.0 mm and a frequency of 10 to 40 Hz in order to obtain efficient stirring. By setting the diameter of the stirring ball to half or less of the inner diameter of the reaction vessel and setting the specific gravity of the stirring ball to the liquid to be stirred to be 4 or more, suitable stirring without running out of the liquid from the reaction vessel is performed. Further, since the stirring balls are put into the respective reaction vessels on the reaction disk, no carryover occurs between the reaction solutions via the stirring balls.

本発明を自動分析装置に実際的に適用する場合には、
高い測光精度が得られなければならない。内壁側面が湾
曲している反応容器に一対の平滑な投光窓を形成するこ
とによつて、光度系の光路位置における反応容器の位置
が多少ずれても安定した測光値を得ることができ、攪拌
ボールの回転運動も好適に行わしめることができる。攪
拌子を強磁性体で形成し、磁石を測光位置付近に設ける
ことによつて、測光時に攪拌子が光路の妨害をすること
を防止できる。
When the present invention is practically applied to an automatic analyzer,
High photometric accuracy must be obtained. By forming a pair of smooth light projecting windows in a reaction container having a curved inner wall side surface, a stable photometric value can be obtained even if the position of the reaction container in the optical path position of the luminosity system is slightly shifted. The rotational movement of the stirring ball can also be suitably performed. By forming the stirrer with a ferromagnetic material and providing the magnet near the photometry position, it is possible to prevent the stirrer from obstructing the optical path during photometry.

反応デイスク全体が振動されるので、反応デイスク上
の複数の反応容器内の液が一斉に攪拌され、この攪拌は
新しい反応容器に試料および試薬が添加される都度行わ
れるので、結果的に反応開始から測定までの期間反応液
が頻繁に攪拌されることになる。反応容器中に液体とは
比重の異なる不溶性試薬が入つている場合には、このよ
うな繰り返し攪拌により反応が促進される。
Since the entire reaction disk is vibrated, the liquids in the plurality of reaction vessels on the reaction disk are stirred at the same time, and this stirring is performed each time a sample and reagent are added to a new reaction vessel. The reaction solution is frequently stirred during the period from to the measurement. When an insoluble reagent having a specific gravity different from that of the liquid is contained in the reaction vessel, the reaction is promoted by such repeated stirring.

〔実施例〕〔Example〕

本発明の一実施例を、第1図〜第4図を参照して説明
する。
One embodiment of the present invention will be described with reference to FIGS.

回転型円板状の反応デイスク1の円周上に複数個の反
応容器2を配列し、反応デイスク1を駆動機構3により
回転する。その駆動機構3により反応容器2を1ピツチ
ずつ間欠回転したり、又は短周期往復運動可能にする。
反応デイスク1は、微小振幅で高速往復動され、反応容
器内の液が攪拌される。
A plurality of reaction vessels 2 are arranged on the circumference of a rotary disk-shaped reaction disk 1, and the reaction disk 1 is rotated by a driving mechanism 3. The drive mechanism 3 allows the reaction vessel 2 to rotate intermittently one pitch at a time or to make a short-cycle reciprocating movement.
The reaction disk 1 is reciprocated at a high speed with a small amplitude, and the liquid in the reaction container is stirred.

反応デイスク1に装着される反応容器2には、第3図
に示すように、内部にパーマロイ製の撹拌ボール4があ
らかじめ入れられている。第3図の反応容器は蛍光測光
用のものである。反応容器2の上端は、アルミニウム製
膜5によつてシールされているので、輸送時に撹拌ボー
ル4が反応容器2から飛び出すことがない。この反応容
器2は、内径6.2mmで深さが30mmの円筒状となつてお
り、底面に平滑な入射窓24を有し、側面に平滑な出射窓
25を有している。この反応容器2は透光性材料であるガ
ラス又はアクリル樹脂からなる。反応容器2が反応デイ
スク1にセツトされると、図示しないシールブレーカ装
置によつてシール膜5に所望の大きさの穴5aが開けられ
る。従つてその後に分注機構14のプローブ15によつて実
行される試料および/または試薬の分注動作は、シール
膜5によつて妨げられない。
As shown in FIG. 3, a reaction ball 2 made of permalloy is previously placed in the reaction vessel 2 mounted on the reaction disk 1. The reaction vessel in FIG. 3 is for fluorescence photometry. Since the upper end of the reaction vessel 2 is sealed by the aluminum film 5, the stirring ball 4 does not jump out of the reaction vessel 2 during transportation. This reaction vessel 2 has a cylindrical shape with an inner diameter of 6.2 mm and a depth of 30 mm, has a smooth entrance window 24 on the bottom surface, and a smooth exit window on the side surface.
Has 25. The reaction vessel 2 is made of glass or acrylic resin which is a translucent material. When the reaction vessel 2 is set on the reaction disk 1, a hole 5a having a desired size is formed in the seal film 5 by a seal breaker device (not shown). Therefore, the dispensing operation of the sample and / or the reagent subsequently performed by the probe 15 of the dispensing mechanism 14 is not hindered by the seal film 5.

反応恒温槽6の内部には、光度計19の測光位置付近に
第1図に示すように永久磁石又は電磁石7を配置する。
この磁石7により測光位置に来た反応容器内の攪拌ボー
ル4が出射窓25とは反対側の側壁に引き付けられるの
で、光束22の通路を攪拌ボール4が妨げることはない。
As shown in FIG. 1, a permanent magnet or electromagnet 7 is arranged near the photometry position of the photometer 19 inside the reaction thermostat 6.
Since the stirring ball 4 in the reaction vessel which has reached the photometry position is attracted to the side wall opposite to the emission window 25 by the magnet 7, the stirring ball 4 does not obstruct the passage of the light flux 22.

一方、回転型円板状の試料デイスク8と、回転型円板
状の試薬デイスク9とを同心円状に配列し、中心の駆動
軸10により試料デイスク8と試薬デイスク9とを同時に
一体に回転駆動する。尚、図示では試料デイスク8を中
心側、試薬デイスク9を外周側に設けているが、この逆
に設けてもよい。試料デイスク8に複数個の試料容器11
を配列する。また試薬デイスク9には、数種類の試薬容
器をグループとした試薬容器群12を配列する。
On the other hand, the rotating disk-shaped sample disk 8 and the rotating disk-shaped reagent disk 9 are arranged concentrically, and the sample disk 8 and the reagent disk 9 are simultaneously rotated by the central drive shaft 10. I do. Although the sample disk 8 is provided on the center side and the reagent disk 9 is provided on the outer peripheral side in the drawing, they may be provided in reverse. A plurality of sample containers 11 are placed on the sample disk 8.
Are arranged. On the reagent disk 9, a reagent container group 12 in which several types of reagent containers are grouped is arranged.

試薬容器12は特定の分析項目に対する第一試薬,第二
試薬等をグループとして配置する。試薬デイスク9及び
試料デイスク8を駆動軸10の周りに回転し、試薬容器12
及び試料容器11を1ピツチまたは指定したピツチ数だけ
回転するように構成する。また、試薬容器12及び試料容
器11をそれぞれ別個に分析対象に対応して取り付け、取
り外し可能にしてセツトする。また試料容器11を試料恒
温槽に、試薬容器12を試薬保冷槽13に別個に配置して所
定温度を保つ。
The reagent container 12 arranges a first reagent, a second reagent, and the like for a specific analysis item as a group. The reagent disk 9 and the sample disk 8 are rotated around a drive shaft 10 and the reagent container 12 is rotated.
The sample container 11 is rotated by one pitch or a designated number of pitches. In addition, the reagent container 12 and the sample container 11 are separately attached to the analysis object, and are detachably set. Further, the sample container 11 is separately arranged in the sample thermostat and the reagent container 12 is separately arranged in the reagent cooler 13 to maintain a predetermined temperature.

前述した試料あるいは標準物質又は試薬のそれぞれを
試料容器11又は試薬容器12から、反応容器2に分注する
為にピペツテイング機構14を設ける。そのピペツテイン
グ機構14は回転アーム14aの先端にプローブ15を設け、
プローブ15により試料又は試薬を吸引し、プローブ15を
回転移動させて試料および試薬分注位置16にある反応容
器2に吐出する。その際、分注される試料容器11又は試
薬容器12を、ピペツテイング機構14のプローブ15の移動
軌跡に配置するようにし、かつ駆動軸10により試料デイ
スク8又は試薬デイスク9を回転して移動軌跡上に停止
するようにする。またプローブ洗浄装置17を設け、プロ
ーブ15の内部及び外部に洗浄水をポンプで送り、十分に
洗浄する。
A pipetting mechanism 14 is provided for dispensing the above-described sample, standard substance, or reagent from the sample container 11 or the reagent container 12 to the reaction container 2. The pipetting mechanism 14 is provided with a probe 15 at the tip of a rotating arm 14a,
The sample or the reagent is sucked by the probe 15, and the probe 15 is rotated and discharged to the reaction container 2 at the sample and reagent dispensing position 16. At this time, the sample container 11 or the reagent container 12 to be dispensed is arranged on the movement locus of the probe 15 of the pipetting mechanism 14, and the sample disk 8 or the reagent disk 9 is rotated by the drive shaft 10 to move along the movement locus. To stop. Further, a probe cleaning device 17 is provided, and cleaning water is pumped into and out of the probe 15 to sufficiently clean the probe.

試料デイスク8上の試料容器11からピペツテイング機
構14により所定量の試料をプローブ15で吸引して秤量
し、反応デイスク1上の指定された位置において反応容
器2に移送し吐出する。吐出後、ピペツテイング機構14
のプローブ15を洗浄装置17で十分に洗浄し、試料液のキ
ヤリーオーバによる汚染を防ぐ。次に反応デイスク1を
高速往復動駆動機構3により周波数33Hz,振幅1.2mmで3
秒間往復動させたのち、1ピツチ進むように回転する。
A predetermined amount of the sample is sucked by the probe 15 from the sample container 11 on the sample disk 8 by the pipetting mechanism 14 by the probe 15 and weighed, transferred to the reaction container 2 at a designated position on the reaction disk 1 and discharged. After dispensing, pipetting mechanism 14
The probe 15 is sufficiently washed by the washing device 17 to prevent contamination by carry-over of the sample solution. Next, the reaction disk 1 was moved by the high-speed reciprocating drive mechanism 3 at a frequency of 33 Hz and an amplitude of 1.2 mm.
After reciprocating for two seconds, it rotates so as to advance one pitch.

高速往復動駆動機構3は、第1図に示すようにステツ
プモータ3aを動力源とし、ギヤまたは連結ベルト3bによ
り反応デイスク1の回転軸3cと連結されている。もちろ
んステツプモータ3aの回転軸と反応デイスクの回転軸3c
を一体化させることも可能であり、その場合はギヤも連
結ベルトも不要である。ステツプモータ3aの動作は、中
央処理装置18により制御されており、30m秒間に、正逆
方向にそれぞれ5パルス分だけ回転し、これを3秒間く
り返すことにより、反応デイスクを周波数約33Hzで高速
往復動させる。これにより反応容器も約33Hzで高速往復
動し、直径300mm程度の反応デイスクを用いることによ
り、ギヤ比等に依存して、数mm程度の振幅を得る。ま
た、この高速往復動駆動機構3は、反応デイスクをステ
ツプ送りのために回転させ、反応容器2を目的位置に移
動させるためにも使われる。
As shown in FIG. 1, the high-speed reciprocating drive mechanism 3 uses a stepping motor 3a as a power source and is connected to the rotating shaft 3c of the reaction disk 1 by a gear or a connecting belt 3b. Of course, the rotation axis of the step motor 3a and the rotation axis 3c of the reaction disk
Can be integrated, in which case neither a gear nor a connection belt is required. The operation of the stepping motor 3a is controlled by the central processing unit 18 and rotates in the forward and reverse directions by 5 pulses each for 30 msec, and repeats this for 3 sec. Reciprocate. Thereby, the reaction vessel also reciprocates at a high speed of about 33 Hz, and by using a reaction disk having a diameter of about 300 mm, an amplitude of about several mm is obtained depending on a gear ratio and the like. The high-speed reciprocating drive mechanism 3 is also used for rotating the reaction disk for step feed and moving the reaction container 2 to a target position.

一方、試料デイスク8を次の吸引のピペツテイング位
置に回転する。この操作を順次繰り返すことにより、始
めに試料液を必要数だけ反応容器2に移送分注する。次
に試料液を試料容器12から同様にピペツテイング機構14
で吸引し、試料および試薬分注位置16において、反応容
器2に分注する。
On the other hand, the sample disk 8 is rotated to the next suction pipetting position. By repeating this operation sequentially, a required number of sample liquids are first transferred and dispensed into the reaction vessel 2. Next, the sample solution is similarly poured from the sample container 12 into the pipetting mechanism 14.
And dispenses to the reaction container 2 at the sample and reagent dispensing position 16.

次に反応デイスク1を高速往復動駆動機構3により3
秒間往復動させることによつて、反応容器2の反応液を
攪拌したのち、1ピツチ回転移送する。
Next, the reaction disk 1 is moved by the high-speed reciprocating drive mechanism 3 to 3
By reciprocating for 2 seconds, the reaction solution in the reaction vessel 2 is stirred and then transferred by one pitch rotation.

試薬は、試薬容器群の試薬系列の第一試薬から順次移
送分注する。このようにして反応デイスク1に、指定し
た回転を行なわせ、試料と試薬とを反応容器2にバツチ
分注する。試料としては、血清,血漿あるいは尿などの
生体液が用いられる。試薬としては、通常使用されてい
るのと同じ試薬を使用することができる。
The reagents are sequentially transferred and dispensed from the first reagent in the reagent series in the reagent container group. In this way, the designated rotation is performed on the reaction disk 1, and the sample and the reagent are batch-dispensed into the reaction container 2. As a sample, a biological fluid such as serum, plasma, or urine is used. As the reagent, the same reagent as that usually used can be used.

試料および試薬の分注位置16において、反応容器2に
順次分注された試料と試薬は反応容器2内で反応を開始
する。例えば反応容器が1ピツチ移送される間隔を18
秒、反応デイスク1の往復動駆動時間を3秒間とする
と、反応デイスク1上の全ての反応容器は、18秒毎に3
秒間の往復動を繰り返すことになる。これによつてすべ
ての反応容器中の反応液は反応全過程において18秒毎に
3秒間の攪拌を施されることになる。試薬分注位置16に
おいて反応容器に発色試薬が添加されると呈色反応が進
行する。
At the sample and reagent dispensing position 16, the sample and the reagent sequentially dispensed into the reaction container 2 start a reaction in the reaction container 2. For example, the interval at which the reaction vessel is transferred by one pitch is 18
Assuming that the reciprocating drive time of the reaction disk 1 is 3 seconds, all the reaction vessels on the reaction disk 1 are 3 seconds every 18 seconds.
The reciprocating motion for a second is repeated. As a result, the reaction liquids in all the reaction vessels are agitated for 3 seconds every 18 seconds in the whole reaction process. When a coloring reagent is added to the reaction container at the reagent dispensing position 16, a color reaction proceeds.

光度計19は、複数検知器を有する多波長同時測光形で
あり、反応容器2と相対し、反応デイスク1上に測光位
置20にある反応容器が、光源ランプ21からの光束22を通
過するように構成されている。
The photometer 19 is a multi-wavelength simultaneous photometric type having a plurality of detectors, and is arranged so that the reaction vessel located at the photometry position 20 on the reaction disk 1 facing the reaction vessel 2 passes through the light flux 22 from the light source lamp 21. Is configured.

第1図において、光源ランプ21からの光は、レンズ23
a,23bにより集光され、反応容器2の底面の入射窓24か
ら反応容器内の反応液へ励起光として入射する。反応液
から放射された蛍光は、反応容器の出射窓25から取り出
され、レンズ23cを通つてフオトマルチプライヤ26によ
り蛍光強度が検出される。反応デイスク1の移送動作に
より、次々と反応容器が測光位置20に位置づけられ、光
度計19によつて各試料に基づく蛍光強度が測定される。
光度計19の出力は、マルチプレクサにより現在必要な測
定波長の信号が選択され、A/D変換器27により中央処理
装置18に取り込まれて、RAMに記憶される。
In FIG. 1, light from a light source lamp 21 is
The light is condensed by a and b, and is incident as excitation light from the incident window 24 on the bottom surface of the reaction vessel 2 into the reaction solution in the reaction vessel. The fluorescence emitted from the reaction solution is taken out from the emission window 25 of the reaction vessel, and the fluorescence intensity is detected by the photomultiplier 26 through the lens 23c. By the transfer operation of the reaction disk 1, the reaction vessels are successively positioned at the photometry position 20, and the fluorescence intensity based on each sample is measured by the photometer 19.
As for the output of the photometer 19, a signal of a currently required measurement wavelength is selected by a multiplexer, taken into the central processing unit 18 by the A / D converter 27, and stored in the RAM.

上記試料及び試薬分注から測定終了までの一連の動作
を、高速往復動による攪拌動作を含めて第4図にフロー
チヤートで示す。
FIG. 4 is a flow chart showing a series of operations from the dispensing of the sample and the reagent to the end of the measurement, including a stirring operation by high-speed reciprocating motion.

中央処理装置18は、機構系を含めた装置全体の制御
と、濃度演算などのデータ処理全般を行なうものでマイ
クロコンピユータが使用される。
The central processing unit 18 controls the entire apparatus including the mechanical system and performs all data processing such as density calculation, and uses a microcomputer.

化学反応の進行におよぼす反応液の攪拌の効果を第5
図に示す。実験例1と同様のテオフイリン測定用試薬と
テオフイリン標準液30μg/mlを反応させたときの、第1
試薬添加後から測光までの全反応過程における攪拌総時
間と、反応進行の結果生じた蛍光強度の関係を示す。第
5図中、データAは、本実施例の自動分析装置を用いて
反応容器を1ピツチ移送する毎に反応液を3秒間攪拌し
た場合のデータを示しており、試料と試薬が混合されて
反応が開始された時点から測光に至るまでの全反応過程
において反応液は連続的に完全に攪拌されている。デー
タBは、従来の自動分析装置を用いた場合に相当する
が、1反応工程あたり1回のみ反応液は攪拌される。
The effect of stirring the reaction solution on the progress of the chemical reaction
Shown in the figure. When the same reagent for theophylline measurement as in Experimental Example 1 was reacted with the theophylline standard solution at 30 μg / ml, the first
The relationship between the total stirring time in the entire reaction process from the addition of the reagent to the photometry and the fluorescence intensity resulting from the progress of the reaction is shown. In FIG. 5, data A shows data when the reaction solution was stirred for 3 seconds each time the reaction vessel was transferred by one pitch using the automatic analyzer of this embodiment, and the sample and the reagent were mixed. The reaction solution is continuously and completely stirred in the entire reaction process from the start of the reaction to photometry. Data B corresponds to the case where a conventional automatic analyzer is used, but the reaction solution is stirred only once per reaction step.

第5図から明らかなように、反応液の攪拌を高頻度に
(すなわち、攪拌総時間を長時間に)するにつれて反応
は促進されて、反応の結果生成する蛍光強度は著しく増
加した。しかしながら、本発明の自動分析装置が採用し
た攪拌条件(データAの条件)よりもさらに高頻度な攪
拌を試みても、第5図中、データCで示したように得ら
れた蛍光強度はデータAとほぼ同程度であり、さらなる
反応の促進は認められなかつた。これによつて、データ
Aは、頻繁な攪拌によつて最も高効率に、反応が進行し
た点であることがわかつた。以上の結果によつて、反応
過程における反応液の攪拌は、反応の促進に大きな影響
力を持ち、本実施例の自動分析装置のように反応全過程
において連続的に反応液を攪拌することによつて反応の
進行が著しく促進されることが明らかである。
As is clear from FIG. 5, the reaction was accelerated as the stirring of the reaction solution was performed more frequently (that is, the total stirring time was increased), and the fluorescence intensity generated as a result of the reaction was significantly increased. However, even if a more frequent stirring was attempted than the stirring condition (condition of data A) employed by the automatic analyzer of the present invention, the fluorescence intensity obtained as shown by data C in FIG. It was almost the same as A, and no further promotion of the reaction was observed. This indicated that Data A was the point at which the reaction proceeded most efficiently with frequent stirring. According to the above results, the stirring of the reaction solution in the reaction process has a great influence on the promotion of the reaction, and the reaction solution is continuously stirred in the entire reaction process as in the automatic analyzer of this example. Thus, it is clear that the progress of the reaction is remarkably accelerated.

また、非溶解性で、分散性が良くない成分が反応液中
に含まれる場合には、頻繁に攪拌することにより沈降を
防止して反応を促進する必要があるが、このような場合
にも、上述した攪拌法は有用である。
In addition, when a component that is insoluble and has poor dispersibility is contained in the reaction solution, it is necessary to prevent sedimentation by frequent stirring to promote the reaction. The stirring method described above is useful.

予め攪拌子を入れた反応容器2を使用する場合のシー
ル材としては、アルミニウムフイルム,ポリエチレンフ
イルム,シリコン膜など種々の材質を使用することがで
きる。分注プローブ15による試料や試薬の分注に際して
シール5が分注の妨げにならないように、容易にシール
5を破壊するためにシールブレーカを分注プローブとは
別に設けて、試料や試薬の反応容器内への分注に先立た
せてシール5を破壊しておいてもよいし、分注プローブ
15でシールを破壊してもよい。
Various materials such as an aluminum film, a polyethylene film, and a silicon film can be used as a sealing material when the reaction vessel 2 containing a stirrer in advance is used. A seal breaker is provided separately from the dispensing probe to easily break the seal 5 so that the seal 5 does not hinder the dispensing when dispensing the sample or the reagent by the dispensing probe 15. Prior to dispensing into the container, the seal 5 may be broken or a dispensing probe
You may break the seal at 15.

反応容器2の材質は、ガラスやプラスチツク類を使用
することができる。容器の強度、反応試薬や試料の吸着
性が少ないこと、安価であることおよび特に反応液を直
接測光する場合には投光性が良いことが必要とされ、ア
クリル樹脂を好適に使用できる。
Glass and plastics can be used as the material of the reaction vessel 2. The strength of the container, the low adsorbability of the reaction reagent and the sample, the low cost, and the good light projection property are required especially when the reaction liquid is directly measured, and an acrylic resin can be suitably used.

攪拌子4の材質としては、ここではパーマロイを用い
たが、被攪拌溶液に対する比重が1より大きいものであ
れば攪拌子として使用可能であるかもしれない。被攪拌
溶液の液量や粘度によつて攪拌子の大きさを変えること
で攪拌効果を上げることができる。ただし、鉄の様にさ
びやすいものや溶液と化学反応をおこしてしまい本来の
反応に悪影響を及ぼしてしまうものは、攪拌子にプラス
チツクコーテイングやメツキ等の表面処理が必要であ
る。直接測光を行う場合、鉄,パーマロイ等の強磁性体
を用いると、磁石の磁力により容易に光束22を避けるこ
とができる。この場合、それ自身が反応するしないにか
かわらず、反応に強磁性体が関与する場合、例えば鉄触
媒を用いた反応等では、攪拌子4に残留磁気が残ると、
反応液中強磁性体と攪拌子4が吸着し、反応に悪影響を
及ぼすことが考えられる。この場合攪拌子4として残留
磁気の微小な材質を用いる必要がある。パーマロイは残
留磁気が残りにくく、この様に残留磁気が問題になる様
な反応には好適である。攪拌子の形状は略球状であるこ
とが好ましい。
Here, permalloy is used as the material of the stirrer 4, but any material having a specific gravity greater than 1 with respect to the solution to be stirred may be used as the stirrer. By changing the size of the stirrer according to the amount and viscosity of the solution to be stirred, the stirring effect can be improved. However, those that easily rust, such as iron, and those that cause a chemical reaction with a solution and adversely affect the original reaction, require a surface treatment such as plastic coating or plating on the stirrer. In the case of direct photometry, if a ferromagnetic material such as iron or permalloy is used, the light flux 22 can be easily avoided by the magnetic force of the magnet. In this case, regardless of whether the ferromagnetic material itself reacts or not, when a ferromagnetic material participates in the reaction, for example, in a reaction using an iron catalyst or the like, if residual magnetism remains in the stirrer 4,
It is conceivable that the ferromagnetic substance and the stirrer 4 in the reaction solution are adsorbed and adversely affect the reaction. In this case, it is necessary to use a material having a small residual magnetism as the stirrer 4. Permalloy is less likely to have residual magnetism, and is suitable for reactions in which residual magnetism becomes a problem. The shape of the stirrer is preferably substantially spherical.

次に、高速往復動条件、反応容器2形状,攪拌子形状
等の攪拌効率に与える影響について第6図,第7図を参
照して述べる。第6図の縦軸に高速往復動の振幅を横軸
に周波数をとり、異なる攪拌効率を与える高速往復動条
件の範囲をA〜Eで区分している。
Next, the effects of high-speed reciprocating motion conditions, the shape of the reaction vessel 2 and the shape of the stirrer on the stirring efficiency will be described with reference to FIGS. In FIG. 6, the vertical axis represents the amplitude of the high-speed reciprocating motion, and the horizontal axis represents the frequency.

球状攪拌子(以下攪拌ボールと称す)の場合、第6図
A,B及びEに示すような十分大きな高速往復動を、円筒
反応容器35に加えると、第7図のAに示すように攪拌ボ
ール4は円筒容器35内壁面に沿つて公転運動を行う。攪
拌ボール4のこのような公転運動によれば攪拌ボール直
径の10倍以内の液深の場合3秒間以内に攪拌が完了す
る。これは攪拌ボール4の公転により溶液に渦流が生じ
るためで、ボルテツクスミキサやマグネチツクスターラ
と同様の結果が得られる。
In case of spherical stirrer (hereinafter referred to as stirrer ball), Fig. 6
When a sufficiently large high-speed reciprocating motion as shown in A, B and E is applied to the cylindrical reaction vessel 35, the stirring ball 4 revolves along the inner wall surface of the cylindrical vessel 35 as shown in FIG. According to such a revolving motion of the stirring ball 4, the stirring is completed within 3 seconds when the liquid depth is within 10 times the diameter of the stirring ball. This is because a swirl occurs in the solution due to the revolution of the stirring ball 4, and the same result as that of the vortex mixer or the magnetic stirrer can be obtained.

同じ高速往復動でも、反応容器が四角柱の形状を有す
る場合、底面が平面なら、攪拌ボール4の直径の2〜3
倍の高さまでしか攪拌できない(第7図B)。ただし、
同じ条件で四角柱の対角方向に高速往復動させれば第7
図Cに示すように攪拌ボール4が四角柱容器36の底面で
二次元的に動き回り、攪拌ボール4の直径の10倍以内の
液深の場合約5秒間で攪拌が完了する。
Even if the reaction vessel has the same high-speed reciprocating motion, if the reaction vessel has the shape of a square pillar, if the bottom surface is flat, the diameter of the stirring ball 4 is 2-3
It can only be stirred up to twice the height (FIG. 7B). However,
Under the same conditions, a high-speed reciprocating motion in the diagonal direction of the square prism would result in a seventh
As shown in FIG. C, the stirring ball 4 moves two-dimensionally on the bottom surface of the rectangular column container 36, and when the liquid depth is within 10 times the diameter of the stirring ball 4, the stirring is completed in about 5 seconds.

第6図Cの範囲の周波数及び振幅を有する往復動を底
面が平たい反応容器に加えると、第7図Dに示すように
円筒容器35ではもはや攪拌ボール4の上記公転運動は起
きない。そのため攪拌ボール4の直径の10倍以内の液深
の場合、3〜20秒間の攪拌時間が必要である。第7図E
に示すように四角柱容器36側面方向に高速往復動させた
場合攪拌ボール4の直径の2倍程度の高さまでしか攪拌
できない。しかし第7図Fに示すように上記四角柱容器
36を対角方向に高速往復動させた場合もほぼ円筒容器と
同程度の攪拌効率を得ることができる。
When a reciprocating motion having a frequency and an amplitude in the range of FIG. 6C is applied to a reaction vessel having a flat bottom, the revolving motion of the stirring ball 4 in the cylindrical vessel 35 no longer occurs as shown in FIG. 7D. Therefore, when the liquid depth is within 10 times the diameter of the stirring ball 4, a stirring time of 3 to 20 seconds is required. FIG. 7E
As shown in Fig. 7, when the reciprocating reciprocation is performed in the side direction of the rectangular column container 36, the stirring can be performed only up to about twice the diameter of the stirring ball 4. However, as shown in FIG.
Even when 36 is reciprocated at high speed in the diagonal direction, the same stirring efficiency as that of the cylindrical container can be obtained.

第6図に示すDの範囲の周波数、振幅を有する高速往
復動を底面が平たい反応容器に加えても、攪拌ボール4
の直径の2倍程度の高さまでしか攪拌できない。ところ
が第7図G,Hに示すように底面内周に攪拌ボール4の半
径程度の高さを有する段をつけると、攪拌ボール4の水
平運動に上下動が加わり攪拌効率は改善される。この段
の代わりとしては、くぼみ(第7図I,J)、底面を横段
する段(第7図K,L)、その他の底面形状が考えられ
る。この場合も、円筒容器35(第7図G,I,K)の方が四
角柱容器36(第7図H,J,L)より、攪拌効率がよい。こ
れは、攪拌ボール4と反応容器の衝突角を底面に投影し
た場合、四角柱容器36では常に90゜の角度であるのに対
し、円筒容器35の場合、0゜〜90゜のさまざまな角度を
とり得るので、攪拌ボール4の移動範囲が広くなるため
である。この場合も、四角柱容器36を対角方向に高速往
復動させれば、攪拌効率は、円筒容器35とほぼ同じにな
る。
Even if a high-speed reciprocating motion having a frequency and an amplitude in the range of D shown in FIG.
Can only be stirred up to about twice the height of the diameter. However, when a step having a height about the radius of the stirring ball 4 is provided on the inner circumference of the bottom surface as shown in FIGS. 7G and 7H, the horizontal movement of the stirring ball 4 is added to the vertical movement, thereby improving the stirring efficiency. As an alternative to this step, a depression (FIGS. 7I and 7J), a step that traverses the bottom surface (FIGS. 7K and 7L), and other bottom shapes can be considered. Also in this case, the stirring efficiency of the cylindrical container 35 (G, I, K in FIG. 7) is higher than that of the rectangular column container 36 (H, J, L in FIG. 7). This is because when the collision angle between the stirring ball 4 and the reaction vessel is projected on the bottom surface, the angle is always 90 ° in the case of the rectangular column vessel 36, while the angle is variously 0 ° to 90 ° in the case of the cylindrical vessel 35. This is because the moving range of the stirring ball 4 is widened. In this case as well, if the rectangular column container 36 is reciprocated at high speed in the diagonal direction, the stirring efficiency becomes substantially the same as that of the cylindrical container 35.

第7図M,Nに示すように棒状攪拌子37を用いた場合、
溶液の広い範囲を同時に移動できるので、やはり攪拌で
きる。棒状攪拌子37を用いた場合も、上記攪拌ボール4
を用いた場合と同様に棒状攪拌子37の移動範囲が広くな
り、攪拌効率が向上するが、測光を考えた場合好ましく
ない。
When a bar-shaped stir bar 37 is used as shown in FIGS.
Since a wide range of the solution can be moved at the same time, the solution can be stirred. When the rod-shaped stirrer 37 is used, the stirring ball 4
As in the case where is used, the moving range of the rod-shaped stirrer 37 is widened and the stirring efficiency is improved, but it is not preferable in terms of photometry.

直接測光を行う場合には、上記のように底面に段また
はくぼみをつけて攪拌ボール4に上下運動を起こさせた
り、棒状攪拌子37を用いたりすると、反応容器2の側面
にある透光面をきずつけてしまい不適当である。さらに
攪拌効率を考えると、円筒容器を用いる場合第6図のA
及びBの周波数、振幅の範囲が攪拌に適する。ところ
が、Aの範囲では高速往復動が激しすぎて、溶液が反応
容器から飛散する可能性が生じる。そのため、第6図の
Bの範囲が実用上適するということになる。
In the case of direct photometry, if the stirring ball 4 is moved up and down by providing a step or a depression on the bottom surface as described above, or if a rod-shaped stirrer 37 is used, the light-transmitting surface on the side surface of the reaction vessel 2 may be used. It is unsuitable because it can cause damage. Further considering the stirring efficiency, when a cylindrical container is used, A in FIG.
And the ranges of the frequency and amplitude of B are suitable for stirring. However, in the range of A, the high-speed reciprocating motion is too intense, and the solution may scatter from the reaction vessel. Therefore, the range B in FIG. 6 is practically suitable.

実際に自動分析装置に高速往復動攪拌を適用する場
合、1ステツプより大きい振幅で往復動させると、例え
ば、高速往復動させながら直接測光を行う場合、光束か
ら反応容器がはずれてしまい測定が困難になつたり、ま
た強磁性体の攪拌子4を含む反応容器2がマグネツト7
の配置してある測光部の隣りに位置する場合、反応容器
2が、マグネツト7位置とマグネツト7の無い位置を往
復することにより、溶液の泡立ちや飛散が起きてしまう
等の問題が生じる。そのため、振幅は1ステツプより小
さい方が望ましい。
When high-speed reciprocating agitation is actually applied to an automatic analyzer, reciprocating with an amplitude larger than one step, for example, when direct photometry is performed while reciprocating at high speed, the reaction vessel deviates from the luminous flux, making measurement difficult. And the reaction vessel 2 containing the ferromagnetic stirrer 4 is a magnet 7
When the reaction vessel 2 is located next to the photometric unit in which is disposed, the reaction vessel 2 reciprocates between the position of the magnet 7 and a position where the magnet 7 is not present, thereby causing problems such as bubbling and scattering of the solution. Therefore, it is desirable that the amplitude is smaller than one step.

第6図から明らかな様に周波数を大きくしてゆくとB
の振幅の範囲が狭くなる。これは、反応デイスクの高速
往復動駆動機構3中のギヤのかみ合いのばらつき等によ
り生じる反応容器高速往復動における振幅のばらつきが
10分の数ミリあると、高速往復動の振動条件が適正範囲
であるBから不適正範囲であるAやCやDに移行するこ
とを示しており、安定な攪拌が得られなくなる。
As is clear from FIG. 6, as the frequency is increased, B
The range of the amplitude of the signal becomes narrow. This is because the variation in the amplitude in the high-speed reciprocating motion of the reaction vessel caused by the variation in the meshing of the gears in the high-speed reciprocating drive mechanism 3 of the reaction disk, etc.
If the distance is several tenths of a millimeter, the vibration condition of the high-speed reciprocating motion shifts from B, which is an appropriate range, to A, C, or D, which is an inappropriate range, and stable stirring cannot be obtained.

これらのことを考慮して、自動分析装置に適用すべき
反応容器の高速往復動条件としては、第6図のEの範囲
が適することがわかつた。即ち、振幅が0.8〜3.0mmであ
り、周波数が10〜40Hzが適正である。
Taking these facts into consideration, it has been found that the range of E in FIG. 6 is suitable as the high-speed reciprocating condition of the reaction vessel to be applied to the automatic analyzer. That is, an amplitude of 0.8 to 3.0 mm and a frequency of 10 to 40 Hz are appropriate.

第8図に液深と、その液深の溶液を3秒間で攪拌する
のに必要な、攪拌ボールの被攪拌溶液に対する比重(以
下対溶液比重と称す)の関係を示す。縦軸に攪拌ボール
の被攪拌溶液に対する比重をとり、横軸に液深の攪拌ボ
ール直径に対する比をとつてある。
FIG. 8 shows the relationship between the liquid depth and the specific gravity of the stirring ball (hereinafter referred to as the specific gravity with respect to the solution) required for stirring the solution at the liquid depth for 3 seconds. The vertical axis shows the specific gravity of the stirring ball to the solution to be stirred, and the horizontal axis shows the ratio of the liquid depth to the diameter of the stirring ball.

攪拌時間3秒程度で十分な攪拌を行うのに必要な、攪
拌子材料の被攪拌溶液に対する比重は、被攪拌液量が増
加するにつれて大きくなる。第1図の攪拌ボール4の場
合、液深が攪拌ボール4の直径程度のとき、攪拌ボール
4は1.5程度の対溶液比重が必要であるが、15倍程度の
液深になると、これを3秒間で攪拌するには対溶液比重
4程度の攪拌ボールが必要である。
The specific gravity of the stirrer material with respect to the solution to be stirred, which is necessary to perform sufficient stirring with the stirring time of about 3 seconds, increases as the amount of the solution to be stirred increases. In the case of the stirring ball 4 shown in FIG. 1, when the liquid depth is about the diameter of the stirring ball 4, the stirring ball 4 needs a specific gravity to solution of about 1.5. To stir in seconds, a stirring ball having a specific gravity to solution of about 4 is required.

また、攪拌ボール4の対溶液比重を4以上にしても、
攪拌効率はほとんど変わらない。これより、攪拌ボール
4による攪拌に限らず一般に、反応容器2を高速往復動
させることによる溶液の攪拌には、1.5以上の対溶液比
重を有する攪拌子4が必要であり、特に4以上の対溶液
比重を有する攪拌子が適当である。
Further, even if the specific gravity of the stirring ball 4 with respect to the solution is set to 4 or more,
The stirring efficiency hardly changes. Therefore, not only the stirring by the stirring ball 4 but also the stirring of the solution by reciprocating the reaction vessel 2 at a high speed generally requires the stirrer 4 having a specific gravity to the solution of 1.5 or more. A stirrer having a solution specific gravity is suitable.

対溶液比重の上限は、鉄,銅,タングステン等安価な
物質のほとんどが密度20g/cm3以内の値をもつので、実
用上20程度である。従つて攪拌子4として実用に適した
対溶液比重の範囲は4〜20であることがわかる。
The upper limit of the specific gravity to solution is about 20 in practical use because most inexpensive substances such as iron, copper, and tungsten have a density within 20 g / cm 3 . Therefore, it can be seen that the range of the specific gravity to solution suitable for practical use as the stirrer 4 is 4 to 20.

攪拌ボールの半径と、これを用いて攪拌可能な円筒容
器内半径の関係は、次の式で表わされることがわかつ
た。
It has been found that the relationship between the radius of the stirring ball and the radius in the cylindrical container that can be stirred using the ball is represented by the following equation.

D≦4(A2+d),D≧1.1d(d<10) D≧d+1(d≧10) ここで、A2:両振幅(振幅の2倍)(mm),d:攪拌ボー
ル直径(mm),D:円筒容器内直径(mm) 自動分析装置に適用される反応容器の大きさは、一般
に30mm以下であることを考慮すれば、攪拌効率が優れて
いる範囲は、両振幅A2が7.5mm以上の場合が、 1.48d≦D≦4.4d(A2≧7.5) の範囲、両振幅A2が7.5mm以下の場合が、 (0.909A2,4A2),(2.73A2,4A2),(0,0) の3点を結合してできる3角形の内部及び (0.909A2,4A2),(2.73A2,4A2), (22.2−0.25A,30),(12.5−0.75A2,30), ((0.909A2,4A2)) の4点をこの順序に結合してできる台形の内部というこ
とがわかつた。
D ≦ 4 (A 2 + d), D ≧ 1.1d (d <10) D ≧ d + 1 (d ≧ 10) where A 2 : Both amplitudes (twice the amplitude) (mm), d: Stirring ball diameter ( mm), D: Diameter of cylindrical vessel (mm) Considering that the size of the reaction vessel applied to an automatic analyzer is generally 30 mm or less, the range where the stirring efficiency is excellent is the range of both amplitudes A 2 Is 7.5 mm or more, the range of 1.48d ≦ D ≦ 4.4d (A 2 ≧ 7.5), and when both amplitudes A 2 are 7.5 mm or less, (0.909A 2 , 4A 2 ), (2.73A 2 , 4A 2 ), the interior of the triangle formed by connecting the three points (0,0) and (0.909A 2 , 4A 2 ), (2.73A 2 , 4A 2 ), (22.2−0.25A, 30), ( 12.5−0.75A 2 , 30) and ((0.909A 2 , 4A 2 )) were found to be trapezoidal.

第9図に、両振幅A2が2mmの場合の攪拌可能なDとd
の関係をグラフにより示す。縦軸が円筒容器内直径D
(mm)で横軸が攪拌ボール直径d(mm)である。Aの範
囲が攪拌可能な範囲、Bの範囲が特に自動分析装置に適
する範囲を示している。
FIG. 9 shows D and d that can be stirred when both amplitudes A 2 are 2 mm.
Is shown by a graph. The vertical axis is the diameter D inside the cylindrical container
In (mm), the horizontal axis is the stirring ball diameter d (mm). The range A indicates a range in which stirring is possible, and the range B indicates a range particularly suitable for an automatic analyzer.

第11図は、第12図に示した反応容器2aを用いて反応液
の透過光特性を測定する場合の実施例の構成を示す。第
1図の実施例と同じ機能を有するものには同じ符号を付
してある。第12図の円筒状の反応容器2aには互に平行な
入射窓24aと出射窓25aが形成されている。透過光を測定
する場合には、第11図に示すように攪拌子4が反応容器
4の底に沈むので、光束位置をその攪拌子よりも上方に
設定することにより、攪拌子による遮光を防止すること
ができる。この場合、攪拌ボール4の材質としては、強
磁性体に限らず、アルミニウム,銅等の金属や、ガラス
等の非金属、さらに磁石等も使用できる。
FIG. 11 shows a configuration of an embodiment in the case where the transmitted light characteristic of the reaction solution is measured using the reaction vessel 2a shown in FIG. Components having the same functions as those of the embodiment of FIG. 1 are denoted by the same reference numerals. An entrance window 24a and an exit window 25a which are parallel to each other are formed in the cylindrical reaction vessel 2a shown in FIG. When measuring the transmitted light, the stirrer 4 sinks to the bottom of the reaction vessel 4 as shown in FIG. 11, so that the light flux position is set above the stirrer to prevent shading by the stirrer. can do. In this case, the material of the stirring ball 4 is not limited to a ferromagnetic material, but may be a metal such as aluminum or copper, a non-metal such as glass, or a magnet.

第13図には反応容器の種々の形状を示す。円筒容器の
側面に複数の平面透過窓が形成されている。第13図Aの
ように円筒反応容器2の側面に対向する2個の平面状光
透過窓を有する略円筒容器は光吸収測定に使用でき、第
13図Bの様に2つの光透過窓が互いに90゜の角度を成し
ているものは、蛍光測定に使用でき、また第13図Cの様
に3つの平面状光透過窓を90゜の間隔で配置したもの
は、光吸収と蛍光を同時に測定する場合に使用できる。
FIG. 13 shows various shapes of the reaction vessel. A plurality of flat transmission windows are formed on the side surface of the cylindrical container. As shown in FIG. 13A, a substantially cylindrical container having two planar light transmission windows facing the side surface of the cylindrical reaction container 2 can be used for light absorption measurement.
One in which two light transmission windows form an angle of 90 ° with each other as shown in FIG. 13B can be used for fluorescence measurement, and three planar light transmission windows can be used with a 90 ° angle as shown in FIG. 13C. Those arranged at intervals can be used for simultaneous measurement of light absorption and fluorescence.

実験例1 第1図の実施例1に示した自動分析装置を用いてテオ
フイリンを分析した例を説明する。
Experimental Example 1 An example of analyzing theophylline using the automatic analyzer shown in Example 1 of FIG. 1 will be described.

試薬は、エームスTDMTMテオフイリンキツト(マイル
ス三共株式会社製)を使用した。
The reagent used was Ames TDM Theophylline Kit (manufactured by Miles Sankyo Co., Ltd.).

試料デイスク8にテオフイリン標準液(0,10,20,30お
よび40μg/ml)を試料容器11に入れてセツトした。ま
た、試薬デイスク9上にテオフイリン測定用試薬(第1
試薬:β−ガラクトシダーゼおよび抗テオフイリン抗
体,第2試薬:蛍光標識テオフイリン(β−galactosyl
−umbelliferone−theophylline))をセツトした。
To the sample disk 8, the theophylline standard solution (0, 10, 20, 30, and 40 μg / ml) was placed in the sample container 11 and set. The reagent for theophylline measurement (first
Reagents: β-galactosidase and anti-theophylline antibody, Second reagent: fluorescently labeled theophylline (β-galactosyl)
-Umbelliferone-theophylline)).

試料50μと第1試薬250μを混合して36分間反応
させたのち、第2試薬50μを添加して5分後に励起波
長400nm、蛍光波長450nmで測定した。測定した標準液の
テオフイリン濃度を横軸に、測定した標準液の蛍光強度
を縦軸にプロツトして作成した標準曲線を第10図に示
す。
After mixing 50 µ of the sample with 250 µ of the first reagent and reacting for 36 minutes, 50 µ of the second reagent was added, and 5 minutes later, measurement was performed at an excitation wavelength of 400 nm and a fluorescence wavelength of 450 nm. FIG. 10 shows a standard curve prepared by plotting the measured theophylline concentration of the standard solution on the horizontal axis and the fluorescence intensity of the measured standard solution on the vertical axis.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、簡単な構成で反
応容器内の液の撹拌を効率的に行うことができ、また撹
拌子を共用せずに済むのでキヤリオーバのない撹拌を行
うことができる。
As described above, according to the present invention, it is possible to efficiently stir the liquid in the reaction vessel with a simple configuration, and it is not necessary to share a stirrer, so that stirring without carryover can be performed. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は第2図の実施例における要部概略構成図、第2
図は本発明の一実施例を説明するための概略構成平面
図、第3図は蛍光測光用の反応容器の部分切欠断面図、
第4図は第2図の実施例の測定動作過程を示すフローチ
ヤート、第5図は撹拌時間と蛍光強度の関係を示すグラ
フ、第6図は高速往復動による振動条件の区分図、第7
図は第6図の条件下での撹拌子の動きを示す図、第8図
は撹拌ボール直径に対する液深と撹拌可能な液量の関係
を示すグラフ、第9図は両振幅が2mmの場合の撹拌可能
な円筒状反応容器内径と撹拌ボール直径の関係を示すグ
ラフ、第10図は第2図の実施例装置を用いて測定したテ
オフイリン標準曲線を示す図、第11図は本発明の他の実
施例の要部を示す概略構成図、第12図は第11図の実施例
に用いた光吸収直接測光用反応容器の構成を示す図、第
13図は反応容器の種々の形態例を示す概略図である。 1……反応デイスク、2……反応容器、3……駆動機
構、4……攪拌ボール又は攪拌子。5……シール、8…
…試料デイスク、9……試薬デイスク、14……ピペツテ
イング機構、15……プローブ、18……中央処理装置、19
……光度計、20……測光位置、24……入射窓、25……出
射窓。
FIG. 1 is a schematic diagram showing a main part of the embodiment of FIG.
FIG. 1 is a schematic plan view for explaining one embodiment of the present invention, FIG. 3 is a partially cutaway sectional view of a reaction container for fluorescence photometry,
FIG. 4 is a flow chart showing the measuring operation process of the embodiment of FIG. 2, FIG. 5 is a graph showing the relationship between the stirring time and the fluorescence intensity, FIG.
The figure shows the movement of the stirrer under the conditions of FIG. 6, FIG. 8 is a graph showing the relationship between the liquid depth and the amount of liquid that can be stirred with respect to the diameter of the stirring ball, and FIG. 9 is the case where both amplitudes are 2 mm. FIG. 10 is a graph showing the relationship between the inside diameter of a stirrable cylindrical reaction vessel and the diameter of a stirring ball, FIG. 10 is a view showing a standard curve of theophylline measured using the apparatus of the embodiment of FIG. 2, and FIG. FIG. 12 is a schematic configuration diagram showing a main part of the embodiment of FIG. 12, FIG. 12 is a diagram showing the configuration of a light absorption direct photometric
FIG. 13 is a schematic view showing various embodiments of the reaction vessel. DESCRIPTION OF SYMBOLS 1 ... Reaction disk, 2 ... Reaction container, 3 ... Drive mechanism, 4 ... Stirring ball or stirrer. 5 …… Seal, 8…
... Sample disk, 9 ... Reagent disk, 14 ... Piping mechanism, 15 ... Probe, 18 ... Central processing unit, 19
… Photometer, 20 photometry position, 24 entrance window, 25 exit window.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅津 広 茨城県勝田市市毛882番地 株式会社日 立製作所那珂工場内 (56)参考文献 特開 昭62−133354(JP,A) 特開 昭58−131567(JP,A) 実開 昭60−139270(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Umezu 882 Ma, Katsuta-shi, Ibaraki Pref. Naka Plant of Hitachi Ltd. (56) References JP-A-62-133354 (JP, A) JP-A-58 -131567 (JP, A) Fully open Showa 60-139270 (JP, U)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】それぞれに強磁性体からなる攪拌子が収容
された複数の反応容器と、これら複数の反応容器を配列
した反応デイスクと、上記反応デイスクに間欠移送運動
および短周期往復動に基づく振動を与える駆動装置と、
上記反応容器に試料および試薬を供給する装置と、上記
反応容器に光を照射してこの反応容器内の反応液を測光
する光度計と、上記光度計の測光位置付近に配置されて
おり、測光位置に位置づけられた反応容器内の攪拌子が
光度計光路を妨げないように当該攪拌子を反応容器壁面
に引き付ける磁石とを備えた自動分析装置。
1. A plurality of reaction vessels each containing a stirrer made of a ferromagnetic material, a reaction disk on which the plurality of reaction vessels are arranged, and an intermittent transfer motion and a short-period reciprocating motion on the reaction disk. A driving device for providing vibration;
A device for supplying a sample and a reagent to the reaction container, a photometer for irradiating the reaction container with light and measuring the reaction liquid in the reaction container, and a photometer disposed near the photometry position of the photometer; An automatic analyzer comprising: a magnet for attracting the stirrer to the reaction vessel wall so that the stirrer in the reaction vessel positioned at the position does not obstruct the optical path of the photometer.
【請求項2】攪拌ボールの入つた反応容器を反応デイス
クに配列し、反応デイスクを弧状に高速往復動させて振
動し、この振動によつて上記反応容器内の攪拌ボールを
回動させて上記反応容器内の液を攪拌することを特徴と
する自動分析装置。
2. A reaction container containing a stirring ball is arranged on a reaction disk, and the reaction disk is reciprocated at a high speed in an arc shape to vibrate. The vibration causes the stirring ball in the reaction container to rotate. An automatic analyzer characterized by stirring a liquid in a reaction vessel.
【請求項3】特許請求の範囲第2項記載の装置におい
て、上記振動は、振幅が0.8〜3.0mmであり、周波数が10
〜40Hzであることを特徴とする自動分析装置。
3. The apparatus according to claim 2, wherein said vibration has an amplitude of 0.8 to 3.0 mm and a frequency of 10 to 10 mm.
An automatic analyzer characterized by a frequency of up to 40 Hz.
【請求項4】特許請求の範囲第2項記載の装置におい
て、上記反応容器内の液に対する上記攪拌ボールの比重
は4以上であることを特徴とする自動分析装置。
4. The automatic analyzer according to claim 2, wherein the specific gravity of the stirring ball with respect to the liquid in the reaction vessel is 4 or more.
【請求項5】特許請求の範囲第2項記載の装置におい
て、上記反応容器の内径は、上記攪拌ボールの直径の2
倍以上であることを特徴とする自動分析装置。
5. The apparatus according to claim 2, wherein the inner diameter of the reaction vessel is two times the diameter of the stirring ball.
An automatic analyzer characterized by being at least twice as large.
【請求項6】攪拌子の入つた複数の反応容器を反応デイ
スク上に配列し、反応デイスクが停止している間に所定
位置で試料および試薬を該当する反応容器に添加し、上
記反応デイスクに短周期の往復運動を連続させて上記反
応デイスクを振動することによつて複数の反応容器内の
液を攪拌し、上記反応デイスクを歩進させることによつ
て上記試料および試薬が添加された反応容器を測光位置
の方へ進めるように構成した自動分析装置。
6. A plurality of reaction vessels containing a stirrer are arranged on a reaction disk, and a sample and a reagent are added to a corresponding reaction vessel at a predetermined position while the reaction disk is stopped. The liquid in the plurality of reaction vessels is agitated by vibrating the reaction disk by continuously reciprocating in a short cycle, and the reaction to which the sample and the reagent are added is performed by advancing the reaction disk. An automatic analyzer configured to advance the container to the photometric position.
【請求項7】内壁側面の少なくとも一部が湾曲してお
り、一対の平滑な透光窓を有する反応容器であつて、ほ
ぼ球状の攪拌子が内部に収容されており、上端に攪拌子
逃出防止用膜を備えた反応容器。
7. A reaction vessel having at least a portion of the inner wall side surface curved and having a pair of smooth translucent windows, wherein a substantially spherical stirrer is housed inside, and a stirrer escape is provided at an upper end. A reaction vessel equipped with an outflow prevention membrane.
JP63210740A 1987-11-12 1988-08-26 Automatic analyzers and reaction vessels Expired - Fee Related JP2585740B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63210740A JP2585740B2 (en) 1987-11-12 1988-08-26 Automatic analyzers and reaction vessels
DE3838361A DE3838361A1 (en) 1987-11-12 1988-11-11 Analysis device for the agitation of a reaction solution and reaction container for use in the device
US07/793,650 US5272092A (en) 1987-11-12 1991-11-18 Method for analyzing a reaction solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28616887 1987-11-12
JP62-286168 1987-11-12
JP63210740A JP2585740B2 (en) 1987-11-12 1988-08-26 Automatic analyzers and reaction vessels

Publications (2)

Publication Number Publication Date
JPH01229974A JPH01229974A (en) 1989-09-13
JP2585740B2 true JP2585740B2 (en) 1997-02-26

Family

ID=26518251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210740A Expired - Fee Related JP2585740B2 (en) 1987-11-12 1988-08-26 Automatic analyzers and reaction vessels

Country Status (2)

Country Link
JP (1) JP2585740B2 (en)
DE (1) DE3838361A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090989A1 (en) * 2008-01-15 2009-07-23 Kyowa Medex Co., Ltd. Reagent container

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051238A (en) * 1987-11-20 1991-09-24 Hitachi, Ltd. Automatic analyzing system
JPH0640100B2 (en) * 1987-11-27 1994-05-25 株式会社日立製作所 Automatic analyzer sample dispensing method
JPH04113060U (en) * 1991-03-20 1992-10-01 オリンパス光学工業株式会社 Reaction vessel for liquid optical measurement
JPH04348258A (en) * 1991-05-27 1992-12-03 Kowa Co Multi-channel optical measuring device
DE4205618A1 (en) * 1992-02-25 1993-11-18 Heinrich Amelung Gmbh Herstell Measuring vessel
DE4206107A1 (en) * 1992-02-27 1993-09-02 Funke Dr N Gerber Gmbh Determining dry mass in fluids esp. milk - using freezing point and turbidity measurements
FR2719905B1 (en) * 1994-05-10 1996-07-26 Anjou Rech Measuring device for controlling the bacteriological quality of water.
EP1614473A3 (en) * 1998-05-01 2007-03-14 Gen-Probe Incorporated Multiple ring assembly for providing specimen to reaction receptacles within an automated analyzer
JP2006242772A (en) * 2005-03-03 2006-09-14 Olympus Corp Reaction container
FR2911688B1 (en) * 2007-01-23 2009-04-17 Stago Diagnostica REACTION CUP FOR AUTOMATIC ANALYSIS APPARATUS.
DE102009046762A1 (en) * 2009-11-17 2011-05-26 Diasys Technologies S.A.R.L. Configuration and operation of an automated analysis device
KR101442066B1 (en) * 2012-11-27 2014-09-18 주식회사 엘지생명과학 Automatic in vitro diagnostic device comprising slanted rotary stirrer
CH709399A1 (en) * 2014-03-20 2015-09-30 Werner Döbelin High-energy mixer for automatic sample preparation in a serial process sequence.
JP6937222B2 (en) * 2017-10-31 2021-09-22 キヤノンメディカルシステムズ株式会社 Automatic analyzer and magnetic stirrer
JP7163400B2 (en) * 2018-09-27 2022-10-31 株式会社日立ハイテク Reaction vessel for automatic analyzer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623844A (en) * 1969-07-17 1971-11-30 American Optical Corp Incubator and process turntable for chemical analysis apparatus for micro samples
US3645506A (en) * 1969-07-30 1972-02-29 Micro Metric Instr Co Sampling supply device having magnetic mixing
DD96784A1 (en) * 1971-05-07 1973-04-12
JPS52143551A (en) * 1976-05-25 1977-11-30 Fuji Zoki Seiyaku Method of diluting and stirring liquid and apparatus therefor
IT1170658B (en) * 1980-01-28 1987-06-03 Coulter Electronics FLUID TRANSFER MECHANISM
US4539855A (en) * 1984-05-03 1985-09-10 Eastman Kodak Company Apparatus for transferring liquid out of a capped container, and analyzer utilizing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090989A1 (en) * 2008-01-15 2009-07-23 Kyowa Medex Co., Ltd. Reagent container
JP5069755B2 (en) * 2008-01-15 2012-11-07 協和メデックス株式会社 Reagent container

Also Published As

Publication number Publication date
DE3838361C2 (en) 1991-11-14
JPH01229974A (en) 1989-09-13
DE3838361A1 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US5272092A (en) Method for analyzing a reaction solution
JP2585740B2 (en) Automatic analyzers and reaction vessels
US6284546B1 (en) Method and device for photodetection
JP3661076B2 (en) Chemical analyzer
WO2009136612A1 (en) Automated analyzer
EP0329183A2 (en) Analyzing apparatus in which liquid can be stirred and analyzing method thereof
CN112014581A (en) Automated analyzer and method for performing chemical, biochemical and/or immunochemical analyses
US6808304B2 (en) Method for mixing liquid samples using a linear oscillation stroke
WO2010013680A1 (en) Automatic analyzing device
JP5041153B2 (en) Separation device
CN1288516A (en) Photometer and method and cuvette for mix
WO1993025913A1 (en) Apparatus and method for performing unit operations involving liquid samples
US8765474B2 (en) Automatic analyzer and the analyzing method using the same
JPH01136068A (en) Automatic analyzer
JP2020024198A (en) Method for detecting or quantifying detection object in specimen, method for stirring reaction mixed liquid, method for causing flow of liquid medium, additive, reagent, and automatic analysis device
JPH0225754A (en) Automatic analyzing device
JPH11271308A (en) Analyzer
JPH0712821A (en) Sample mixing device and fluorescence detector using the device
JPH05297001A (en) Method and device for automatic immunity measurement using magnetic particle
JP3377270B2 (en) Automatic chemical analyzer
JPH10267849A (en) Stirring apparatus
JP2005099049A (en) Chemical analysis apparatus
JP2005291730A (en) Biochemical analyzer
US8790598B2 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
EP0810437A1 (en) Agitator for an automatic analyzer and an automatic analyzer comprising same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees