JP2573589C - - Google Patents
Info
- Publication number
- JP2573589C JP2573589C JP2573589C JP 2573589 C JP2573589 C JP 2573589C JP 2573589 C JP2573589 C JP 2573589C
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat exchanger
- exhaust gas
- flue gas
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- UGFAIRIUMAVXCW-UHFFFAOYSA-N carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 55
- 239000000428 dust Substances 0.000 claims description 44
- 239000003546 flue gas Substances 0.000 claims description 24
- 238000005260 corrosion Methods 0.000 claims description 22
- 238000006477 desulfuration reaction Methods 0.000 claims description 21
- 230000003009 desulfurizing Effects 0.000 claims description 21
- 238000011084 recovery Methods 0.000 claims description 9
- 238000003303 reheating Methods 0.000 claims description 7
- 239000000779 smoke Substances 0.000 claims description 6
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 6
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 36
- 238000010586 diagram Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000004071 soot Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、排煙処理装置に係り、特にボイラ等の燃焼装置から排出されるばい
塵、硫黄酸化物(以下、SOxと略す)を除去するに好適な排煙処理装置に関す
る。
(従来の技術)
湿式排煙脱硫装置(以下、脱硫装置という)では、排ガス中のSOxを除去す
るために、排ガスと吸収液との気液接触が行われるが、吸収塔(以下、脱硫装置
と称することがある)出口ガス温度が、例えば約50℃と飽和温度以下まで低下
するため、吸収塔出口ガスは煙突からの白煙防止および拡散に適した温度まで再
加熱された後、煙突から排出されている。この再加熱装置としては、脱硫装置入
口ガスの熱を再利用する熱交換器を用いるのが一般的である。
第6図は、従来技術による排煙処理装置の系統図である。この装置は、ボイラ
1と、該ボイラ1の排ガスの熱を回収するための空気予熱器2と、排ガス中のば
い塵を除去する電気集塵器(以下、EPと称する)3と、ばい塵が除かれた排ガ
スの熱を回収する熱交換器9と、排ガス中のSOxを除去する脱硫装置6と、脱
硫された排ガスを熱交換器9で回収した熱で再加熱する熱交換器10とから構成
される。熱交換器9と熱交換器10は、熱媒体が通る連絡管11によって連結さ
れている。熱交換器9としては、熱媒体をポンプで強制循環する方式、ヒートパ
イプを利用する方式などが用いらる。
このような構成において、ボイラ1からの燃焼排ガスは、空気予熱器2によっ
て約150℃まで熱回収された後EP3に送られ、ばい塵の除去が行われる。ば
い塵が除去された排ガスは、吸込送風機(IDF)4および脱硫ファン5で昇圧
され、熱交換器9に送られ、約100℃まで冷却された後、脱硫装置6に導入さ
れる。脱硫装置6内ではアルカリ剤スラリからなる吸収液が噴霧され、気液接触
により、冷却、脱硫、除塵が行われ、脱硫装置出口排ガスは約50℃の飽和温度
まで冷却される。前記脱硫装置6の出口ガスは、前記熱交換器10に導入され、
熱交換器9で回収した熱によって約100℃まで再加熱され、煙突7から排出さ
れる。
最近、エネルギーの多様化に伴い、ボイラ燃料の重油から石炭への転換による
ボイラ排ガス中のばい塵量の増加と、環境規制の強化に伴う煙突7入口のばい塵
排出量低減の必要性から、排煙処理装置の除塵性能の高度化が要求されている。
通常、石炭焚きボイラの場合、ボイラ出口ばい塵量約20g/m3Nに対し、排
煙処理装置出口のばい塵量を0.02g/m3Nまで除塵することが要求され、
99.9%以上の除塵性能が必要となる。
(発明が解決しようとする課題)
上記のような高度な除塵性能を得るためには、排煙処理装置のEPの容量を増
加させる、脱硫装置での噴霧液量を増加させるなどの方法が必要であるが、いず
れも、設備費、運転費が増加するという問題がある。
また、EP性能は、ばい塵の電気抵抗に依存し、またばい塵の電気抵抗はガス
の関係湿度により影響されることも知られているから、EP性能の向上は排ガス
の関係湿度を上げ、ばい塵の電気抵抗を低下させることにより図ることができる
。ばい塵の電気抵抗を低下させるには、空気予熱器2の容量を大きくしてEP3
の入口ガス温度を下げる方法、またはガス中に水を噴霧し、水分量を上げる方法
が考えられる。
しかしながら、前者の方法では、ボイラ出口ガス中には燃焼に伴い酸化された
SO3がSO2濃度の約2〜3%(SO2濃度1000ppmで20〜30ppm)存在
するため、ガス温度を下げすぎると空気予熱器2の低温側エレメント温度の低下
によりSO3が凝集し、ばい塵とともにエレメントに固着し、腐食、閉塞を起こ
す問題がある。また、後者の方法では、水を完全に蒸発させないと、機器表面を
濡らすことになり、腐食の原因となるため、実用化されていない。
本発明の目的は、上記の従来技術の問題を改善し、EPの除塵性能を向上させ
、しかもSO3による低温腐食が防止できる、経済的な排煙処理装置を提供する
ことにある。
(問題点を解決するための手段)
上記目的は、EP入口に熱交換器を設け、かつ該熱交換器出口(EP入口)ガ
ス温度を、該熱交換器下流側(EP以降)の煙道および機器の低温腐食が防止で
きる温度に制御する手段を設けることによって達成される。
すなわち、本発明の第1は、ボイラ等の排ガスの熱量を回収する空気予熱器と
、前記排ガス中に含まれるばい塵を除去する電気集塵器と、硫黄酸化物を除去す
る湿式排煙脱硫装置と、前記電気集塵器からの排ガスを前記湿式排煙脱硫装置に
導く煙道と、前記湿式排煙脱硫装置からの排ガスを再加熱する再加熱用の熱交換
器を有する排煙処理装置において、前記空気予熱器の後流側に、前記排ガスの熱
量を回収して前記再加熱用の熱交換器に熱媒体を循環する熱回収用の熱交換器と
、前記電気集塵器を順次設けるとともに、前記熱回収用の熱交換器と前記湿式排
煙脱硫装置の間に排ガス温度の検出手段を設け、さらに前記熱回収用の熱交換器
出口の排ガス温度が前記電気集塵器の後流側で低温腐食が生じない温度となるよ
うに前記熱回収用の熱交換器の熱交換量を調節する制御装置を設けたことを特徴
とする。
本発明の第2は、上記第1の発明において、前記電気集塵器からの排ガスを前 記湿式排煙脱硫装置に導く煙道にはファンが設けられていることを特徴とする。
本発明は、熱交換器の形式が媒体をポンプで強制循環する方式においても適用
されるのはいうまでもなく、この場合はポンプを複数台設け、運転台数を制御す
ることよって行うことができる。
(作用)
ボイラ排ガス中のSO3は、空気予熱器内でばい塵に吸着され約5ppm程度に低
下するため、空気予熱器の出口では硫酸露点温度が空気予熱器の入口に較べ低く
なる。したがって、EP入口に設けられた熱交換器のSO3露点腐食(低温腐食
)に起因するガス温度の下限値を、前記の空気予熱器出口ガス温度より低くする
ことが可能であり、EP入口ガス温度を低下させ、EPの性能を向上させること
ができる。さらに、常にSO3露点腐食が防止できる下限温度以上で運転できる
ように前記熱交換器の熱交換量を制御することにより、前記EP以降の煙道およ
び機器の腐食が防止できる。
また、SO3濃度とばい塵濃度による腐食の関係を第5図に示したが、SO3露
点腐食を支配する要因として、排ガス中のばい塵濃度がある。SO3濃度に対し
てばい塵濃度が高い場合は、SO3がばい塵に吸着されて機器の付着面を乾いた
状態に保ち、腐食を軽減することができるが、SO3濃度に対してばい塵濃度が
低い場合は、ガス温度低下に伴いSO3が凝集して硫酸となり、機器表面に付着
し、腐食を起こす。したがって、EP出口ガス中のばい塵濃度を把握することに
よってEP以降の煙道および機器の腐食を防止することができる。
さらにまた、例えばEP出口ばい塵濃度100mg/m3Nの条件でEPを設計
する場合、従来技術のEP入口温度150℃(A)の条件では、EPは第2図の
EP特性曲線のIの特性を有するEPを選定する必要があった。しかしながら、
本発明によれば、例えば第3図の空気予熱器出口ガス温度とSO3濃度の関係か
ら、Aのガス温度に対してSO3濃度Bが求められ、第4図のSO3濃度と露点温
度の関係から、露点濃度Cが求められるため、第2図に示す特性曲線IIの特性を
有するEPを選定すればよいことになる。したがって、EPの設備費を大きく低
減することができる。
(実施例)
以下、本発明を実施例に基づいて詳しく説明する。
第1図は、本発明の一実施例に係る排煙処理装置の系統図である。図において
、第6図と同一部分は同一符号を付し、説明を省略する。第1図において、従来
の装置(第6図)と異なる点は、EP3入口に熱交換器8と、該熱交換器8と熱
交換器10を連結し熱媒体が循環する連絡管12と、前記熱交換器8での交換熱
量を制御して熱交換器8出口ガス温度を低温腐食が防止できる温度に制御する手
段、すなわち、空気予熱器2出口ガス温度を測定する温度検出器20およびEP
3入口のガス温度を測定する温度検出器21と、前記温度検出器の測定値から低
温腐食が防止できる温度にするための交換熱量を演算する演算器23と、該演算
器23からの信号によって熱媒体量を調節する前記連絡管12に設けられた流量
調節器24とを設けたことである。
このような構成において、ボイラ1からの排ガスは、空気予熱器2を経て熱交
換器8に導入され、EP3の集塵性能向上のために排ガス温度が下げられる。該
熱交換器8出口ガス温度は、温度検出器20、21で測定された測定値から、熱
交換器8下流側煙道および機器の低温腐食が防止される温度に演算器23によっ
て演算され、さらに演算器23によって前記温度になるように熱交換器8で交換
される熱量が決定され、流量調節器24により媒体圧力が調節される。
前記演算器23による交換熱量の決定は、例えば次の2つの方法によって行う
ことができる。
まず、第3図から、空気予熱器2出口ガス温度を温度検出器20で計測するこ
とによって、従来、連続的に高精度の測定が不可能であった空気予熱器2出口ガ
スSO3濃度を連続的に求めることができる。さらに、第4図から、第3図で求
めた空気予熱器2出口ガスSO3濃度の露点温度を求めることができる。該露点
温度は熱交換器8出口の低温腐食を防止できる下限温度(設定値)となる。した
がって、第3図および第4図の関係が組み込まれた演算器23によって、前記熱
交換器8の下限温度を先行信号とし、温度検出器21で測定された温度をフィー
ドバック信号として、熱交換器8での交換熱量(熱媒体量)が求められる。
また、他の方法は、第2図、第3図および第5図の関係が組み込まれた演算器
23によって行うことができる。空気予熱器2出口ガス温度を温度検出器20で
計測することにより、第3図から空気予熱器2出口ガスのSO3濃度が求められ
、第5図から前記SO3濃度における腐食が防止できるガス中のばい塵濃度が求
められる。このばい塵濃度が低温腐食を防止できるEP3出口ガスばい塵濃度と
なり、図2のEP特性曲線IIから該ばい塵濃度にするためのEP3入口ガス温度
(設定値)が決定される。したがって、第2図、第3図および第5図の関係が組
み込まれた演算器23は、該EP3入口ガス温度を先行信号とし、温度検出器2
1で計測したEP3入口ガス温度をフィードバック信号として熱交換器8の交換
熱量を求めることができる。
なお、上記実施例では空気予熱器2出口ガスの露点温度を演算により求めたが
、露点計を設置して同様に行うことができるのはいうまでもない。
第7図は、本発明の他の実施例に係る排煙処理装置の系統図である。本発明に
おける第1図と異なる点は、熱交換器8の交換熱量の制御をEP3出口ガスばい
塵濃度とEP3入口ガス温度の計測によって行うために、EP3出口にばい塵濃
度計22と、EP入口に温度検出器21とを設けたことである。このような構成
において、演算器23による交換熱量の決定は、次のようにして行われる。まず
、ばい塵濃度計22によってEP出口ガスのばい塵濃度が測定される。該ばい塵
濃度におけるSO3露点腐食を防止できるSO3濃度が第5図から求められ、さら
に第4図から該SO3濃度の露点温度が求められる。該露点温度が熱交換器8出
口ガス温度の下限値(設定値)となる。したがって、該下限温度を先行信号とし
、温度検出器21の測定値をフィードバック信号として、第4図および第5図の
関係が組み込まれた演算器23は熱交換器8の熱交換量を求めることができ、連
絡管12に設けた流量調節器24により前記熱交換量に相当する媒体圧力に調節
される。
(発明の効果)
本発明によれば、SO3による低温腐食が防止できる温度に電気集塵器入口ガ
ス温度を低下させることができるので、電気集塵器の性能を向上させることがで
きるとともに、SO3低温腐食も防止することができる。Description: BACKGROUND OF THE INVENTION (Industrial application field) The present invention relates to a flue gas treatment device, and particularly to the removal of dust and sulfur oxides (hereinafter abbreviated as SOx) discharged from a combustion device such as a boiler. The present invention relates to a smoke exhaust treatment device suitable for performing (Prior Art) In a wet-type flue gas desulfurization device (hereinafter, referred to as a desulfurization device), gas-liquid contact between the exhaust gas and an absorbent is performed to remove SOx in the exhaust gas. Because the outlet gas temperature drops below the saturation temperature, for example, to about 50 ° C., the absorber outlet gas is reheated to a temperature suitable for white smoke prevention and diffusion from the chimney, and then from the chimney. Has been exhausted. As this reheating device, a heat exchanger that reuses the heat of the gas at the desulfurization device is generally used. FIG. 6 is a system diagram of a conventional flue gas treatment apparatus. This apparatus includes a boiler 1, an air preheater 2 for recovering heat of exhaust gas from the boiler 1, an electric precipitator (hereinafter referred to as EP) 3 for removing dust in exhaust gas, and a dust collector. A heat exchanger 9 for recovering the heat of the exhaust gas from which the sulfur has been removed, a desulfurization device 6 for removing SOx in the exhaust gas, and a heat exchanger 10 for reheating the desulfurized exhaust gas with the heat recovered by the heat exchanger 9. Consists of The heat exchanger 9 and the heat exchanger 10 are connected by a communication pipe 11 through which a heat medium passes. As the heat exchanger 9, a system in which a heat medium is forcibly circulated by a pump, a system using a heat pipe, or the like is used. In such a configuration, the combustion exhaust gas from the boiler 1 is sent to the EP 3 after heat recovery to about 150 ° C. by the air preheater 2, and the dust is removed. The exhaust gas from which the dust has been removed is pressurized by an intake blower (IDF) 4 and a desulfurization fan 5, sent to a heat exchanger 9, cooled to about 100 ° C., and then introduced into a desulfurizer 6. In the desulfurization unit 6, an absorbing solution composed of an alkali agent slurry is sprayed, and cooling, desulfurization and dust removal are performed by gas-liquid contact, and the exhaust gas at the desulfurization unit outlet is cooled to a saturation temperature of about 50 ° C. The outlet gas of the desulfurization device 6 is introduced into the heat exchanger 10,
The heat recovered by the heat exchanger 9 is reheated to about 100 ° C. and discharged from the chimney 7. Recently, with the diversification of energy, the amount of dust in boiler exhaust gas has increased due to the conversion of boiler fuel from heavy oil to coal, and the need to reduce the amount of dust emission at the entrance of chimney 7 due to the tightening of environmental regulations. There is a demand for advanced dust removal performance of flue gas treatment equipment.
Typically, for a coal-fired boiler, to the boiler outlet Soot dust amount of about 20 g / m 3 N, it is required to dust the Soot dust amount of flue gas treatment apparatus outlet to 0.02 g / m 3 N,
Dust removal performance of 99.9% or more is required. (Problems to be Solved by the Invention) In order to obtain the high dust removal performance as described above, it is necessary to increase the EP capacity of the flue gas treatment apparatus and increase the amount of spray liquid in the desulfurization apparatus. However, both have the problem that equipment costs and operating costs increase. Also, it is known that the EP performance depends on the electric resistance of dust, and it is known that the electric resistance of dust is affected by the relative humidity of gas. This can be achieved by reducing the electrical resistance of the dust. In order to reduce the electric resistance of the dust, the capacity of the air preheater 2 is increased and the EP3
A method of lowering the inlet gas temperature of the gas, or a method of spraying water into the gas to increase the water content. However, the former method, since the boiler outlet gas is SO 3 which is oxidized with the combustion present from about 2 to 3% (20 to 30 ppm in SO 2 concentration 1000 ppm) of SO 2 concentration, too low a gas temperature As a result, there is a problem that SO 3 agglomerates due to a decrease in the temperature of the low-temperature side element of the air preheater 2, adheres to the element together with dust, and causes corrosion and blockage. In the latter method, if the water is not completely evaporated, the surface of the device will be wet and cause corrosion. SUMMARY OF THE INVENTION It is an object of the present invention to provide an economical flue gas treatment apparatus which solves the above-mentioned problems of the prior art, improves the dust removal performance of EP, and can prevent low-temperature corrosion due to SO 3 . (Means for Solving the Problems) An object of the present invention is to provide a heat exchanger at the EP inlet and to set the gas temperature at the outlet (EP inlet) of the heat exchanger to the flue downstream of the heat exchanger (after the EP). And means for controlling the temperature at which low-temperature corrosion of equipment can be prevented. That is, the first aspect of the present invention is to provide an air preheater for recovering the calorific value of exhaust gas from a boiler or the like.
A dust collector for removing soot and dust contained in exhaust gas, and a wet flue gas desulfurization apparatus for removing sulfur oxides, the flue for guiding the exhaust gas from the electrostatic precipitator in the wet flue gas desulfurization system And heat exchange for reheating for reheating exhaust gas from the wet flue gas desulfurization unit.
In a flue gas treatment device having a heat exchanger, the heat of the exhaust gas is provided downstream of the air preheater.
A heat exchanger for heat recovery that circulates a heat medium to the heat exchanger for reheating by collecting the amount.
, The electrostatic precipitator is sequentially provided, and the heat exchanger for heat recovery and the wet exhaust
The detection means of the exhaust gas temperature is provided between the smoke desulfurization system, the heat as further exhaust gas temperature of the heat exchanger outlet for the heat recovery low temperature corrosion in the downstream side of the dust collector becomes a temperature that does not occur A control device for adjusting the heat exchange amount of the heat exchanger for recovery is provided. The second of the present invention is the first invention, the flue for guiding the exhaust gas from the electrostatic precipitator before Symbol wet flue gas desulfurization apparatus is characterized in that the fan is provided. Needless to say, the present invention can be applied to a system in which a heat exchanger is forcibly circulated by a pump using a heat exchanger. In this case, a plurality of pumps are provided and the number of operating units can be controlled. . (Operation) Since SO 3 in the boiler exhaust gas is adsorbed by the dust in the air preheater and drops to about 5 ppm, the sulfuric acid dew point temperature at the outlet of the air preheater is lower than that at the inlet of the air preheater. Therefore, the lower limit value of the gas temperature caused by the SO 3 dew-point corrosion (low-temperature corrosion) of the heat exchanger provided at the EP inlet can be made lower than the gas temperature at the outlet of the air preheater. The temperature can be lowered and the performance of the EP can be improved. Further, by controlling the heat exchange amount of the heat exchanger so that the operation can always be performed at a temperature equal to or higher than the lower limit temperature at which the SO 3 dew point corrosion can be prevented, the flue and equipment after the EP can be prevented from being corroded. FIG. 5 shows the relationship between the SO 3 concentration and the corrosion due to the dust concentration. The factor governing the SO 3 dew point corrosion is the dust concentration in the exhaust gas. If Soot dust concentration is high relative to the SO 3 concentration, SO 3 is adsorbed on Gabai dust and keeps the dry adhesion surface of the device, it is possible to reduce corrosion, soot and dust against SO 3 concentration When the concentration is low, SO 3 is coagulated into sulfuric acid as the gas temperature decreases, adheres to the device surface, and causes corrosion. Therefore, by ascertaining the concentration of dust in the EP outlet gas, it is possible to prevent the flue and equipment from corroding after the EP. Furthermore, for example, when designing an EP at a dust concentration of 100 mg / m 3 N at the EP outlet, under the condition of the conventional EP inlet temperature of 150 ° C. (A), the EP is the value of I in the EP characteristic curve of FIG. It was necessary to select an EP having characteristics. However,
According to the present invention, for example, the SO 3 concentration B is determined for the gas temperature of A from the relationship between the gas temperature at the outlet of the air preheater and the SO 3 concentration in FIG. 3, and the SO 3 concentration and the dew point temperature in FIG. Since the dew point concentration C is obtained from the relationship, the EP having the characteristic of the characteristic curve II shown in FIG. 2 may be selected. Therefore, the equipment cost of the EP can be significantly reduced. (Examples) Hereinafter, the present invention will be described in detail based on examples. FIG. 1 is a system diagram of a flue gas treatment apparatus according to one embodiment of the present invention. In the figure, the same parts as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 1, the point different from the conventional apparatus (FIG. 6) is that a heat exchanger 8 is connected to the inlet of EP3, a communication pipe 12 connecting the heat exchanger 8 and the heat exchanger 10 and circulating a heat medium, Means for controlling the amount of heat exchanged in the heat exchanger 8 to control the gas temperature at the outlet of the heat exchanger 8 to a temperature at which low-temperature corrosion can be prevented, that is, the temperature detector 20 for measuring the gas temperature at the air preheater 2 outlet and the EP
A temperature detector 21 for measuring the gas temperature at the three inlets; an arithmetic unit 23 for calculating the amount of heat exchanged from the measured value of the temperature detector to a temperature at which low-temperature corrosion can be prevented; and a signal from the arithmetic unit 23 That is, a flow controller 24 provided in the communication pipe 12 for adjusting the heat medium amount is provided. In such a configuration, the exhaust gas from the boiler 1 is introduced into the heat exchanger 8 via the air preheater 2, and the temperature of the exhaust gas is reduced to improve the dust collection performance of the EP 3. The heat exchanger 8 outlet gas temperature is calculated by the calculator 23 from the measured values measured by the temperature detectors 20 and 21 to a temperature at which low-temperature corrosion of the heat exchanger 8 downstream flue and equipment is prevented, Further, the amount of heat exchanged in the heat exchanger 8 is determined by the calculator 23 so as to reach the above-mentioned temperature, and the medium pressure is adjusted by the flow controller 24. The determination of the amount of heat exchanged by the arithmetic unit 23 can be performed, for example, by the following two methods. First, from FIG. 3, by measuring the gas temperature at the outlet of the air preheater 2 with the temperature detector 20, the concentration of the SO 3 gas at the outlet of the air preheater 2, which has conventionally been impossible to measure continuously with high accuracy, is calculated. It can be determined continuously. Further, the dew point temperature of the gas SO 3 concentration at the outlet of the air preheater 2 obtained in FIG. 3 can be obtained from FIG. The dew point temperature is a lower limit temperature (set value) at which low-temperature corrosion at the outlet of the heat exchanger 8 can be prevented. Therefore, the arithmetic unit 23 incorporating the relationship of FIG. 3 and FIG. 4 uses the lower limit temperature of the heat exchanger 8 as a preceding signal and the temperature measured by the temperature detector 21 as a feedback signal, and The exchange heat amount (heat medium amount) at 8 is obtained. Further, another method can be performed by the arithmetic unit 23 in which the relationships shown in FIGS. 2, 3 and 5 are incorporated. By measuring the temperature of the gas at the outlet of the air preheater 2 with the temperature detector 20, the SO 3 concentration of the gas at the outlet of the air preheater 2 is determined from FIG. 3, and from FIG. The dust concentration in the inside is required. This dust concentration becomes the dust concentration of the EP3 outlet gas that can prevent low-temperature corrosion, and the EP3 inlet gas temperature (set value) for achieving the dust concentration is determined from the EP characteristic curve II in FIG. Therefore, the arithmetic unit 23 incorporating the relationships shown in FIGS. 2, 3 and 5 uses the EP3 inlet gas temperature as a preceding signal, and uses the temperature detector 2
The exchange heat quantity of the heat exchanger 8 can be obtained using the EP3 inlet gas temperature measured in 1 as a feedback signal. In the above embodiment, the dew point temperature of the gas at the outlet of the air preheater 2 was obtained by calculation, but it goes without saying that the same operation can be performed by installing a dew point meter. FIG. 7 is a system diagram of a flue gas treatment apparatus according to another embodiment of the present invention. The difference of the present invention from FIG. 1 is that the exchange heat quantity of the heat exchanger 8 is controlled by measuring the gas concentration at the outlet of the EP3 and the gas temperature at the inlet of the EP3. That is, a temperature detector 21 is provided at the entrance. In such a configuration, the determination of the amount of exchanged heat by the computing unit 23 is performed as follows. First, the dust concentration of the EP outlet gas is measured by the dust concentration meter 22. The SO 3 concentration that can prevent the SO 3 dew point corrosion at the dust concentration is determined from FIG. 5, and the dew point temperature of the SO 3 concentration is determined from FIG. The dew point temperature becomes the lower limit value (set value) of the gas temperature at the outlet of the heat exchanger 8. Therefore, using the lower limit temperature as a leading signal and the measurement value of the temperature detector 21 as a feedback signal, the arithmetic unit 23 incorporating the relationship of FIGS. 4 and 5 determines the heat exchange amount of the heat exchanger 8. The medium pressure is adjusted to the medium pressure corresponding to the heat exchange amount by the flow rate adjuster 24 provided in the communication pipe 12. (Effects of the Invention) According to the present invention, the gas temperature at the inlet of the electrostatic precipitator can be reduced to a temperature at which low-temperature corrosion due to SO 3 can be prevented, so that the performance of the electric precipitator can be improved, SO 3 low temperature corrosion can also be prevented.
【図面の簡単な説明】
第1図は、本発明の一実施例に係る排煙処理装置の系統図、第2図は、EP特
性曲線を示す図、第3図は、空気予熱器出口ガス温度とSO3濃度の関係を示す
図、第4図は、SO3濃度と露点温度の関係を示す図、第5図は、SO3濃度とば
い塵濃度による腐食の関係を示す図、第6図は、従来技術による排煙処理装置の
系統図、第7図は、本発明の他の実施例による排煙処理装置の系統図である。
1…ボイラ、2…空気予熱器、3…電気集塵器(EP)、6…脱硫装置、7…
煙突、8、9、10…熱交換器、11、12…連絡管、20、21…温度検出器
、22…ばい塵濃度計、23…演算器、24…流量調節器。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram of a flue gas treatment apparatus according to one embodiment of the present invention, FIG. 2 is a diagram showing an EP characteristic curve, and FIG. FIG. 4 is a diagram showing a relationship between temperature and SO 3 concentration, FIG. 4 is a diagram showing a relationship between SO 3 concentration and dew point temperature, FIG. 5 is a diagram showing a relationship between SO 3 concentration and corrosion by dust concentration, and FIG. The figure is a system diagram of a smoke exhaust treatment device according to the prior art, and FIG. 7 is a system diagram of a smoke exhaust treatment device according to another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... Air preheater, 3 ... Electric precipitator (EP), 6 ... Desulfurization apparatus, 7 ...
Chimney, 8, 9, 10 ... heat exchanger, 11, 12 ... connecting pipe, 20, 21 ... temperature detector, 22 ... dust concentration meter, 23 ... arithmetic unit, 24 ... flow rate controller.
Claims (1)
中に含まれるばい塵を除去する電気集塵器と、硫黄酸化物を除去する湿式排煙脱
硫装置と、前記電気集塵器からの排ガスを前記湿式排煙脱硫装置に導く煙道と、
前記湿式排煙脱硫装置からの排ガスを再加熱する再加熱用の熱交換器を有する排
煙処理装置において、前記空気予熱器の後流側に、前記排ガスの熱量を回収して
前記再加熱用の熱交換器に熱媒体を循環する熱回収用の熱交換器と、前記電気集
塵器を順次設けるとともに、前記熱回収用の熱交換器と前記湿式排煙脱硫装置の
間に排ガス温度の検出手段を設け、さらに前記熱回収用の熱交換器出口の排ガス
温度が前記電気集塵器の後流側で低温腐食が生じない温度となるように前記熱回
収用の熱交換器の熱交換量を調節する制御装置を設けたことを特徴とする排煙処
理装置。 【請求項2】 請求項1に記載の排煙処理装置において、前記電気集塵器から
の排ガスを前記湿式排煙脱硫装置に導く煙道にはファンが設けられていることを
特徴とする排煙処理装置。 Claims: 1. An air preheater for recovering calorific value of exhaust gas from a boiler or the like, an electric dust collector for removing dust contained in the exhaust gas, and a wet exhaust gas for removing sulfur oxides. A flue gas desulfurization device, and a flue that guides exhaust gas from the electrostatic precipitator to the wet flue gas desulfurization device,
In a flue gas treatment device having a heat exchanger for reheating to reheat exhaust gas from the wet flue gas desulfurization device , the calorie of the exhaust gas is recovered on the downstream side of the air preheater.
A heat recovery heat exchanger for circulating a heat medium through the reheating heat exchanger;
While providing a duster sequentially, the heat exchanger for heat recovery and the wet flue gas desulfurization device
The detection means of the exhaust gas temperature is provided between the the heat recovery as further exhaust gas temperature of the heat exchanger outlet for the heat recovery low temperature corrosion in the downstream side of the dust collector becomes a temperature that does not occur
A flue gas treatment device comprising a control device for adjusting a heat exchange amount of a heat exchanger for expropriation . 2. The flue gas treatment apparatus according to claim 1, wherein
That the flue leading the flue gas to the wet flue gas desulfurization unit has a fan
Characteristic smoke exhaust treatment device.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5180097B2 (en) | Exhaust gas treatment method and apparatus | |
KR101036979B1 (en) | Exhaust gas treating apparatus | |
JP3193966B2 (en) | Flue gas desulfurization apparatus and method | |
JP2573589B2 (en) | Flue gas treatment equipment | |
WO2004023040A1 (en) | Exhaust smoke-processing system | |
JP5976820B2 (en) | Smoke exhaust processing method and smoke exhaust processing apparatus | |
US20040047773A1 (en) | So3 separating and removing equipment for flue gas | |
JP3200608B2 (en) | Exhaust gas treatment method | |
EP0498020B1 (en) | Method and system for handling exhaust gas in a boiler | |
US5282429A (en) | Method and system for handling exhaust gas in a boiler | |
JP2002370012A (en) | Exhaust gas treatment apparatus | |
JP2004154683A (en) | Exhaust gas treatment equipment and its operation method | |
JPH0359728B2 (en) | ||
JP3572139B2 (en) | Heat exchanger and flue gas treatment device provided with the same | |
JP2826560B2 (en) | Exhaust gas treatment method | |
JP2573589C (en) | ||
JP2013034965A (en) | Wet flue-gas treatment apparatus and method | |
JP3408832B2 (en) | Flue gas treatment equipment and its control equipment | |
JPH09122439A (en) | Exhaust gas treatment system | |
JPH112403A (en) | Boiler apparatus | |
CN208720254U (en) | A kind of device for thermal power plant's exhaust heat stepped utilization and eliminating white smoke | |
JP2725784B2 (en) | Flue gas desulfurization method | |
JP2003322329A (en) | Rotation regenerated air preheater and its soot blower method | |
CN219964463U (en) | Flue gas treatment device and glass production line with same | |
JP2000140687A (en) | Electric dust collecting method |