JP2577618B2 - Method and apparatus for descaling alloy steel strip - Google Patents
Method and apparatus for descaling alloy steel stripInfo
- Publication number
- JP2577618B2 JP2577618B2 JP63204647A JP20464788A JP2577618B2 JP 2577618 B2 JP2577618 B2 JP 2577618B2 JP 63204647 A JP63204647 A JP 63204647A JP 20464788 A JP20464788 A JP 20464788A JP 2577618 B2 JP2577618 B2 JP 2577618B2
- Authority
- JP
- Japan
- Prior art keywords
- steel strip
- electrolysis
- pickling
- alloy steel
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
- C23G1/086—Iron or steel solutions containing HF
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スケール除去に使用される薬液の管理及び
その廃液処理が簡単であり、スケール除去能力が大きく
てラインスピードを高速化しても追従可能であり、ライ
ンで発生する廃液やスラツジについて環境汚染などの公
害上の問題も無く、そして何よりも最終製品の表面品質
を良好にさせる少なくともニツケル及び/又はクロムを
含有する合金鉄鋼帯の脱スケール方法及び装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is easy to manage a chemical solution used for scale removal and to treat a waste liquid thereof, has a large scale removal capability, and follows even if the line speed is increased. Descaling of alloy steel strip containing at least nickel and / or chromium, which is possible, has no pollution problems such as environmental pollution with respect to waste liquid and sludge generated in the line, and above all, improves the surface quality of the final product The present invention relates to a method and an apparatus.
少なくともニツケル及び/又はクロムを含有する合金
鉄鋼帯の代表的なものと言えるJIS G 4306「熱間圧延ス
テンレス鋼帯」に規定される熱間圧延ステンレス鋼帯製
品は、一般に熱間圧延されたステンレス鋼帯を素材とし
てこれを焼鈍などを含む熱処理,酸洗又はこの酸洗に準
じる処理を施すために一連のライン化された焼鈍酸洗工
程を通板されて製造されている。そして、この焼鈍酸洗
工程を経て製造された熱間圧延ステンレス鋼帯を剪断し
てJIS G 4304「熱間圧延ステンレス鋼板」に規定される
熱間圧延ステンレス鋼板製品が製造されている。Hot-rolled stainless steel strip products specified in JIS G 4306 "Hot-rolled stainless steel strip", which can be said to be representative of at least nickel and / or chromium-containing alloy steel strips, are generally hot-rolled stainless steel strips. It is manufactured by passing a steel strip through a series of lined annealing and pickling steps in order to perform a heat treatment including annealing, pickling or a treatment similar to this pickling. Then, a hot-rolled stainless steel strip specified in JIS G 4304 “Hot-rolled stainless steel sheet” is manufactured by shearing the hot-rolled stainless steel strip manufactured through the annealing and pickling step.
また、JIS G 4307「冷間圧延ステンレス鋼帯」に規定
されるNo.2D,No.2B,No.3,No.4,BA等の各種表面仕上の冷
間圧延ステンレス鋼帯製品は、前記焼鈍酸洗工程を経て
製造された熱間圧延ステンレス鋼帯を素材とし、これを
それぞれライン化された冷間圧延工程,焼鈍酸洗工程を
必要に応じて繰り返し通板し、しかもこれらの工程間に
あつて素材表面の残存スケールや地疵を除去するために
必要に応じてライン化された中間研磨工程に通板され、
更に調質圧延工程,剪断や裁断処理等がなされる精整工
程を経て製造されている。そして、このようにして製造
された冷間圧延ステンレス鋼帯を剪断してJIS G 4305
「冷間圧延ステンレス鋼板」に規定される冷間圧延ステ
ンレス鋼板製品が製造されているのである。Further, the cold-rolled stainless steel strip products having various surface finishes such as No. 2D, No. 2B, No. 3, No. 4, BA specified in JIS G 4307 `` Cold rolled stainless steel strip '' The hot-rolled stainless steel strip produced through the annealing and pickling process is used as a material, and the strips are repeatedly passed through a cold rolling process and an annealing and pickling process, each of which is lined up, as necessary. In order to remove residual scale and flaws on the surface of the material, it is passed through a lined intermediate polishing process as necessary,
Further, it is manufactured through a temper rolling step and a refining step in which shearing, cutting, and the like are performed. Then, the cold-rolled stainless steel strip thus manufactured is sheared to JIS G 4305.
A cold-rolled stainless steel sheet product specified in “Cold-rolled stainless steel sheet” is being manufactured.
以上に述べた如く、ステンレス鋼帯製品及び同鋼板製
品等の合金鉄の製品は、熱間圧延,この熱間圧延後の焼
鈍を含む熱処理および冷間圧延により加工硬化された素
材の軟化焼鈍等が施されるので、程度の差こそあれその
都度その素材表面に主としてFeやCrなどの酸化物から成
るスケールが生成する。この素材表面に生成したスケー
ルを完全に除去して各工程を推進しないと良好な表面品
質の最終製品を得ることが出来ないので、その都度脱ス
ケール処理が施されるのである。As described above, ferroalloy products such as stainless steel strip products and steel plate products are manufactured by hot rolling, heat treatment including annealing after the hot rolling, and softening and annealing of a work hardened by cold rolling. Therefore, a scale mainly composed of an oxide such as Fe or Cr is formed on the surface of the material each time to a greater or lesser degree. Unless the scale formed on the surface of the material is completely removed and the respective steps are carried out, a final product having good surface quality cannot be obtained, so that a descaling treatment is performed each time.
しかしながら、合金鉄鋼帯、特にステンレス鋼帯等の
素材表面に生成するスケールは、一般に緻密なために非
常に除去困難である。そこでこの合金鉄鋼帯の素材表面
に生成するスケールの脱スケールに関して、従来から種
々な脱スケール方法が実施されたり提案されたりしてい
る。However, scale formed on the surface of a material such as an alloyed steel strip, particularly a stainless steel strip, is generally very difficult to remove because of its denseness. Therefore, various descaling methods have been conventionally implemented or proposed for descaling of the scale generated on the material surface of the steel alloy strip.
先ず、古くから最も基本的で且つ広く実施されてきた
処理方法は、硫酸,硝酸,塩酸,弗酸又はこれらを混合
した混酸薬液で処理して脱スケールを行うもので、均一
で適度の不動態化処理を施す酸洗処理であつた。また、
これらの酸洗液に第二鉄塩を含有せしめた処理液に合金
鉄鋼帯を浸漬せしめて脱スケール効果を向上させる処理
方法も近年開示されている。First, the most basic and widely practiced treatment method since ancient times is to perform descaling by treating with sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid or a mixed acid chemical mixture of these, and to achieve a uniform and moderate passivation It was a pickling treatment for a chemical treatment. Also,
In recent years, a processing method for improving the descaling effect by immersing an alloy steel strip in a processing liquid obtained by adding a ferric salt to these pickling liquids has also been disclosed.
しかしながら、この酸洗処理のみによる処理方法で
は、合金鉄鋼帯を高速処理して生産性を向上せしめ尚且
つ完全な脱スケール処理を行い、最終製品として表面品
質の良好なものを得るという要求に対応し切れなくな
り、この酸洗処理の前に、機械的,化学的又はこれらを
組合せた前処理が併用されるようになつてきたのであ
る。その機械的前処理としては、酸洗処理に先立つてシ
ヨツトブラストやスケールブレーカーなどによつてスケ
ール層に亀裂を生じさせて酸洗処理での脱スケールを容
易にする処理方法であり、化学的前処理としては、溶融
苛性アルカリ処理やNa2SO4を電解質とする水溶液中での
陽極電解等の化学的処理によつて一部の成分を変質させ
てスケールの組成や金属素地との結合力を弱める処理方
法である。However, this treatment method using only the pickling treatment responds to the requirement that the steel alloy strip be processed at high speed to improve the productivity and to perform the complete descaling treatment to obtain a final product with good surface quality. Therefore, before the pickling treatment, a pretreatment mechanically, chemically, or a combination thereof is used. The mechanical pretreatment is a treatment method in which the scale layer is cracked by a shot blast or a scale breaker prior to the pickling treatment to facilitate descaling in the pickling treatment. As a pre-treatment, some components are altered by chemical treatment such as molten caustic treatment or anodic electrolysis in an aqueous solution using Na 2 SO 4 as the electrolyte, and the composition of the scale and the bonding strength with the metal base are changed. This is a processing method for weakening.
上述のようなシヨツトブラストやスケールブレーカー
等の機械的前処理にあつては、合金鉄鋼帯の素地に圧痕
を残したり加工硬化を起こさせたりする欠点を有してい
た。一方の溶融苛性アルカリ処理等の化学的前処理にあ
つては、溶融苛性アルカリが高粘性であることから高速
化によつて液持出し量が大きくなり、ワイピング装置を
使用しても速度に追従して液持出し量の増加を防止する
ことが困難でコスト高となる欠点があつた。また、上記
の前処理は高速化することが困難であることからその脱
スケール能力を弱体化して高速化せしめることが出来
ず、その弱体化分を補足し強化するために酸濃度及び液
温を上げて酸洗を行う方法も採られるが、その場合には
酸洗液の老化が早まる結果、酸濃度管理,追酸,廃液処
理等にかかる労力,費用が多大のものとなる欠点があつ
た。更に、中性塩であるNa2SO4を電解質とする水溶液中
での陽極電解による化学的前処理にあつては、スケール
量の比較的少ない冷間圧延材にあつては効果があるが、
スケール量の多い熱間圧延材に対しては効果が少なく、
しかも合金鉄がクロムを含有する場合にはCr+6イオンを
溶出させるのでその廃液処理が公害防止上甚だ厄介であ
つた。従つてNa2SO4水溶液中での電解による前処理にお
いても熱間圧延材に対しては高速化し難い上、熱間,冷
間いずれの圧延材に対しても高速化した場合はそれだけ
Cr+6イオン容出量が増して電解液の老化を早めると共に
その処理が一層厄介となる欠点があつた。The mechanical pretreatment such as the shot blast and the scale breaker described above has a defect that an indentation is left on the base material of the alloy steel strip or work hardening occurs. On the other hand, in chemical pretreatment such as molten caustic treatment, the amount of liquid taken out increases due to the high speed due to the high viscosity of molten caustic, and it follows the speed even when a wiping device is used. Therefore, it is difficult to prevent an increase in the amount of liquid taken out, resulting in a high cost. In addition, since it is difficult to increase the speed of the above pretreatment, the descaling ability cannot be weakened to increase the speed, and the acid concentration and the liquid temperature are adjusted to supplement and strengthen the weakened portion. A method of pickling by pickling is also adopted, but in this case, the aging of the pickling solution is accelerated, resulting in a disadvantage that the labor and cost for acid concentration control, additional acid, waste liquid treatment, and the like become large. . Furthermore, chemical pretreatment by anodic electrolysis in an aqueous solution containing Na 2 SO 4 as a neutral salt as an electrolyte is effective for a cold rolled material having a relatively small scale amount,
Less effective for hot-rolled material with large scale,
Moreover, when the ferromagnetic iron contains chromium, Cr + 6 ions are eluted, so that the waste liquid treatment is extremely troublesome in terms of pollution prevention. Therefore, even in the pretreatment by electrolysis in an aqueous solution of Na 2 SO 4 , it is difficult to increase the speed for hot-rolled materials, and if the speed is increased for both hot and cold-rolled materials,
The disadvantage is that the Cr + 6 ion extraction is increased to accelerate the aging of the electrolyte and to make the treatment more troublesome.
このように丁寧に低速で行つてこそ良い結果を得る脱
スケールとその高速化とは上記の如く従来両立し難いも
のであつた。As described above, the descaling and the speeding-up, in which a good result can be obtained only by carefully performing at a low speed, have been difficult to achieve.
そこで本発明は、熱間圧延材及び冷間圧延材のいずれ
の合金鉄鋼帯においても前処理におけるスケール除去能
力が大きく、従つて高速化が可能で且つ廃液処理の問題
が少なく、しかも表面品質の優れた合金鉄鋼帯が得られ
る脱スケール方法及び装置を提供することを課題とする
ものである。Therefore, the present invention provides a large scale removal capability in the pretreatment for any of the steel alloy strips of the hot-rolled material and the cold-rolled material, so that the speed can be increased and the problem of the waste liquid treatment is reduced, and the surface quality is improved. It is an object of the present invention to provide a descaling method and apparatus capable of obtaining an excellent steel alloy strip.
本発明者等はかかる課題を解決すべく鋭意検討の結
果、最終の処理としてはスケール直下の金属素地をも積
極的に除去して表面をきれいにする利点を有する弗酸を
含む酸洗液による酸洗処理を採用し、その前処理として
主として塩化第二鉄を含有する水溶液から成る電解液中
で陽極電解処理を行うようにすれば、この前処理の段階
で大部分のスケールが除去され、従つて最終処理である
酸洗処理の負担が軽減されて高速化が可能になると共に
Cr+6イオンが生成しないため廃液処理の問題も少なくな
ること、またスケール直下の金属素地まで除去されて表
面品質の優れた合金鉄鋼帯が得られることを究明して本
発明を完成したのである。The inventors of the present invention have conducted intensive studies in order to solve such problems, and as a final treatment, an acid using a pickling solution containing hydrofluoric acid, which has the advantage of positively removing the metal base just below the scale and cleaning the surface. If a rinsing treatment is adopted and the anodic electrolytic treatment is carried out in an electrolytic solution consisting mainly of an aqueous solution containing ferric chloride as a pretreatment, most of the scale is removed in this pretreatment stage, and In addition, the load of the final pickling process is reduced, and the speed can be increased.
The present invention was completed by investigating that the problem of waste liquid treatment was reduced because Cr + 6 ions were not generated, and that the alloy steel strip with excellent surface quality was obtained by removing the metal base just below the scale. .
本発明において適用できる合金鉄鋼帯は、少なくとも
Ni及び/又はCrを含有する合金鉄鋼帯であり、熱間圧延
材,冷間圧延材のいずれの鋼帯であつてもよい。The alloy steel strip applicable in the present invention is at least
It is an alloy steel strip containing Ni and / or Cr, and may be any of a hot-rolled material and a cold-rolled material.
又、前処理に用いる電解液としては主として塩化第二
鉄を含有する水溶液から成り、最終の処理の酸洗液とし
ては弗酸と硝酸の如き弗酸と他の酸との混酸から成つて
いることが必要である。The electrolytic solution used for the pretreatment is mainly composed of an aqueous solution containing ferric chloride, and the pickling solution for the final treatment is composed of a mixed acid of hydrofluoric acid such as hydrofluoric acid and nitric acid and another acid. It is necessary.
ところで、本発明の前処理に用いる上記の塩化第二鉄
を含有する水溶液から成る電解液は、次に詳述する如く
濃度が250〜400g/lで液温が40〜80℃の範囲とすること
が好ましい。すなわち、第6図〜第8図は板厚3.8mmの
熱間圧延ステンレス鋼帯SUS304を用い、塩化第二鉄を含
有する水溶液の濃度と温度とを種々変化させて(電流密
度は10A/dm2で一定)電解処理したときの合金鉄鋼帯の
減量,電圧,導電率を示したグラフであり、これらの図
から明らかなように、塩化第二鉄の濃度が250g/l以下,
特に200g/l以下に低下とする金属の減量が減少する(脱
スケール能力が低下する)と共にピツトが発生し易くな
る。一方、塩化第二鉄の濃度が400g/lを超えても脱スケ
ール能力が低下する傾向にあると共に供給電圧が高くな
つて電解効率が低下する。又、電解液温度は高い方が脱
スケール能力が高くなり且つ供給電圧が下ると共に導電
率が上るため電解効率が向上する。しかし、電解液温度
が80℃を超えると水の蒸発量が急に増加することから、
濃度が変化(高くなる)して上記理由から脱スケール能
力や電解効率が低下するようになる。一方、液温が低下
すると金属減量が減少し、供給電圧が上り且つ導電率が
下つて電解効率が低下するため、脱スケール能力の点か
ら液温としては40℃以上とすることが望ましい。従つ
て、電解液の濃度は250〜400g/lで液温が40〜80℃の範
囲とすることが望ましいのである。更には塩化第二鉄の
持出し現象,濃度変化による脱スケール能力低下,エネ
ルギーロス等を総合的に考慮すれば濃度が300±30g/l、
液温が60±10℃の範囲がより望ましい。By the way, the electrolytic solution comprising an aqueous solution containing ferric chloride used in the pretreatment of the present invention has a concentration of 250 to 400 g / l and a liquid temperature of 40 to 80 ° C. as described in detail below. Is preferred. That is, FIGS. 6 to 8 use a hot-rolled stainless steel strip SUS304 having a thickness of 3.8 mm and variously change the concentration and temperature of the aqueous solution containing ferric chloride (current density is 10 A / dm. reduction of alloy steel strip 2 at constant) when electrolysis, the voltage is a graph showing the electrical conductivity, as is clear from these figures, the concentration of ferric chloride is 250 g / l or less,
In particular, the weight loss of the metal, which is reduced to 200 g / l or less, is reduced (the descaling ability is reduced), and pits are easily generated. On the other hand, when the concentration of ferric chloride exceeds 400 g / l, the descaling ability tends to decrease, and the supply voltage increases, so that the electrolytic efficiency decreases. In addition, the higher the electrolyte temperature, the higher the descaling ability, the lower the supply voltage, and the higher the conductivity, thereby improving the electrolysis efficiency. However, when the electrolyte temperature exceeds 80 ° C, the amount of water evaporation increases suddenly,
As the concentration changes (increases), the descaling ability and the electrolytic efficiency decrease for the above-described reason. On the other hand, when the liquid temperature decreases, the metal loss decreases, the supply voltage increases, the conductivity decreases, and the electrolytic efficiency decreases. Therefore, the liquid temperature is desirably 40 ° C. or higher from the viewpoint of descaling ability. Therefore, it is desirable that the concentration of the electrolyte is 250 to 400 g / l and the temperature of the electrolyte is in the range of 40 to 80 ° C. Furthermore, the concentration is 300 ± 30 g / l, considering the ferrous chloride carry-out phenomenon, the descaling ability decrease due to the concentration change, and the energy loss.
The liquid temperature is more preferably in the range of 60 ± 10 ° C.
又、陽極電解処理時の電流密度は、5A/dm2より小さい
と脱スケール効果が低下し、一方30A/dm2より大きいと
電流密度不均一による電解模様が発生し易くなることか
ら、5〜30A/dm2の範囲とすることが望ましい。The current density during the anodic electrolytic treatment, 5A / dm 2 smaller than descaling effect is reduced, since the electrolyte pattern tends to occur due to contrast 30A / dm 2 larger than the current density nonuniformity, 5 It is desirable to be in the range of 30 A / dm 2 .
次に、本発明方法を実施するための装置を図面によつ
て詳細に説明する。Next, an apparatus for carrying out the method of the present invention will be described in detail with reference to the drawings.
第1図は本発明方法を実施するための装置の1例の概
略図、第2図は第1図の電解液槽の拡大平面図、第3図
は本発明方法を実施するための装置の他の例の概略図、
第4図は第3図の電解液槽の拡大平面図、第5図は本発
明方法を実施するための装置の更に他の例の概略図であ
る。FIG. 1 is a schematic view of an example of an apparatus for carrying out the method of the present invention, FIG. 2 is an enlarged plan view of the electrolytic solution tank of FIG. 1, and FIG. 3 is an apparatus for carrying out the method of the present invention. Schematic diagram of another example,
FIG. 4 is an enlarged plan view of the electrolytic solution tank of FIG. 3, and FIG. 5 is a schematic view of still another example of an apparatus for carrying out the method of the present invention.
図面中、第1図及び第2図において、1は焼鈍炉と冷
却装置(図示なし)によつて熱処理を受けた少なくとも
Ni及び/又はCrを含有する合金鉄鋼帯、2は主として塩
化第二鉄を含有する水溶液から成る電解液、3は電解液
2が建浴された電解液槽、4は電解液槽3内に設けられ
た陽極板、5は同じく電解液槽3内に設けられた陰極
板、6は電解用直流電源、7は弗酸と他の酸とから成る
酸洗液8が建浴された酸洗槽、9は送板ロール、10は浸
漬ロール、11はブラツシユロール、12はブラツシユロー
ル11のバツクアツプロール、13は洗浄ノズルである。ま
た第3図及び第4図において、14は硫酸の如き導電性液
15が建浴された導電性液槽、16は導電性液槽14内に設け
られた耐酸性を有する陽極板、17は電極板から成る陰極
板である。また18は電解用直流電源6と切り替え用スイ
ツチ19を介して、電解液槽3内の陰極板17と導電性液槽
14内の陽極板16(第3図の場合)又は電解液槽3内の陰
極板5と後述する通電ロール21(第5図の場合)に接続
可能に配設されている電解用直流電源6とは別の小容量
の印加電圧用の直流電源であり、第4図において20はガ
ス抜き用孔である。更に第5図において、21は電解液槽
3と酸洗槽7との間に設けられていて陽極となる通電ロ
ールである。In the drawings, in FIGS. 1 and 2, reference numeral 1 denotes at least heat-treated by an annealing furnace and a cooling device (not shown).
An alloy steel strip containing Ni and / or Cr, 2 is an electrolytic solution mainly composed of an aqueous solution containing ferric chloride, 3 is an electrolytic bath in which the electrolytic solution 2 is built, and 4 is an electrolytic bath in the electrolytic bath 3. The provided anode plate, 5 is a cathode plate also provided in the electrolytic solution tank 3, 6 is a DC power supply for electrolysis, and 7 is an acid pickling bath containing a pickling solution 8 composed of hydrofluoric acid and another acid. A tank, 9 is a feeding roll, 10 is a dipping roll, 11 is a brush roll, 12 is a back-up roll of the brush roll 11, and 13 is a washing nozzle. 3 and 4, reference numeral 14 denotes a conductive liquid such as sulfuric acid.
Reference numeral 15 denotes a conductive liquid tank in which a bath is built, 16 denotes an anode plate having acid resistance provided in the conductive liquid tank 14, and 17 denotes a cathode plate formed of an electrode plate. Numeral 18 denotes a cathode plate 17 in the electrolytic solution tank 3 and a conductive solution tank via a switching power supply 19 and a switching switch 19 for electrolysis.
The DC power source 6 for electrolysis, which is disposed so as to be connectable to the anode plate 16 (in the case of FIG. 3) 14 or the cathode plate 5 in the electrolytic solution tank 3 and an energizing roll 21 (in the case of FIG. 5) described later. This is another DC power supply for applying a small capacity voltage, and in FIG. 4, reference numeral 20 denotes a gas vent hole. Further, in FIG. 5, reference numeral 21 denotes an energizing roll provided between the electrolytic solution tank 3 and the pickling tank 7 and serving as an anode.
以上のような構成より成る本発明に係る合金鉄鋼帯の
脱スケール装置は、基本的には次に詳述するように3つ
の装置がある。第1の装置は第1図及び第2図に、第2
の装置は第3図及び第4図に、第3の装置は第5図にそ
れぞれ示してある。The descaling device for the steel alloy strip according to the present invention having the above-described configuration basically includes three devices as described in detail below. The first device is shown in FIGS.
This device is shown in FIGS. 3 and 4, and the third device is shown in FIG.
先ず第1の装置は、第1図及び第2図に示すように、
陽極板4と陰極板5とが共に電解液槽3内部に設けられ
ており、この電解液槽3の後に酸洗槽7,7が配設されて
いる装置であり、この装置における陽極板4としては白
金,ルテニウム酸化物,鉛酸化物のいずれか1種が適用
され、陰極板5としては白金や、陽極板4に比べてイオ
ン化傾向において卑な金属であるチタン,オーステナイ
ト系ステンレス鋼のいずれか1種が適用される。中でも
陽極板4は白金,陰極板5はチタンが特に好適である。
このような第1の装置において、焼鈍炉,冷却装置(図
示なし)によつて熱処理を受けた合金鉄鋼帯1は、先ず
送板ロール9を経て主として塩化第二鉄を含有する水溶
液から成る電解液2が建浴された電解液槽3へ送板さ
れ、前後の浸漬ロール10,10にて電解液2中に浸漬され
た状態で通過し、ここで主として塩化第二鉄を含有する
水溶液による溶解作用および陽極電解作用を受けて合金
鉄鋼帯1表面のスケールの大部分が電解液2中に溶解除
去される。そして大部分のスケールが溶解除去された合
金鉄鋼帯1は、電解液槽3の後に設けられている送板ロ
ール9を経てブラツシユロール11とバツクアツプロール
12との間を通過し、この際に陽極電解によつて金属素地
との結合力が弱まつているが未だ付着残存しているスケ
ールの大半が除去される。次に、合金鉄鋼帯1は送板ロ
ール9を経て、次の1槽目の酸洗槽7内に送板され、前
後の浸漬ロール10,10によつて浸漬された状態で通過
し、その間に僅かに残存しているスケールの全部が溶解
されると共にスケール層の直下に存在する金属素地の金
属素地まで溶解される。更に合金鉄鋼帯1は、2槽目の
酸洗槽7を通過する間に再度スケール層直下の金属素地
が溶解されて仕上げされる。しかる後に合金鉄鋼帯1
は、送板ロール9を経てブラツシユロール11とバツクア
ツプロール12との間を通過し、合金鉄鋼帯1表面に付着
している金属や結合力が弱い状態で残存している金属素
地がきれいに除去される。First, as shown in FIG. 1 and FIG.
The anode plate 4 and the cathode plate 5 are both provided inside the electrolytic solution tank 3, and the pickling tanks 7, 7 are disposed after the electrolytic solution tank 3. Any one of platinum, ruthenium oxide, and lead oxide is applied. As the cathode plate 5, any one of platinum, titanium, which is a metal having a lower ionization tendency than the anode plate 4, and austenitic stainless steel is used. Or one type is applied. Among them, platinum is particularly preferable for the anode plate 4 and titanium is preferable for the cathode plate 5.
In such a first apparatus, an alloy steel strip 1 which has been heat-treated by an annealing furnace and a cooling device (not shown) is first passed through a feed roll 9 to form an electrolytic solution mainly composed of an aqueous solution containing ferric chloride. The solution 2 is sent to the electrolyte bath 3 in which the bath is built, and passes while being immersed in the electrolyte 2 by the front and rear immersion rolls 10, where the solution 2 mainly contains an aqueous solution containing ferric chloride. Most of the scale on the surface of the steel alloy strip 1 is dissolved and removed in the electrolytic solution 2 by the dissolving action and the anodic electrolytic action. Then, the alloy steel strip 1 from which most of the scale has been dissolved and removed passes through a feed roll 9 provided after the electrolytic solution tank 3 and a brush roll 11 and a back-up roll.
In this case, the anodic electrolysis removes most of the scale that has weakened the bonding force with the metal base but is still adhered and remained. Next, the alloy steel strip 1 is sent to the next pickling tank 7 via the sheet feeding roll 9 and then passed while being immersed by the front and rear immersion rolls 10, 10. The entire scale slightly remaining is dissolved, and at the same time, the metal base existing immediately below the scale layer is dissolved. Further, the alloy steel strip 1 is finished by melting the metal base immediately below the scale layer again while passing through the second pickling tank 7. After a while, alloy steel strip 1
Is passed between the brush roll 11 and the back-up roll 12 via the feed roll 9 to clean the metal adhered to the surface of the alloy steel strip 1 and the metal base remaining in a state where the bonding force is weak. Removed.
第2の装置は、第3図及び第4図に示すように、陰極
板17とその前後に浸漬ロール10,10とが設けられている
電解液槽3の前に、硫酸の如き導電性液15が建浴された
導電性液槽14が配設されており、且つこの導電性液槽14
中に耐酸性を有する陽極板16とその前後に浸漬ロール1
0,10が設けられており、また電解液槽3の後に酸洗層7,
7が配設されており、更に耐酸性を有する陽極板16と陰
極板17とに切り替え用スイツチ19を介して電解用直流電
源6とこの電解用直流電源6とは別の小容量の印加電圧
用の直流電源18とのいずれかが接続可能に配設されてい
る装置である。以上のような第2の装置においては、通
常の状態では切り替え用スイツチ19を介して陽極板16と
陰極板17とに電解用直流電源6が接続されているので、
合金鉄鋼帯1は送板ロール9及び前後の浸漬ロール10,1
0によつて導電性液15が建浴された導電性液槽14内の陽
極板16の間を非接触状態で送板される。この際、合金鉄
鋼帯1は陽極板16の作用を受けて陰極に帯電し、この時
に陽極板16からは酸素ガスが発生する。一方、陰極に帯
電した合金鉄鋼帯1からは水素ガスが発生する。そし
て、この水素ガスの作用で一部の結合力の弱いスケール
が除去されるようになる。その結果、次の塩化第二鉄を
含有する水溶液から成る電解液2での陽極電解処理の効
果がより大きくなるのである。As shown in FIGS. 3 and 4, the second device is provided with a conductive liquid such as sulfuric acid in front of the electrolytic solution tank 3 in which the cathode plate 17 and immersion rolls 10 and 10 are provided before and after the cathode plate 17. A conductive liquid tank 14 in which a bath 15 is built is provided, and the conductive liquid tank 14
Anode plate 16 with acid resistance inside and dip roll 1 before and after
0, 10 are provided, and the pickling layer 7,
7 is provided. Further, an electrolytic direct-current power supply 6 and an applied voltage of a small capacity different from the electrolytic direct-current power supply 6 via a switch 19 for switching between an anode plate 16 and a cathode plate 17 having acid resistance. And a DC power supply 18 for connection to the power supply. In the second device as described above, the DC power source for electrolysis 6 is connected to the anode plate 16 and the cathode plate 17 via the switching switch 19 in a normal state,
The alloy steel strip 1 is composed of a feed roll 9 and front and rear immersion rolls 10
According to 0, the conductive liquid 15 is sent in a non-contact state between the anode plates 16 in the conductive liquid tank 14 in which the bath is built. At this time, the alloy steel strip 1 is charged to the cathode by the action of the anode plate 16, and oxygen gas is generated from the anode plate 16 at this time. On the other hand, hydrogen gas is generated from the alloy steel strip 1 charged on the cathode. Then, by the action of the hydrogen gas, a part of the scale having a weak bonding force is removed. As a result, the effect of the anodic electrolytic treatment with the next electrolytic solution 2 comprising an aqueous solution containing ferric chloride is further enhanced.
なお、この第2の装置では一つの電解液槽3内に陽極
と陰極とが混在しないことから電極間での迷走電流がな
く、電解電流効率が向上するようになる。また、それぞ
れの素材として陽極板16は白金,陰極板17はチタンが前
述した理由と同様に塩素ガスの発生量が少なく、寿命も
延長するためより好適であるが、比較的安価なステンレ
ス鋼も使用でき、その場合はコスト面で有利である。In the second device, since the anode and the cathode are not mixed in one electrolytic solution tank 3, there is no stray current between the electrodes, and the electrolytic current efficiency is improved. Platinum is used for the anode plate 16 and titanium is used for the cathode plate 17 as the respective materials. Similar to the above-mentioned reason, the generation of chlorine gas is small and the life is extended. It can be used, in which case it is cost effective.
更に、例えば電解用直流電源6の故障や定期修理など
の理由で電解用直流電源6からの給電を停止しなければ
ならない必要性が生じた場合には、陽極板16と陰極板17
との間には陽極板16と陰極板17とを構成する金属の電位
差に基づいて陰極板17→電解液2→合金鉄鋼帯1→導電
性液15→陽極板16という経路で即ち電解用直流電源6よ
り給電している状態とは逆方向に微弱ではあるが電流が
流れて陽極板16が陰極にまた陰極板17が陽極になるた
め、陽極板16がルテニウム酸化物や鉛酸化物の如き酸化
物である場合にはその酸化物が還元溶解されて陽極の寸
法が変化することになり、また陰極板17が陽極電解によ
り溶解されることになる。しかしながら、陽極板16と陰
極板17とに切り替え用スイツチ19を介して電解用直流電
源6とこの電解用直流電源6とは別の小容量の印加電圧
用の直流電源18とのいずれかが接続可能に配設されてい
ると、電解用直流電源6からの給電を停止しなければな
らない必要性が生じた場合に切り替え用スイツチ19を介
して電解用直流電源6とは別の小容量の印加電圧用の直
流電源18を陽極板16と陰極板17とに接続して陽極板16か
ら陰極板17へ微弱電流を流して陽極板16が陰極となり且
つ陰極板17が陽極となることを防止できるので、陽極板
16を構成する酸化物が還元溶解されて陽極の寸法が変化
したり陰極板17が陽極電解により溶解されたりすること
を防止できると共に、このような微弱電流でも導電性液
槽14内においても或る程度の脱スケールが起こるため次
の電解槽3での脱スケール作用の助長につながるのであ
る。Further, when it is necessary to stop the power supply from the electrolytic DC power supply 6 due to, for example, failure of the electrolytic DC power supply 6 or regular repair, the anode plate 16 and the cathode plate 17 are required.
Between the anode plate 16 and the cathode plate 17 based on the potential difference between the metals constituting the cathode plate 17 → the electrolytic solution 2 → the alloy steel strip 1 → the conductive liquid 15 → the anode plate 16, that is, the direct current for electrolysis. The current flows through the anode plate 16 as a cathode and the cathode plate 17 as an anode, although weakly in the opposite direction to the state where power is supplied from the power supply 6, so that the anode plate 16 is made of ruthenium oxide or lead oxide. When it is an oxide, the oxide is reduced and dissolved to change the size of the anode, and the cathode plate 17 is dissolved by anodic electrolysis. However, one of the DC power supply 6 for electrolysis and the DC power supply 18 for applying a small capacity different from the DC power supply 6 for electrolysis is connected to the anode plate 16 and the cathode plate 17 via the switch 19 for switching. When the power supply from the DC power supply for electrolysis 6 is required, when the power supply from the DC power supply for electrolysis 6 needs to be stopped, a small capacity different from that of the DC power supply for electrolysis 6 can be applied via the switching switch 19. A DC power supply 18 for voltage is connected to the anode plate 16 and the cathode plate 17 so that a weak current flows from the anode plate 16 to the cathode plate 17 to prevent the anode plate 16 from becoming a cathode and the cathode plate 17 from becoming an anode. So the anode plate
It is possible to prevent the oxides constituting 16 from being reduced and dissolved to change the dimensions of the anode and to prevent the cathode plate 17 from being dissolved by anodic electrolysis. Since a certain degree of descaling occurs, the descaling action in the next electrolytic cell 3 is promoted.
第3の装置は第5図に示すように、塩化第二鉄を含有
する水溶液から成る電解液2が建浴されており且つ陰極
板5が設けられている電解液槽3と酸洗槽7,7との間に
陽極となる通電ロール21が設けられており、この通電ロ
ール21と陰極板5とに電解用直流電源6が接続されてい
る装置である。尚、この第3の装置においても第2の装
置のように陰極板5と通電ロール21とに切り替え用スイ
ツチ19を介して電解用直流電源6とこの電解用直流電源
6とは別の小容量の印加電圧用の直流電源18とのいずれ
かが接続可能に配設されていることが、例えば電解用直
流電源6の故障や定期修理などの理由で電解用直流電源
6からの給電を停止しなければならない必要性が生じた
場合に、陰極板5と通電ロール21との間にはをそれぞれ
構成する金属の電位差に基づいて、即ち陰極板5→電解
液2→合金鉄鋼帯1→通電ロール21という経路で即ち電
解用直流電源6より給電している状態とは逆方向に微弱
ではあるが電流が流れて陰極板17が陽極になるため、陰
極板17が陽極電解により溶解されることになる。しかし
ながら、陰極板5と通電ロール21とに切り替え用スイツ
チ19を介して電解用直流電源6とこの電解用直流電源6
とは別の小容量の印加電圧用の直流電源18とのいずれか
が接続可能に配設されていると、電解用直流電源6から
の給電を停止しなければならない必要性が生じた場合に
切り替え用スイツチ19を介して電解用直流電源6とは別
の小容量の印加電圧用の直流電源18を陰極板5と通電ロ
ール21とに接続して通電ロール21から陰極板5へ微弱電
流を流して陰極板5が陽極となることを防止できるの
で、陰極板5が陽極電解により溶解されたりすることを
防止できるのである。以上のような第3の装置において
は、通常の状態では切り替え用スイツチ19を介して通電
ロール21と陰極板5とに電解用直流電源6が接続された
状態で、合金鉄鋼帯1は送板ロール9,浸漬ロール10,10
を介して電解液槽3に送板され、陰極板5の間を非接触
状態で送板される。この時に通電ロール21が陽極とな
り、これに合金鉄鋼帯1が接触することによつて合金鉄
鋼帯1自体が直接陽極となる。また電解液槽3中の陰極
板5との間に電解用直流電源6より供電される。そし
て、この装置においては、通電ロール21は電解液槽3の
後に配設されていることが重要である。すなわち、スケ
ールの導電性が低いために、スケールを有したままの合
金鉄鋼帯1に直接通電するとスパークが発生し易くな
る。従つて、塩化第二鉄水溶液2中での電解処理によつ
て、スケールのほとんどを除去した後に直接通電するこ
とが重要となつてくるのである。また、通電ロール21は
ブライドル方式であつて且つロール表面は荒いほうがよ
り確実な供電が可能となる。As shown in FIG. 5, the third device is constructed by bathing an electrolytic solution 2 composed of an aqueous solution containing ferric chloride, and is provided with an electrolytic bath 3 having a cathode plate 5 and an pickling bath 7. , 7 are provided with an energizing roll 21 serving as an anode, and the electrolysis DC power supply 6 is connected to the energizing roll 21 and the cathode plate 5. In the third apparatus, as in the second apparatus, the DC power supply 6 for electrolysis and a small capacity different from the DC power supply 6 for electrolysis are provided via a switch 19 for switching between the cathode plate 5 and the energizing roll 21. Is connected so that the power supply from the electrolytic DC power supply 6 is stopped due to, for example, a failure or periodic repair of the electrolytic DC power supply 6. When the necessity arises, the potential difference between the metal constituting the cathode plate 5 and the energizing roll 21 between the cathode plate 5 and the energizing roll 21, that is, the cathode plate 5 → the electrolytic solution 2 → the alloy steel strip 1 → the energizing roll Although a weak current flows in the direction of 21, that is, in the opposite direction to the state where power is supplied from the DC power supply 6 for electrolysis, the current flows and the cathode plate 17 becomes an anode, so that the cathode plate 17 is melted by anodic electrolysis. Become. However, the DC power source for electrolysis 6 and the DC power source for electrolysis 6 are switched via the switch 19 between the cathode plate 5 and the energizing roll 21.
If any one of the DC power supply 18 for the applied voltage of another small capacity is connectably disposed, it becomes necessary to stop the power supply from the DC power supply 6 for electrolysis. A small-capacity DC power supply 18 for applying a voltage different from the DC power supply 6 for electrolysis is connected to the cathode plate 5 and the energizing roll 21 via the switching switch 19, and a weak current is supplied from the energizing roll 21 to the cathode plate 5. Since it is possible to prevent the cathode plate 5 from flowing and becoming an anode, it is possible to prevent the cathode plate 5 from being dissolved by anodic electrolysis. In the third apparatus as described above, in a normal state, the alloy steel strip 1 is fed to the feeder roll 21 and the cathode plate 5 with the direct current power source 6 for electrolysis connected thereto via the switch 19 for switching. Roll 9, Dipping roll 10,10
The plate is sent to the electrolytic solution tank 3 via the plate, and is sent between the cathode plates 5 in a non-contact state. At this time, the current-carrying roll 21 serves as an anode, and the alloy steel strip 1 comes into contact with this, so that the alloy steel strip 1 itself directly serves as an anode. In addition, power is supplied from a DC power supply 6 for electrolysis between the electrolytic solution tank 3 and the cathode plate 5. In this apparatus, it is important that the energizing roll 21 is disposed after the electrolytic solution tank 3. That is, since the conductivity of the scale is low, sparks are likely to be generated when current is directly applied to the alloy steel strip 1 having the scale. Therefore, it becomes important to directly supply electricity after removing most of the scale by the electrolytic treatment in the aqueous ferric chloride solution 2. Further, the energizing roll 21 is of a bridle type, and the more rough the roll surface, the more reliable power supply becomes possible.
以上のように、通電ロール21を用いて直接通電するこ
とは、電解効率が大きく、又脱スケール効果も優れてい
るため最も好ましい装置である。そして、このような好
ましい通電ロール21の採用を可能にしたのは、塩化第二
鉄水溶液を用いて電解処理することによつて、前処理段
階でスケールのほとんどを除去可能になつたことによる
のである。As described above, direct energization using the energizing roll 21 is the most preferable apparatus because of high electrolysis efficiency and excellent descaling effect. The reason why such a preferable current-carrying roll 21 can be adopted is that most of the scale can be removed in the pretreatment stage by performing the electrolytic treatment using the aqueous ferric chloride solution. is there.
上述のように本発明方法は最終処理である酸洗処理の
前処理において、主として塩化第二鉄を含む水溶液2中
で合金鉄鋼帯1を陽極電解処理することによつて、合金
鉄鋼帯1のスケールの大部分を除去し、引き続く酸洗処
理において残存スケールの除去とスケール直下の金属素
地を積極的に除去するものである。As described above, in the pretreatment of the pickling treatment as the final treatment, the alloy steel strip 1 is subjected to anodic electrolysis treatment in an aqueous solution 2 mainly containing ferric chloride, whereby the alloy steel strip 1 is treated. Most of the scale is removed, and in the subsequent pickling treatment, the remaining scale is removed and the metal base immediately below the scale is positively removed.
すなわち、酸洗処理の前処理において大部分のスケー
ルが除去されることから次の酸洗処理では、僅かな残存
スケールを仕上げ用として除去するだけで良くなり、従
来の種々な脱スケール方法と違つて酸洗処理における脱
スケール負荷が大幅に軽減されて合金鉄鋼帯1の金属素
地のエツチング作用が強まり、表面品質の優れた製品と
なるのである。In other words, most of the scale is removed in the pretreatment of the pickling treatment, so that in the next pickling treatment, only a small amount of residual scale needs to be removed for finishing, which is different from various conventional descaling methods. As a result, the descaling load in the pickling treatment is greatly reduced, the etching action of the metal base of the alloy steel strip 1 is enhanced, and the product having excellent surface quality is obtained.
また、電解液が塩化第二鉄水溶液2であるためにCr+6
イオンの発生が無いため電解液槽3より排出される廃液
中のCr+6イオンの処理が不要となると共にその水溶液中
で陽極電解処理すると、第6図に示すように電解処理で
なく単に塩化第二鉄水溶液2中に浸漬した場合と比較し
て、脱スケール時間がかなり短縮されるようになり、ラ
インスピードが高速化されても追従可能となるのであ
る。更に酸洗処理時には、酸洗液中のスケールの堆積が
少なくなるため、酸洗液の寿命も延長されて長時間の高
いエツチング作用が維持されると同時に、酸洗流管理や
廃液処理の簡素化が可能となるのである。In addition, since the electrolytic solution is an aqueous ferric chloride solution 2, Cr +6
Since there is no generation of ions, the treatment of Cr +6 ions in the waste liquid discharged from the electrolytic solution tank 3 becomes unnecessary, and when anodic electrolytic treatment is performed in the aqueous solution, as shown in FIG. The descaling time is considerably shortened as compared with the case of immersion in the ferric aqueous solution 2, and it is possible to follow even if the line speed is increased. Furthermore, during the pickling process, the accumulation of scale in the pickling solution is reduced, so that the life of the pickling solution is extended and a long and high etching action is maintained. It becomes possible.
以下、本発明を実施例及び比較例により具体的に説明
する。Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
実施例1 焼鈍工程を経て走行して来た3種類の熱間圧延ステン
レス鋼帯(板厚3.8mmのSUS304,板厚3.6mmのSUS430,板厚
3.6mmのSUS410)と板厚4.0mmの42%Ni合金鉄鋼帯との計
4種について、第5図に示す脱スケール方法及び装置に
より次に示す種々の条件下で脱スケールを行つた。その
結果を第1表に示した。Example 1 Three types of hot-rolled stainless steel strips (SUS304 having a thickness of 3.8 mm, SUS430 having a thickness of 3.6 mm, and SUS430 having a thickness of 3.6 mm) having traveled through the annealing process.
For a total of four types, namely, 3.6 mm SUS410) and a 4.0% thick 42% Ni alloy steel strip, descaling was performed under the following various conditions by the descaling method and apparatus shown in FIG. The results are shown in Table 1.
1.電解処理(前処理) (1)処理液:塩化第二鉄水溶液 (2)液濃度:300g/l (3)液温:60℃ (4)電解密度:20A/dm2 (5)電解処理時間:10,20,40,80秒 (6)陰極板:ステンレス鋼 2.酸洗処理 (1)処理液及び濃度:70g/lHNO3+10g/lHF (2)液温:60℃ 比較例1 実施例1と同じステンレス鋼帯を用い且つ第5図の装
置を適用し、また前処理における電解処理として中性塩
電解液を用いて次の条件下で脱スケールを行つた。その
結果を第2表に示した。1.Electrolytic treatment (pretreatment) (1) Treatment solution: Ferric chloride aqueous solution (2) Liquid concentration: 300g / l (3) Liquid temperature: 60 ℃ (4) Electrolysis density: 20A / dm 2 (5) Electrolysis Treatment time: 10, 20, 40, 80 seconds (6) Cathode plate: stainless steel 2. Pickling treatment (1) Treatment liquid and concentration: 70 g / l HNO 3 + 10 g / l HF (2) Liquid temperature: 60 ° C Comparative Example 1 The apparatus shown in FIG. 5 was applied using the same stainless steel strip as in Example 1, and descaling was performed under the following conditions using a neutral salt electrolyte as an electrolytic treatment in the pretreatment. The results are shown in Table 2.
1.電解処理(前処理) (1)処理液:硫酸ソーダ水溶液 (2)液濃度:200g/l (3)液温:80℃ (4)電解密度:20A/dm2 (5)電解処理時間:10,20,40,80秒 (6)陰極板:ステンレス鋼 2.酸洗処理 実施例1と同一条件で処理した。1.Electrolytic treatment (pretreatment) (1) Treatment liquid: aqueous sodium sulfate solution (2) Liquid concentration: 200g / l (3) Liquid temperature: 80 ° C (4) Electrolytic density: 20A / dm 2 (5) Electrolytic treatment time : 10, 20, 40, 80 seconds (6) Cathode plate: stainless steel 2. Pickling treatment Treated under the same conditions as in Example 1.
なお、合金鉄鋼帯の処理減量は10cm角のサンプルを採
取し、高精度天秤にてその重量を秤量し、処理前後の単
位面積当りの重量差を以て減量とした。The weight loss of the alloy steel strip was determined by taking a sample of 10 cm square, weighing the weight with a high-precision balance, and determining the weight loss per unit area before and after the processing.
脱スケール状態の評価(有無の判定)は、拡大鏡(×
10)を使用した目視により、1視野当り10点以上のスケ
ール残を有、10未満を無と判定して行つた。Evaluation of the descaling state (judgment of presence / absence) is performed using
By visual inspection using 10), it was judged that there was a scale residue of 10 points or more per visual field, and that less than 10 was absent.
又、脱スケール後の金属素地の除去状態の評価は、充
分面積を研摩した各対象サンプルを比較材として電子顕
微鏡(×1000)により観察し、金属素地と異なる金属
(これをサブスケールと称す)の有無により行つた。In addition, the evaluation of the removal state of the metal base after descaling is performed by observing each target sample whose area has been sufficiently polished as a comparison material with an electron microscope (× 1000) and using a metal different from the metal base (this is referred to as a subscale). Went by the presence or absence.
以上の結果、第1表及び第2表から明らかな如く、本
発明方法によるものは、従来の化学的前処理方法の1つ
である硫酸ソーダ等の中性塩電解処理によるものよりも
短時間で脱スケールが完了すると共に合金鉄鋼帯の処理
減量が多く、脱スケール効果が優れていることが判る。As is clear from Tables 1 and 2, the method according to the present invention is shorter in time than the one by the neutral salt electrolysis such as sodium sulfate which is one of the conventional chemical pretreatment methods. It can be seen that the descaling is completed and the loss of treatment of the alloy steel strip is large and the descaling effect is excellent.
実施例2 熱間圧延ステンレス鋼帯を製造し、これを冷間圧延を
行つて、いずれも板厚1.0mmのSUS304,SUS430,SUS410の
3種類のステンレス鋼帯を得、これと板厚1.0mmの42%N
i合金鉄とについて、実施例1と同様に第5図に示す脱
スケール方法及び装置により、実施例1と全く同一条件
下で脱スケールを行つた。その結果を第3表面に示す。Example 2 A hot-rolled stainless steel strip was manufactured and cold-rolled to obtain three types of stainless steel strips of SUS304, SUS430, and SUS410 each having a thickness of 1.0 mm. 42% N
The descaling of i-alloy was performed in the same manner as in Example 1 by the descaling method and apparatus shown in FIG. 5 under exactly the same conditions as in Example 1. The results are shown on the third surface.
比較例2 実施例2で用いた4種の鋼帯を比較例1と全く同一条
件下で脱スケールを行つた。その結果を第4表に示し
た。Comparative Example 2 The four steel strips used in Example 2 were descaled under exactly the same conditions as in Comparative Example 1. The results are shown in Table 4.
なお、脱スケール状態及び金属素地の除去状態の評価
は実施例1及び比較例1の場合と全く同一方法で行つ
た。The evaluation of the descaling state and the removal state of the metal base were performed in exactly the same manner as in Example 1 and Comparative Example 1.
以上の結果、第3表及び第4表から明らかな如く、本
発明方法によるものは、実施例1と同様に従来方法によ
るものよりも短時間で脱スケールが完了すると共に処理
減量が示すように、大きな脱スケール効果を示した。
又、本発明方法に基づいて得られたものよりも表面光沢
の均一性,肌荒れ等について、いずれも優れたものであ
つた。As apparent from Tables 3 and 4, the results obtained by the method of the present invention can be completed in a shorter time than in the case of the conventional method as in the case of Example 1 as in Example 1, and the processing weight can be reduced. Showed a large descaling effect.
In addition, they were all superior in uniformity of surface gloss, rough skin, etc., as compared with those obtained by the method of the present invention.
〔発明の効果〕 以上詳述した如き本発明に係る合金鉄鋼帯の脱スケー
ル方法及び装置は、以下に列挙するような種々の利点を
有しており、その工業的価値は非常に大きなものがあ
る。 [Effects of the Invention] The method and apparatus for descaling an alloy steel strip according to the present invention as described in detail above have various advantages as listed below, and their industrial value is very large. is there.
1) 前処理によつて大部分のスケールが短時間で除去
されることから、酸洗槽における脱スケール負荷が軽減
されることになり、酸洗液の寿命も延び脱スケール能力
が安定した。従つて、酸洗液の濃度管理及び追酸に要す
る労力,費用も軽減されると同時に脱スケールの高速化
が可能となつた。1) Since most of the scale was removed in a short time by the pretreatment, the descaling load in the pickling tank was reduced, the life of the pickling solution was extended, and the descaling ability was stabilized. Accordingly, the labor and cost required for controlling the concentration of the pickling solution and for adding acid are reduced, and the descaling can be sped up.
2) 熱間圧延材,冷間圧延材のいずれであつて同じラ
インで兼用して充分な脱スケール能力が得られるように
なつたことから、生産能力の向上が図られた。2) Since the same line can be used for both hot-rolled material and cold-rolled material to obtain sufficient descaling capability, the production capacity was improved.
3) 前処理として、主として塩化第二鉄を含有する水
溶液を使用した陽極電解を採用したことで、電解槽より
排出される廃液中のCr+6イオンの処理が不要となりその
処理費用が軽減された。3) As the pretreatment, anodic electrolysis using an aqueous solution containing mainly ferric chloride is adopted, so that the treatment of Cr +6 ions in the waste liquid discharged from the electrolytic cell becomes unnecessary, and the treatment cost is reduced. Was.
4) 前処理が充分な脱スケール能力を有ししかも溶融
塩の如く粘性が高くなくて液持出しが少ないことから、
コスト的にも優れている。4) Since the pretreatment has sufficient descaling ability and is not highly viscous like a molten salt and has little liquid take-out,
Excellent in cost.
5) 前処理にて大部分のスケール除去が可能となつた
ことから、酸洗処理においては残存するスケールの除去
が確実に実施されると同時に、スケール直下の金属素地
をも溶解することになるので、脱スケールが不充分であ
ることに起因する合金鉄鋼帯の表面欠陥である肌荒れや
光沢むらが減少出来た。5) Since most of the scale can be removed in the pretreatment, the remaining scale is surely removed in the pickling treatment, and at the same time, the metal base immediately below the scale is dissolved. Therefore, it was possible to reduce surface roughness and uneven gloss, which are surface defects of the alloy steel strip due to insufficient descaling.
6) 本発明を実施するときの設備面に関しては、電解
槽及び酸洗槽のいずれも従来のものをそのまま使用する
ことが出来るから、殆んど設備改造を要せず、しかも脱
スケール能力の向上が図れた。6) Regarding the equipment aspect when carrying out the present invention, since both the electrolytic cell and the pickling tank can be used as they are, almost no equipment modification is required, and the descaling ability is low. Improved.
7) 本発明装置に関しては、陰極板が設けられている
電解液槽の前に陽極板が設けられている導電性液槽を配
設した構成とした場合には、導電性液槽において合金鉄
鋼帯に予備的な脱スケール作用を生じせしめるため、次
の電解液槽における脱スケールをより増大せしめる効果
を奏するようになつた。7) With respect to the apparatus of the present invention, when a conductive liquid tank provided with an anode plate is provided in front of an electrolyte tank provided with a cathode plate, the alloy liquid steel is used in the conductive liquid tank. In order to cause a preliminary descaling action in the band, an effect of further increasing descaling in the next electrolytic solution tank was achieved.
8) また、電解液槽の後に陽極と成る通電ロールを設
けて合金鉄鋼帯に直接給電する構成とした場合には、電
解効率及び脱スケールをより向上せしめることが可能と
なつた。8) In the case where an energizing roll serving as an anode is provided after the electrolytic solution tank to supply power directly to the alloy steel strip, the electrolytic efficiency and descaling can be further improved.
9) 更に、切り替え用スイツチを介してメインの電解
用直流電源とこの電解用直流電源とは別の小容量の印加
電圧用の直流電源とのいずれかが接続可能に配設されて
いる構成とした場合には、メインの電解用直流電源から
給電できない場合でも電極が保護されるようになつて電
極の寿命が延長されるようになつた。9) A configuration in which either one of a main DC power supply for electrolysis and a DC power supply for an applied voltage having a small capacity different from the DC power supply for electrolysis is connected via a switching switch. In this case, the electrodes are protected even when power cannot be supplied from the main DC power supply for electrolysis, and the life of the electrodes is extended.
第1図は本発明方法を実施するための装置の1例の工程
図、第2図は第1図の電解液槽の拡大平面図、第3図は
本発明方法を実施するための装置の他の例の工程図、第
4図は第3図の電解液槽の拡大平面図、第5図は本発明
方法を実施するための装置の更に他の例の工程図、第6
図は本発明方法と本発明によらない方法との電解液の塩
化第二鉄濃度と合金鉄鋼帯の減量との関係を電解液温度
別に示すグラフ、第7図は電解液の塩化第二鉄濃度と供
給電圧との関係を電解液温度別に示すグラフ、第8図は
電解液の塩化第二鉄濃度と導電率との関係を電解液温度
別に示すグラフである。 1……合金鉄鋼帯 2……電解液 3……電解液槽 4……陽極板 5……陰極板 6……電解用直流電源 7……酸洗槽 8……酸洗液 9……送板ロール 10……浸漬ロール 11……ブラツシユロール 12……バツクアツプロール 13……洗浄ノズル 14……導電性液槽 15……導電性液 16……耐酸性を有する陽極板 17……耐酸性を有する陰極板 18……印加電圧用の直流電源 19……切り替えスイツチ 20……ガス抜き用孔 21……通電ロールFIG. 1 is a process diagram of an example of an apparatus for carrying out the method of the present invention, FIG. 2 is an enlarged plan view of the electrolytic solution tank of FIG. 1, and FIG. 3 is an apparatus for carrying out the method of the present invention. FIG. 4 is an enlarged plan view of the electrolytic solution tank of FIG. 3, FIG. 5 is a process diagram of still another example of the apparatus for carrying out the method of the present invention, and FIG.
FIG. 7 is a graph showing the relationship between the ferric chloride concentration of the electrolytic solution and the weight loss of the alloy steel strip according to the electrolytic solution temperature according to the method of the present invention and the method not according to the present invention, and FIG. FIG. 8 is a graph showing the relationship between the concentration and the supply voltage for each electrolyte temperature, and FIG. 8 is a graph showing the relationship between the ferric chloride concentration of the electrolyte and the conductivity for each electrolyte temperature. DESCRIPTION OF SYMBOLS 1 ... Alloy steel strip 2 ... Electrolyte 3 ... Electrolyte tank 4 ... Anode plate 5 ... Cathode plate 6 ... DC power supply for electrolysis 7 ... Pickling tank 8 ... Pickling solution 9 ... Sending Plate roll 10 Dipping roll 11 Brush roll 12 Back-up roll 13 Cleaning nozzle 14 Conductive liquid tank 15 Conductive liquid 16 Anode plate 17 having acid resistance 17 Acid resistance Negative electrode plate 18 DC power supply for applied voltage 19 Switching switch 20 Gas vent hole 21 Electric roll
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−60900(JP,A) 特開 昭63−161194(JP,A) 特開 昭49−67836(JP,A) 特開 昭63−216999(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-60900 (JP, A) JP-A-63-161194 (JP, A) JP-A-49-67836 (JP, A) JP-A-63-1986 216999 (JP, A)
Claims (7)
有する合金鉄鋼帯を主として塩化第二鉄を含有する水溶
液から成る電解液中で陽極電解処理を行い、しかる後に
沸酸を含む酸洗液によつて酸洗処理してスケール直下の
金属素地まで除去することを特徴とする合金鉄鋼帯の脱
スケール方法。An anodic electrolysis treatment is performed on an alloy steel strip containing at least nickel and / or chromium in an electrolytic solution consisting mainly of an aqueous solution containing ferric chloride, followed by a pickling solution containing hydrofluoric acid. A method for descaling an alloyed steel strip, comprising removing the metal base immediately below the scale by pickling.
0〜80℃の水溶液から成る電解液を使用して5〜30A/dm2
の電流密度で陽極電解処理を行い、しかる後に硝酸と沸
酸とから成る酸洗液で酸洗処理してスケール直下の金属
素地まで除去する請求項1に記載に合金鉄鋼帯の脱スケ
ール方法。2. A ferric oxide having a concentration of 250 to 400 g / l and a liquid temperature of 4 g / l.
5 to 30 A / dm 2 using an electrolyte consisting of an aqueous solution at 0 to 80 ° C.
2. The method for descaling an alloy steel strip according to claim 1, wherein an anodic electrolysis treatment is performed at a current density of not more than 3, and then a pickling treatment comprising a nitric acid and a hydrofluoric acid is carried out to remove the metal base immediately below the scale.
れか1種から成る陽極板と白金,チタン,オーステナイ
ト系ステンレス鋼のいずれか1種から成る陰極板とが共
に主として塩化第二鉄を含有する水溶液から成る電解液
が建浴されている電解液槽内部に設けられており、該電
解液槽の後に沸酸を含む酸洗液が建浴されている酸洗処
理槽が配設されていることを特徴とする合金鉄鋼帯の脱
スケール装置。3. An anode plate made of any one of platinum, ruthenium oxide and lead oxide and a cathode plate made of any one of platinum, titanium and austenitic stainless steel mainly contain ferric chloride. An electrolytic solution comprising an aqueous solution is contained inside the electrolytic solution tank, and an acid pickling treatment tank containing a pickling solution containing hydrofluoric acid is provided after the electrolytic solution tank. A descaling device for an alloy steel strip.
鉄を含有する水溶液から成る電解液が建浴されている電
解液槽の前に陽極板が設けられている導電性液槽が配設
されており、また該電解液槽の後に沸酸を含む酸洗液が
建浴されている酸洗処理槽が配設されており、前記陰極
板と陽極板とに電解用直流電源が接続されていることを
特徴とする合金鉄鋼帯の脱スケール装置。4. A conductive liquid tank provided with an anode plate is provided in front of an electrolytic tank provided with a cathode plate and containing an electrolyte mainly comprising an aqueous solution containing ferric chloride. An acid pickling treatment tank in which a pickling solution containing hydrofluoric acid is provided after the electrolytic solution tank is provided, and a DC power supply for electrolysis is connected to the cathode plate and the anode plate. A descaling device for an alloy steel strip, which is characterized in that:
板とに、切り替え用スイツチを介して電解用直流電源と
該電解用直流電源とは別の小容量の印加電圧用の直流電
源とのいずれかが接続可能に配設されている請求項4に
記載の合金鉄鋼帯の脱スケール装置。5. A DC power source for electrolysis and a small-capacity applied voltage different from the DC power source for electrolysis via a switching switch between a cathode plate in the electrolyte bath and an anode plate in the electroconductive bath. The descaling device for an alloy steel strip according to claim 4, wherein any one of the DC power sources is connected to the DC power source.
含有する水溶液から成る電解液が建浴されている電解液
槽と沸酸を含む酸洗液が建浴されている酸洗処理槽との
間に陽極となる通電ロールが設けられており、該通電ロ
ールと前記陰極板とに電解用直流電源が接続されている
ことを特徴とする合金鉄鋼帯の脱スケール装置。6. An electrolytic bath in which an electrolytic solution mainly composed of an aqueous solution containing ferric chloride, in which a cathode plate is provided, and an acid bath in which a pickling solution containing hydrofluoric acid is built. A descaling device for an alloy steel strip, wherein an energizing roll serving as an anode is provided between the treatment tank and the electrolytic roll, and a DC power supply for electrolysis is connected to the energizing roll and the cathode plate.
ツチを介して電解用直流電源と該電解用直流電源とは別
の小容量の印加電圧用の直流電源とのいずれかが接続可
能に配設されている請求項6に記載の合金鉄鋼帯の脱ス
ケール装置。7. A DC power source for electrolysis and a DC power source for applying a small voltage different from the DC power source for electrolysis can be connected to the energizing roll and the cathode plate via a switching switch. The descaling device for an alloy steel strip according to claim 6, which is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63204647A JP2577618B2 (en) | 1988-08-19 | 1988-08-19 | Method and apparatus for descaling alloy steel strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63204647A JP2577618B2 (en) | 1988-08-19 | 1988-08-19 | Method and apparatus for descaling alloy steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0254787A JPH0254787A (en) | 1990-02-23 |
JP2577618B2 true JP2577618B2 (en) | 1997-02-05 |
Family
ID=16493946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63204647A Expired - Lifetime JP2577618B2 (en) | 1988-08-19 | 1988-08-19 | Method and apparatus for descaling alloy steel strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2577618B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5494567A (en) * | 1988-05-14 | 1996-02-27 | Petoca Ltd. | Process for producing carbon materials |
JP2000001799A (en) * | 1998-06-17 | 2000-01-07 | Teikoku Micro Kk | Electrolytic cleaning composition for die, and die cleaning device using the composition |
CN115747818A (en) * | 2022-12-02 | 2023-03-07 | 湖南菱瑞新材料科技有限公司 | Novel high-efficient plug-type pickling device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5086429A (en) * | 1973-12-07 | 1975-07-11 | ||
JPS5959899A (en) * | 1982-09-29 | 1984-04-05 | Kawasaki Steel Corp | Method for electrolytic descaling of stainless steel strip |
JPS63161944A (en) * | 1986-12-26 | 1988-07-05 | 横河メディカルシステム株式会社 | X-ray tomographic imaging apparatus |
-
1988
- 1988-08-19 JP JP63204647A patent/JP2577618B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0254787A (en) | 1990-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3420760A (en) | Process for descaling steel strip in an aqueous organic chelating bath using alternating current | |
EP0644276B1 (en) | Method and apparatus for descaling a hot-rolled steel strip | |
EP0972862A2 (en) | Method for forming a phosphate film on steel wires and apparatus used therefor | |
JPH04337094A (en) | High-speed pickling method for steel type metal | |
US5490908A (en) | Annealing and descaling method for stainless steel | |
CN1451058A (en) | Continuous electrolytic pickling method for metallic products using alternate current suplied cells | |
JP2577618B2 (en) | Method and apparatus for descaling alloy steel strip | |
JPH0827600A (en) | Descaling method and device for stainless steel strip | |
JP2577619B2 (en) | Method and apparatus for descaling alloy steel strip | |
JP3792335B2 (en) | Finishing electrolytic pickling method in descaling of stainless steel strip | |
JP2003286592A (en) | Pickling process for stainless steel strip | |
US3632490A (en) | Method of electrolytic descaling and pickling | |
JP2517353B2 (en) | Descaling method for stainless steel strip | |
JP3004390B2 (en) | High-speed descaling and surface modification method and apparatus for hot-rolled alloy steel strip | |
JP4316029B2 (en) | Stainless steel pickling method and pickling solution | |
US6837973B1 (en) | Apparatus for electrically coating a hot-rolled steel substrate | |
JPH11343586A (en) | Descaling method of titanium material | |
JP2002348700A (en) | DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET | |
JP4804657B2 (en) | A descaling method for austenitic stainless steel cold-rolled annealed steel sheets | |
JPH10325000A (en) | Method for continuously washing steel strip and apparatus therefor | |
JPH05295600A (en) | Continuous descaling method for stainless steel strip and its device | |
JPH0711080B2 (en) | High-speed electrolytic melting method for steel metal | |
JP3112257B2 (en) | Method for electrolytic descaling of Ni annealed plate or Ni alloy annealed plate | |
JP3873335B2 (en) | Electrolytic descaling method for steel strip | |
JPH1161500A (en) | Descaling of stainless steel strip and heat resistant steel strip |