JP2566962B2 - Method for producing γ-substituted-β-hydroxybutyric acid ester - Google Patents
Method for producing γ-substituted-β-hydroxybutyric acid esterInfo
- Publication number
- JP2566962B2 JP2566962B2 JP62145587A JP14558787A JP2566962B2 JP 2566962 B2 JP2566962 B2 JP 2566962B2 JP 62145587 A JP62145587 A JP 62145587A JP 14558787 A JP14558787 A JP 14558787A JP 2566962 B2 JP2566962 B2 JP 2566962B2
- Authority
- JP
- Japan
- Prior art keywords
- genus
- substituted
- acid ester
- hydroxybutyric acid
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 近年、種々なオキシ酸類の医・農薬合成中間体として
の有用性が認識されつつある。本発明は、これらオキシ
酸類のうち、カルニチン合成の中間体となるγ−置換−
β−ハイドロキシ酪酸エステルの効率的製造法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] In recent years, the usefulness of various oxyacids as synthetic intermediates for medical and agricultural chemicals has been recognized. Among these oxyacids, the present invention provides a γ-substituted-which is an intermediate of carnitine synthesis
The present invention relates to an efficient method for producing β-hydroxybutyric acid ester.
従来、γ−置換アセト酢酸エステル(以下、AAEと言
う)を還元酵素でγ−置換−β−ハイドロキシ酪酸エス
テル(以下、HBEと言う)に変換するには水性媒体単独
系が用いられて来た(特開昭59−118093号公報)。Conventionally, an aqueous medium alone system has been used to convert γ-substituted acetoacetic acid ester (hereinafter referred to as AAE) into γ-substituted-β-hydroxybutyric acid ester (hereinafter referred to as HBE) with a reductase. (JP-A-59-118093).
本発明者らは、水性媒体単独反応系での反応条件につ
き検討したが、HBEの蓄積濃度に限界があり、それ以上
収量を上げるには多量の酵素及び補酵素を要する上、か
えつて収率の低下をきたす等の問題があつた。The present inventors have investigated the reaction conditions in an aqueous medium single reaction system, but there is a limit to the concentration of HBE accumulated, and a large amount of enzyme and coenzyme is required to increase the yield more than that. There was a problem such as a decrease in
〔問題点を解決するための手段〕 本発明は、水性媒体中で、γ−置換アセト酢酸エステ
ルをγ−置換−β−ハイドロキシ酪酸エステルに還元す
る能力を有する還元酵素を用い、γ−置換アセト酢酸エ
ステルからγ−置換−β−ハイドロキシ酪酸エステルを
製造するに際し、水と二相を形成しうる有機溶媒を存在
させることを特徴とする該γ−置換−ハイドロキシ酪酸
エステルの製造法である。[Means for Solving Problems] The present invention uses a reductase having an ability to reduce a γ-substituted acetoacetic acid ester to a γ-substituted-β-hydroxybutyric acid ester in an aqueous medium, and uses a γ-substituted acetoacetate. When producing a γ-substituted-β-hydroxybutyric acid ester from an acetic acid ester, a method for producing the γ-substituted-hydroxybutyric acid ester is characterized in that an organic solvent capable of forming two phases with water is present.
本発明に使用される有機溶媒の最低条件としては、 (1) 基質AAE及び生成物HBEを溶解出来る (2) 水性媒体と二相を成しうる (3) 還元酵素に対する反応阻害性及び不活化作用が
低い ことが望ましい。具体的には、ギ酸エステル、酢酸エス
テル、プロピオン酸エステル、酪酸エステル等の有機酸
エステル類、n−ブチルアルコール、n−アミルアルコ
ール、n−オクチルアルコール等のアルキル基の炭素数
4以上のアルコール類、ベンゼン、トルエン、キシレン
等の芳香族系溶媒類、ジエチルエーテル、メチルエチル
エーテル、イソプロピルエーテル等のエーテル類、クロ
ロホルム、1,2−ジクロロエタン、四塩化炭素等のハロ
ゲン化炭化水素類などが挙げられる。反応系中における
これら有機溶媒類の水性媒体に対する使用比率は特に制
限されないが、実用上、重量基準で有機溶媒/水性媒体
=95/5〜10/90の範囲が好ましい。The minimum conditions for the organic solvent used in the present invention are (1) capable of dissolving the substrate AAE and product HBE (2) capable of forming two phases with an aqueous medium (3) inhibition of reductase reaction and inactivation A low effect is desirable. Specifically, organic acid esters such as formic acid ester, acetic acid ester, propionic acid ester, and butyric acid ester, and alcohols having 4 or more carbon atoms in the alkyl group such as n-butyl alcohol, n-amyl alcohol, and n-octyl alcohol. Aromatic solvents such as benzene, toluene and xylene, ethers such as diethyl ether, methyl ethyl ether and isopropyl ether, halogenated hydrocarbons such as chloroform, 1,2-dichloroethane and carbon tetrachloride. . The use ratio of these organic solvents to the aqueous medium in the reaction system is not particularly limited, but in practice, the organic solvent / aqueous medium = 95/5 to 10/90 is preferable on a weight basis.
次にこれら二相媒体中で還元反応に用いる酵素源とし
ては、AAEをHBEに変換する能力を有する酵素であつて、
微生物菌体、菌体処理物、菌体より抽出した粗酵素及び
精製酵素を使用できる。更に、これらを公知の方法で固
定化した固定化物等も効果的に使用できる。具体的に
は、キヤンデイダ属(Candida)、サツカロマイセス属
(Saccharomyces)、トルロプシス属(Torulopsis)、
トリコスポロン属(Trichosporon)、ピキア属(Pichi
a)、ハンゼヌラ属(Hansenula)、ジオトリコム属(Ge
otrichum)、エンドマイセス属(Endomyces)、デバリ
オマイセス属(Debaryomyces)、スポロボロマイセス属
(Sporobolomyces)等の酵母類、 オーレオバクテリウム(Aureobacterium)属 アルカリゲネス(Alcallgenes)属 アグロバクテリウム(Agrobacterium)属 アリスロバクター(Arthrobacter)属 アモルフオスポランギウム(Amorphosporangium)属 アムプラリエラ(Ampullariella)属 ブレビバクテリウム(Brevibacterium)属 バチルス(Bacillus)属 コリネバクテリウム(Corynebacterium)属 セルロモナス(Cellulomonas)属 エシエリキア(Escherichia)属 エンテロバクター(Enterobacter)属 フラボバクテリウム(Flavobacterium)属 ハフニア(Hafinia)属 クルチア(Kurthia)属 ラクトバチルス(Lactobacillus)属 ミクロコツカス(Micrococcus)属 メタノモナス(Methanomonas)属 メチロバシルス(Methylobacillus)属 ミクロビスポラ(Microbispora)属 ミクロモノスポラ(Micromonospora)属 ノカルジア(Nocardia)属 プロテウス(Proteus)属 シユードモナス(Pseudomonas)属 ペデオコツカス(Pediococcus)属 プラノモノスポラ(Planomonospora)属 プロトモナス(Protomonas)属 ロドコツカス(Rhodoccus)属 セラチア(Serratia)属 ストレプトマイセス(Streptomyces)属 サーモアクチノミセス(Thermoactinomyces)属 キサントモナス(Xanthomonas)属 エルシニア(Yersinia)属 に属するバクテリア類、さらにカビ類としてアスペルジ
ルス属(Aspergillus)、ムコール属(Mucor)、フザリ
ウム属(Fusarium)、リゾプス属(Rhizopus)、ペニシ
リウム属(Penicillium)、ノイロスポラ属(Neurospor
a)、プルラリア属(Pullularia)、ウスチラゴ属(Ust
ilago)、バーテイシリウム属(Verticillium)などが
あげられる。Next, the enzyme source used for the reduction reaction in these two-phase media is an enzyme having the ability to convert AAE to HBE,
A microbial cell, a treated product of the cell, a crude enzyme extracted from the cell, or a purified enzyme can be used. Furthermore, an immobilized product obtained by immobilizing these by a known method can also be effectively used. Specifically, the genus Candida, the genus Saccharomyces, the genus Torulopsis,
Trichosporon, Pichia
a), Hansenula, Geotricom (Ge
otrichum, Endomyces, Debaryomyces, Sporobolomyces, and other yeasts, Aureobacterium, Alcallgenes, Agrobacterium, Agrobacterium Arthrobacter spp. Amorphosporangium spp. Ampullariella spp. Brevibacterium spp. Bacillus spp. Corynebacterium spp. Corulobacterium spp. Cellulomonas spp. Escherichia spp. Genus (Enterobacter) Genus Flavobacterium (genus Hafinia) Genus Kurthia (genus Kurthia) (genus Lactobacillus) (genus Micrococcus) (genus Micrococcus) (genus Methanomonas) (genus Methylobaci) genus Microbispora genus Micromonospora genus Nocardia genus Proteus genus Pseudomonas genus Pediococcus genus Planomonospora genus Protomonas genus Protomonas ) Genus Serratia genus Streptomyces genus Thermoactinomyces genus Xanthomonas genus Yersinia genus bacteria, aspergillus genus (Aspergillus) genus (Mucor) ), Genus Fusarium, genus Rhizopus, genus Penicillium, and genus Neurospor
a), Pullularia, Ustilago (Ust)
ilago), Verticillium and the like.
これら酵素源には、AAEを不斉的に還元し、(R)−H
BE又は(S)−HBEを生成したり、また光学的に選択性
がなく(R)体/(S)体が混合したHBEを生成するも
のもある。しかし、本発明の方法によれば、これら酵素
源に限定されるものではなく、AAEをHBEに還元する反応
には、上記以外でも適用可能である。For these enzyme sources, AAE is asymmetrically reduced to (R) -H
Some produce BE or (S) -HBE, or have no optical selectivity and produce HBE in which the (R) form / (S) form is mixed. However, the method of the present invention is not limited to these enzyme sources, and can be applied to reactions other than those described above for the reaction of reducing AAE to HBE.
還元反応には、還元酵素以外に通常補酵素として還元
型ニコチンアミド・アデニンジヌクレオチド(NADH)又
はニコチンアミド・アデニンジヌクレオチドリン酸(NA
DPH)を必要とするので、反応系に添加するかNADH又はN
ADPHを生成する反応システムを還元反応系中に共存させ
る必要がある。例えば、グルコースデヒドロゲナーゼに
よるグルコースからのグルコン酸生成反応におけるNAD
又はNADPの各々NADH又はNADPHへの変換を利用するNADH
又はNADPH再生システム等を好適に利用できる。In the reduction reaction, in addition to reductase, reduced nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NA
DPH) is required, so add it to the reaction system or NADH or N
A reaction system that produces ADPH must coexist in the reduction reaction system. For example, NAD in the gluconic acid production reaction from glucose by glucose dehydrogenase
Or NADH using conversion of NADP to NADH or NADPH respectively
Alternatively, a NADPH regeneration system or the like can be preferably used.
使用するAAEの種類に関しては、γ−位置換基として
は、クロル、ブロム、フルオロ、アジド基などが、エス
テル基としては炭素数1〜10のアルキル基が望ましい。With respect to the type of AAE used, the γ-position substituent is preferably a chloro, bromo, fluoro, azido group or the like, and the ester group is preferably an alkyl group having 1 to 10 carbon atoms.
反応温度は5〜70℃、好ましくは20〜40℃、反応pHは
4〜10好ましくは6〜8に調整すれば本発明の効果は十
分に発揮される。かくして得られた反応液は二相が分離
する迄静置するか、遠心分離機等で分離し、HBEの大部
分を含有する有機層部分を集める。水層残存HBEは必要
に応じ同一又は他の抽出溶媒等で回収することもでき
る。HBEを含有する有機層を合わせ硫酸ナトリウム等の
脱水剤で脱水後、有機溶媒を減圧下で除去し、必要に応
じ更に減圧蒸留又はクロマト分離等の処理をすれば純度
の高いHBEが高収率で得られる。If the reaction temperature is adjusted to 5 to 70 ° C., preferably 20 to 40 ° C., and the reaction pH is adjusted to 4 to 10, preferably 6 to 8, the effects of the present invention will be sufficiently exhibited. The reaction solution thus obtained is allowed to stand until the two phases are separated or separated by a centrifuge or the like, and the organic layer part containing most of HBE is collected. The aqueous layer residual HBE can be recovered with the same or another extraction solvent or the like, if necessary. After the organic layers containing HBE are combined and dehydrated with a dehydrating agent such as sodium sulfate, the organic solvent is removed under reduced pressure, and if necessary, further distillation under reduced pressure or chromatographic separation is performed to obtain high-purity HBE in high yield. Can be obtained at.
以下、実施例で本発明を詳細に説明するが、本発明
は、これらに限定されるものではない。Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
実施例1 グルコース5重量%、コーン・ステイープ・リカー5
重量%から成る培地(pH6.0)5mlを試験管にとり、スポ
ロボロマイセス・サルモニカラー(Sporobolomyces Sal
monicolor)IFO1038を接種し、28℃で2日間培養した。
これと同一組成の培地100mlを500ml容フラスコに取り、
種培養5mlを接種し、28℃で4日間振とう培養を行なつ
た。遠心分離機により集菌し、0.01Mリン酸緩衝液(pH
7.0)で洗浄後、同一緩衝液で全容10mlに調整し、氷冷
下超音波波砕器により20KHzで5分間菌体を破砕したも
のを粗酵素液として反応に用いた。反応は粗酵素液10ml
に捕酵素としてNADPH300μモル、基質γ−クロルアセト
酢酸エチル300μモル及び酢酸エチル10ml添加し、pHを
8に調整後、30℃で撹拌下開始した。20時間後、有機層
と水層を分け、水層区分を酢酸エチル5mlで2回抽出し
た。酢酸エチル区分を合わせ、無水硫酸ナトリウムで脱
水後、減圧濃縮して油状物を得た。このものを減圧蒸留
して、IR(島津製作所製IR−435)、NMR(日本電子社製
PMX 60SI)、ガスクロマトグラフイー(島津製作所製GC
−9 APF、PEG 20M×1m、150℃、N2 30ml/分)で分析し
たところ、γ−クロル−β−ハイドロキシ酪酸エチルで
あることを確認した。Example 1 Glucose 5% by weight, corn staple liquor 5
Put 5 ml of a medium (pH 6.0) containing 1% by weight into a test tube and use Sporobolomyces Salmonicolor.
monicolor) IFO1038 was inoculated and cultured at 28 ° C for 2 days.
Take 100 ml of the same composition medium into a 500 ml flask,
A seed culture (5 ml) was inoculated and shake culture was carried out at 28 ° C. for 4 days. The cells were collected by a centrifuge, and 0.01M phosphate buffer solution (pH
After washing with 7.0), the total volume was adjusted to 10 ml with the same buffer solution, and the cells were disrupted for 5 minutes at 20 KHz with an ultrasonic wave disruptor under ice cooling, and used as a crude enzyme solution in the reaction. Reaction is 10 ml of crude enzyme solution
As a trapping enzyme, 300 μmol of NADPH, 300 μmol of the substrate γ-chloroacetoacetate and 10 ml of ethyl acetate were added to the above, the pH was adjusted to 8, and the mixture was started at 30 ° C. with stirring. After 20 hours, the organic layer and the aqueous layer were separated, and the aqueous layer section was extracted twice with 5 ml of ethyl acetate. The ethyl acetate fractions were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give an oil. This product was distilled under reduced pressure to obtain IR (IR-435 made by Shimadzu Corporation) and NMR (made by JEOL Ltd.).
PMX 60SI), gas chromatograph (Shimadzu GC
-9 APF, PEG 20M × 1 m, 150 ° C., N 2 30 ml / min), it was confirmed to be ethyl γ-chloro-β-hydroxybutyrate.
NMR(CDCl3)δ(ppm): 1.25(3H,tr) 4.20(3H,q ) 3.6 (2H,d ) 3.2 (1H,br) 2.6 (2H,d ) 比較のために、酢酸エチルを添加せず、水性媒体単独
系で同一条件下反応させた結果も合せて第1表に示し
た。NMR (CDCl 3 ) δ (ppm): 1.25 (3H, tr) 4.20 (3H, q) 3.6 (2H, d) 3.2 (1H, br) 2.6 (2H, d) Add ethyl acetate for comparison. Table 1 also shows the results of the reaction under the same conditions in the aqueous medium alone.
実施例2 第2表の各種有機溶媒を添加して反応した以外は実施
例1と同様に行なつた。収率は第2表のとおりであつ
た。 Example 2 The procedure of Example 1 was repeated, except that various organic solvents shown in Table 2 were added and reacted. The yield was as shown in Table 2.
実施例3 第3表の菌株を用いた以外は実施例1と同様に行なつ
た。結果を第3表に示す。 Example 3 The procedure of Example 1 was repeated except that the strains shown in Table 3 were used. The results are shown in Table 3.
光学純度の測定は次によつた。 The optical purity was measured as follows.
生成γ−クロル−β−ハイドロキシ酪酸エチルと
(+)−α−メトキシ−α−トリフルオロメチルフエニ
ル酢酸とのエステルを合成し、ジアステレオマー化合物
とした後、HPLC分析し、光学純度を算出した。The resulting ester of ethyl γ-chloro-β-hydroxybutyrate and (+)-α-methoxy-α-trifluoromethylphenylacetic acid was synthesized to form a diastereomer compound, which was then analyzed by HPLC to calculate the optical purity. did.
HPLC分析条件 カラム:パーテイジル(Partisil 5(φ4.6×250mm、ワ
ツトマン社製) 移動相:ヘキサン:テトラハイドロフラン:メタノール
=600:100:1(重量基準) 速 度:2.0ml/分 検 出:217nmでの吸光度 いずれも高い光学純度を有する(S)−体であつた。HPLC analysis conditions Column: Partisil 5 (φ4.6 x 250 mm, manufactured by Wattmann) Mobile phase: Hexane: Tetrahydrofuran: Methanol = 600: 100: 1 (weight basis) Speed: 2.0 ml / min Detection: The absorbance at 217 nm was a (S) -form having a high optical purity.
実施例4 第4表の菌株を用いた以外は実施例1と同様に行なつ
た。結果を第4表に示す。Example 4 It carried out like Example 1 except having used the strain of Table 4. The results are shown in Table 4.
生成したγ−クロル−β−ハイドロキシ酪酸エチルの
光学活性分析は実施例3記載のHPLC法によつた。その結
果(R)体と(S)体の混合物であることが解つた。 The optical activity analysis of the produced ethyl γ-chloro-β-hydroxybutyrate was carried out by the HPLC method described in Example 3. As a result, it was found to be a mixture of the (R) form and the (S) form.
実施例5 第5表の基質を用いた以外は実施例1と同様に行なつ
た。結果を第5表に示す。Example 5 The procedure of Example 1 was repeated except that the substrates shown in Table 5 were used. The results are shown in Table 5.
実施例6 グルコース5重量%、コーン・ステイープ・リカー5
重量%から成る培地(pH6.0)5mlを試験管に取り、スポ
ロボロマイセス・サルモニカラーIFO1038を接種して28
℃で2日間振とう培養を行ない種培養を得た。上記と同
一組成の培地500mを2l容フラスコ10本に取り、種培養
5mlを添加して28℃で4日間振とう培養を行なつた。 Example 6 Glucose 5% by weight, corn staple liquor 5
Take 5 ml of a medium (pH 6.0) consisting of weight% in a test tube and inoculate it with Sporoboromyces salmonicolor IFO1038.
Seed culture was obtained by shaking culture at 2 ° C for 2 days. Seed culture is performed by taking 500 m of the same composition as above into 10 2 l flasks.
5 ml was added and shake culture was carried out at 28 ° C. for 4 days.
次に、5の培養液から遠心分離(28000G,20分間)
で回収した培養菌体を0.01Mリン酸緩衝液(pH7.4)で洗
浄後、ダイノミル(シンマルエンタープライズ社製、ビ
ーズ0.25〜0.5mmφ)で20分間処理を行ない、28000Gで2
0分間遠心分離してケン濁物質を除き、粗酵素液を得
た。このものに硫酸アンモニウムを加えて60〜80飽和%
の画分を遠心分離(28000G×30分)により回収し、0.01
Mリン酸緩衝液(pH7.0)で20時間透析した。次にDEAE−
セフアセル(フアーマシア社製)カラムクロマトグラフ
イ(1.6φ×30cm)に吸着させ、上記緩衝液で洗浄後、
塩化ナトリウム0〜0.6Mを含む同緩衝液による直線グラ
ジエント溶出を行なつた。活性を示した画分を集め、限
外ろ過機(アミコン社、YM10)で濃縮し、グルろ過カラ
ムクロマト(セフアデツクス、G−100、2.0×90cm)に
供給し、0.1MのNaClを含む上記緩衝液でクロマトグラフ
を行ない活性を示した画分を集めた。上記同様の方法で
ゲルろ過クロマトグラフイを行ない精製酵素液を調製し
た。このものは電気泳動的に単一バンドを示した。かく
して得られた精製酵素を使用し、第6表の条件下で反応
した。結果を比較例と共に示す。Next, centrifuge from culture solution of 5 (28000G, 20 minutes)
After washing the cultured cells recovered in step 1 above with 0.01 M phosphate buffer (pH 7.4), treat them with Dynomill (Shinmaru Enterprises Co., Ltd., beads 0.25-0.5 mmφ) for 20 minutes, and use 28,000 G for 2 minutes.
The crude enzyme solution was obtained by centrifuging for 0 minutes to remove suspended solids. Add ammonium sulphate to this to get 60-80% saturation
Was collected by centrifugation (28000G x 30 minutes),
It was dialyzed for 20 hours against M phosphate buffer (pH 7.0). Next is DEAE-
After being adsorbed on Sephacel (manufactured by Pharmacia) column chromatography (1.6φ × 30 cm) and washed with the above buffer solution,
A linear gradient elution was performed with the same buffer containing 0 to 0.6 M sodium chloride. Fractions showing activity were collected, concentrated with an ultrafilter (Amicon, YM10), supplied to a glu-filtration column chromatograph (Sephadex, G-100, 2.0 × 90 cm), and containing the above buffer containing 0.1 M NaCl. The liquid was chromatographed and the fractions showing activity were collected. Gel filtration chromatography was performed in the same manner as above to prepare a purified enzyme solution. This product electrophoretically showed a single band. The purified enzyme thus obtained was used and reacted under the conditions shown in Table 6. The results are shown together with comparative examples.
生成物を含有する酢酸エチルを無水硫酸ナトリウムで
脱水後、減圧除去し、得られた無色液体を実施例1と同
様に分析したところ、純度98%のγ−クロル−β−ハイ
ドロキシ酪酸エチルであつた。また、このものを実施例
3の方法で測定した光学純度は97%eeの(R)−体であ
つた。 The ethyl acetate containing the product was dehydrated with anhydrous sodium sulfate and then removed under reduced pressure. The colorless liquid obtained was analyzed in the same manner as in Example 1 to find that it was ethyl γ-chloro-β-hydroxybutyrate having a purity of 98%. It was The optical purity of this product measured by the method of Example 3 was 97% ee (R) -form.
本発明の方法によれば、従来の水性媒体単独系ではな
しえなかつた高収率、高純度かつ高濃度のHBEを得るこ
とができる。According to the method of the present invention, it is possible to obtain a high-yield, high-purity and high-concentration HBE which cannot be obtained by a conventional aqueous medium alone system.
Claims (2)
ルをγ−置換−β−ハイドロキシ酪酸エステルに還元す
る能力を有する還元酵素を用い、γ−置換アセト酢酸エ
ステルからγ−置換−β−ハイドロキシ酪酸エステルを
製造するに際し、水と二相を形成しうる有機溶媒を存在
させることを特徴とする該γ−置換−β−ハイドロキシ
酪酸エステルの製造法。1. A reductase having the ability to reduce a γ-substituted acetoacetic ester to a γ-substituted-β-hydroxybutyric acid ester in an aqueous medium is used to convert the γ-substituted acetoacetic ester to γ-substituted-β-. A method for producing the γ-substituted-β-hydroxybutyric acid ester, characterized in that an organic solvent capable of forming two phases with water is present in the production of the hydroxybutyric acid ester.
類、アルコール類、芳香族類、エーテル類又はハロゲン
化炭化水素類である特許請求の範囲第(1)項記載の製
造法。2. The method according to claim 1, wherein the organic solvent capable of forming a two-phase with water is an ester, an alcohol, an aromatic, an ether or a halogenated hydrocarbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62145587A JP2566962B2 (en) | 1987-06-11 | 1987-06-11 | Method for producing γ-substituted-β-hydroxybutyric acid ester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62145587A JP2566962B2 (en) | 1987-06-11 | 1987-06-11 | Method for producing γ-substituted-β-hydroxybutyric acid ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63309195A JPS63309195A (en) | 1988-12-16 |
JP2566962B2 true JP2566962B2 (en) | 1996-12-25 |
Family
ID=15388535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62145587A Expired - Fee Related JP2566962B2 (en) | 1987-06-11 | 1987-06-11 | Method for producing γ-substituted-β-hydroxybutyric acid ester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2566962B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6884607B2 (en) | 2000-12-07 | 2005-04-26 | Sumitomo Chemical Company, Limited | Process for producing optically active 4-halo-3-hydroxybutanoate |
US7135318B2 (en) | 2002-07-02 | 2006-11-14 | Sumitomo Chemical Company, Limited | Modified reductase and its gene |
US7163814B2 (en) | 2002-07-03 | 2007-01-16 | Sumitomo Chemical Company, Limited | Modified reductase and its gene, and use thereof |
CN1948499B (en) * | 2006-05-26 | 2010-12-08 | 江南大学 | Method of preparing (R) 4,4,4-trifluoro 3-hydroxy ethyl butyrate by biocatalytic reaction |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3155107B2 (en) * | 1993-01-12 | 2001-04-09 | ダイセル化学工業株式会社 | Method for producing optically active 4-halo-3-hydroxybutyrate |
JPH08336393A (en) * | 1995-04-13 | 1996-12-24 | Mitsubishi Chem Corp | Production of optically active gamma-substituted-beta-hydroxybutyric ester |
US7879585B2 (en) | 2006-10-02 | 2011-02-01 | Codexis, Inc. | Ketoreductase enzymes and uses thereof |
-
1987
- 1987-06-11 JP JP62145587A patent/JP2566962B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6884607B2 (en) | 2000-12-07 | 2005-04-26 | Sumitomo Chemical Company, Limited | Process for producing optically active 4-halo-3-hydroxybutanoate |
US7135318B2 (en) | 2002-07-02 | 2006-11-14 | Sumitomo Chemical Company, Limited | Modified reductase and its gene |
US7163814B2 (en) | 2002-07-03 | 2007-01-16 | Sumitomo Chemical Company, Limited | Modified reductase and its gene, and use thereof |
CN1948499B (en) * | 2006-05-26 | 2010-12-08 | 江南大学 | Method of preparing (R) 4,4,4-trifluoro 3-hydroxy ethyl butyrate by biocatalytic reaction |
Also Published As
Publication number | Publication date |
---|---|
JPS63309195A (en) | 1988-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007143561A (en) | Application of acylate | |
JP2566962B2 (en) | Method for producing γ-substituted-β-hydroxybutyric acid ester | |
EP0149674B1 (en) | Process for biochemical optical resulution of cyclopentenolone derivative | |
JP3476860B2 (en) | Preparation of 3-hydroxy-5-oxo, 3-oxo-5-hydroxy and 3,5-dihydroxyesters by stereoselective microbial or enzymatic reduction of 3,5-dioxoesters | |
US5215919A (en) | Process for producing optically active 2-hydroxycycloalkanecarboxylic acid esters using microbially derived reductase | |
EP0127386B1 (en) | Process for producing optically active cyclopentenolones | |
US5457052A (en) | Process for the preparation of optically active 3-chloro-1-phenyl-propanol by a lipase catalyzed hydrolysis | |
US5037747A (en) | Production of benzopyran-2-carboxylic acids and esters by enzymatic hydrolysis | |
US4985365A (en) | Process for producing optically active benzyl alcohol compound | |
EP0784697B1 (en) | Bacterial process for the resolution of racemic cis-diols | |
JP2566960B2 (en) | Method for producing (R) -r-substituted-β-hydroxybutyric acid ester | |
EP0148272B1 (en) | Process for producing optically active benzyl alcohol compounds | |
EP1298119A1 (en) | Chlorohydroxyacetone derivative and process for producing optically active chloropropanediol derivative from the same | |
JP3024299B2 (en) | Optically active cyclopentene alcohols, production method thereof and use thereof | |
US5232853A (en) | Method for producing (2r,3s)-3-hydroxy-2-methylbutyrate by microbial reduction | |
JP2784578B2 (en) | Method for producing optically active 1,2-diols | |
JP4536484B2 (en) | Process for producing optically active 2-hydroxy-5- (4-methoxyphenyl) -pentanoic acid ester | |
JP2756790B2 (en) | Method for producing optically active cyclopentenol derivative | |
JPH0532035B2 (en) | ||
JP2971667B2 (en) | Process for producing optically active α- or β-hydroxycarboxylic acid esters or hydroxyacetals | |
JPH0451159B2 (en) | ||
JP3893721B2 (en) | Method for producing optically active compound | |
JPS62151196A (en) | Biochemical separation of l-propranolol | |
JP2981250B2 (en) | Method for producing D-pantothenonitrile | |
JP4898129B2 (en) | Process for producing optically active vinyl alcohols |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |