[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2566230B2 - Fluid processing method and processing apparatus - Google Patents

Fluid processing method and processing apparatus

Info

Publication number
JP2566230B2
JP2566230B2 JP61505434A JP50543486A JP2566230B2 JP 2566230 B2 JP2566230 B2 JP 2566230B2 JP 61505434 A JP61505434 A JP 61505434A JP 50543486 A JP50543486 A JP 50543486A JP 2566230 B2 JP2566230 B2 JP 2566230B2
Authority
JP
Japan
Prior art keywords
fluid
copper
zinc
fluid treatment
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61505434A
Other languages
Japanese (ja)
Other versions
JPS63501276A (en
Inventor
ヘスケット,ドン・イー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS63501276A publication Critical patent/JPS63501276A/en
Application granted granted Critical
Publication of JP2566230B2 publication Critical patent/JP2566230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • C02F2303/185The treatment agent being halogen or a halogenated compound

Landscapes

  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Physical Water Treatments (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

A fluid treating apparatus (10) and method for treating fluid to remove undesirable constituents contained therein. The apparatus (10) and method include employing a bed of metal particulate matter (18). The metal particulate matter (18) is preferably chosen from metal having: favorable redox potentials relative to the redox potentials of the undesirable constituents so as to establish conditions for spontaneous oxidation and reduction reactions between the undesirable constituents and the metal particles (18) and/or having bacteriostatic or bactericidal properties in the case where the undesirable constituent sought to be treated is a bacteria.

Description

【発明の詳細な説明】 発明の背景および説明 本出願は1984年4月30日出願の米国特許第605,652号
の継続出願である。
DETAILED DESCRIPTION OF THE INVENTION Background and Description of the Invention This application is a continuation application of US Patent No. 605,652, filed April 30, 1984.

本発明は一般に流体の処理法、より詳細には改良され
た流体処理を行うのに適した装置および方法に関する。
工業用および家庭用の上水道は望ましくない成分をしば
しば含有し、使用前にこれらを処理する必要がある。本
発明は多様に利用できるが、水を処理してそこに含有さ
れる望ましくない成分、たとえば溶存塩素および細菌成
分を除去し、または増殖を抑制する際に利用できること
が認められた。
The present invention relates generally to methods of treating fluids, and more particularly to devices and methods suitable for performing improved fluid treatments.
Industrial and domestic water supplies often contain undesirable components, which require treatment before use. Although the present invention is versatile, it has been recognized that it can be used in treating water to remove unwanted components contained therein, such as dissolved chlorine and bacterial components, or to inhibit growth.

これに関連して、工業およびユーティリティの各過程
ではしばしば大量の冷却用水を必要とする。多くの水冷
操作は一次熱調整のために熱交換を利用し、その結果装
置を通過する冷却用水の温度が上昇する。この温度上昇
は水中に存在する生物の増殖を促進し、その結果たとえ
ばそのシステムが目詰りすることにより、または生物学
的スライム層が熱交換面上に蓄積してそれらの効率を大
幅に低下させることにより、装置が機能を失う。
In this context, industrial and utility processes often require large amounts of cooling water. Many water cooling operations utilize heat exchange for primary heat conditioning, resulting in an increase in the temperature of the cooling water passing through the device. This increase in temperature promotes the growth of organisms present in the water, resulting in a clogging of the system, for example, or a biological slime layer accumulating on the heat exchange surface, significantly reducing their efficiency. This causes the device to lose functionality.

冷却水系においても飲料水系においても塩素処理が細
菌制御のために最も一般的な手段である。次亜塩素酸の
殺生物性は細菌を死滅させるのに有効であるが、次亜塩
素酸自体は用いられる他の装置または処理システムに対
して有害となる可能性がある。さらに飲料水中の過剰の
塩素はしばしば水に望ましくない味および臭気を与え、
流出水が環境に対し有害となる可能性がある。これにつ
いてEPAは流出水の残留塩素に関する制限を設け、EPAの
指針に従うため過剰塩素処理により生じる過剰の残留塩
素を除去する脱塩素処理をしばしば採用しなければなら
ない。
Chlorination is the most common means of controlling bacteria in both cooling and drinking water systems. Although the biocidal properties of hypochlorous acid are effective in killing bacteria, hypochlorous acid itself can be detrimental to other equipment or processing systems used. In addition, excess chlorine in drinking water often imparts an undesirable taste and odor to water,
Runoff can be harmful to the environment. In this regard, EPAs have set limits on residual chlorine in effluents and must often employ dechlorination to remove excess residual chlorine produced by excess chlorination to comply with EPA guidelines.

流体処理の分野、特に商業用、工業用および家庭用の
水の処理の分野で、多数のシステムが提案されている
が、それらの一部または全部には何らかの望ましくない
特性、欠点または不利が伴う。
Numerous systems have been proposed in the field of fluid treatment, especially in the field of commercial, industrial and domestic water treatment, some or all of which carry some undesirable characteristics, drawbacks or disadvantages. .

たとえばイオン交換システムは水を軟化し、水から特
定の不純物を選択的に除去するために慣用されている。
イオン交換装置の有効媒体は、望ましくない成分を流体
から除去し、これらの望ましくない成分を望ましくない
程度がより低い成分と置換すべくデザインされたイオン
交換樹脂である。たとえば硬度を生じるカルシウムおよ
びマグネシウムなどの元素を除去するために用いられる
陽イオン交換樹脂は、イオン交換体を通過した水に含有
されるナトリウム(カルシウムおよびマグネシウムと交
換されたもの)は同時にあきらめるべくデザインされる
であろう。用いられる個々のイオン交換樹脂と関係なく
最終的に樹脂床は消耗し、そのユニットは操作から取り
はずされ、再生されて再び有効なものにされなければな
らない。化学的消耗のほかに、鉄細菌が速やかにイオン
交換樹脂槽に充満し、薬品供給ノズルその他のオリフィ
スを目詰りさせる可能性がある。この樹脂はたとえば細
菌処理過程により存在する過剰の塩素による化学的分解
も受けやすい。従ってイオン交換体ユニットは持続的な
受容できる性能を保証するためには注意深く保守および
監視されなければならない。
For example, ion exchange systems are commonly used to soften water and selectively remove certain impurities from water.
The effective medium of an ion exchange device is an ion exchange resin designed to remove unwanted constituents from the fluid and replace these undesirable constituents with less undesirable constituents. For example, a cation exchange resin used to remove elements such as calcium and magnesium that cause hardness is designed to give up the sodium (exchanged with calcium and magnesium) contained in the water that has passed through the ion exchanger at the same time. Will be done. Regardless of the particular ion exchange resin used, the resin bed will eventually be exhausted and the unit must be taken out of operation and regenerated to make it effective again. In addition to chemical depletion, iron bacteria can quickly fill the ion exchange resin tank and clog the chemical supply nozzle and other orifices. This resin is also susceptible to chemical degradation by the excess chlorine present, for example, during the bacterial treatment process. Therefore, the ion exchanger unit must be carefully maintained and monitored to ensure sustained acceptable performance.

他の一般的な型の水処理法は逆浸透法である。この場
合、流体の浸透圧を越える圧力を用いて、未処理の水を
普通は周囲温度において、選択的膜に浸透法で普通に見
られるものと反対の方向に強制的に送る。選択的膜は水
を透過させるが溶存する望ましくない成分は排除すべく
デザインされている。この方法の成功は大部分は適切な
膜の開発に依存している。逆浸透法に用いられる膜は一
般に種々の温度、化学薬品および圧力に対する安定性の
問題、ならびに速度および容量の制限などを受ける。細
菌が熱交換器を汚染する可能性があるのと全く同様に、
これは逆浸透膜上に汚染フィルムを生じる可能性があ
る。上水道が抗菌剤としての塩素で処理されている場
合、溶存塩素は細菌と戦う際にはきわめて有効である
が、逆浸透膜に対してはしばしば有害な作用をもつ。さ
らに、逆浸透装置も慎重に組立てられ、保守され、かつ
監視されなければならない。従って用いる技術が複雑で
あるにもかかわらず、最終使用者がそのシステムを保守
しかつそのシステムが設計明細書に従って機能している
のを確認するために必要なサンプリングを行うことがで
きなかった場合、処理に際して故障が起こる可能性があ
る。
Another common type of water treatment method is the reverse osmosis method. In this case, pressures above the osmotic pressure of the fluid are used to force the untreated water, usually at ambient temperature, into the selective membrane in a direction opposite that normally found in osmosis. Selective membranes are designed to be permeable to water but eliminate dissolved undesirable constituents. The success of this method largely depends on the development of suitable membranes. Membranes used in reverse osmosis generally suffer from stability problems with various temperatures, chemicals and pressures, as well as rate and capacity limitations. Just as bacteria can contaminate heat exchangers,
This can result in a contaminated film on the reverse osmosis membrane. When the water supply is treated with chlorine as an antibacterial agent, dissolved chlorine is highly effective in combating bacteria but often has a detrimental effect on reverse osmosis membranes. Furthermore, reverse osmosis devices must also be carefully assembled, maintained and monitored. Therefore, despite the complexity of the technology used, the end user is unable to maintain the system and perform the necessary sampling to ensure that the system is functioning according to the design specifications. , A failure may occur during processing.

さらに他の一般的な水処理法は活性炭の使用である。
これは味および臭気の制御のため、ならびに吸着により
水から有機汚染物質を除去するために広く用いらてい
る。活性炭はガス、蒸気、およびコロイド状固体に対し
て高い吸着性をもつことを特色とするからである。しか
しイオン交換装置における樹脂と同様に、炭素の吸着容
量は最終的には消耗するので、炭素を再生または交換し
なければならない。従って活性炭を採用したシステムも
媒体の有効性を判定するために注意深く監視する必要が
ある。完成炭の他の欠点は、これが有害な細菌を含む微
生物を集め、この種の有害な細菌が増殖しうる培地を提
供することである。その結果、水を精製する予定の活性
炭が有害な細菌によって水を汚染させることとなる可能
性がある。この欠点を克服する試みにおいて製造業者は
活性炭に銀を含浸させることにより静菌活性をもつ炭素
を得ることを試みた。しかしこの種の試みは完全に満足
できるものではなかった。銀の有効静菌濃度を達成し、
かつ溶存銀含量に関して確立されたEPA指針の範囲内に
維持するのは困難だからである。銀はその使用に伴う他
の欠点ももつ。すなわち銀の原価自体が経済的な水処理
に対する妨害となる可能性がある。
Yet another common water treatment method is the use of activated carbon.
It is widely used for taste and odor control and for removing organic pollutants from water by adsorption. This is because activated carbon is characterized by having a high adsorptivity for gases, vapors, and colloidal solids. However, like the resin in an ion exchange device, the adsorption capacity of carbon will eventually be exhausted and the carbon must be regenerated or replaced. Therefore, systems employing activated carbon also need to be carefully monitored to determine media effectiveness. Another drawback of finished coal is that it collects microorganisms, including harmful bacteria, and provides a medium in which this kind of harmful bacteria can grow. As a result, the activated carbon that will purify the water can contaminate the water with harmful bacteria. In an attempt to overcome this drawback, manufacturers have attempted to obtain bacteriostatically active carbon by impregnating activated carbon with silver. But this kind of attempt was not entirely satisfactory. Achieves an effective bacteriostatic concentration of silver,
And it is difficult to stay within established EPA guidelines for dissolved silver content. Silver also has other drawbacks associated with its use. That is, the cost of silver itself can be an obstacle to economical water treatment.

本発明は、金属粒状物を用いる流体処理装置および方
法を提供することにより先行技術の望ましくない特性、
欠点、および不利を克服するものであり、この物質は処
理したい望ましくない成分の酸化還元電位に対比して、
該金属と望ましくない成分との自発的酸化還元反応の方
を好む酸化還元電位をもち、および/または処理したい
望ましくない成分が細菌である場合には静菌性または殺
菌性をもつ。金属粒状物は種々のメッシュサイズ(好ま
しくは米国標準スクリーンサイズに基づき4〜400メッ
シュ)の、希望するいかなる形状のものであってもよ
く、一般に粒状物の逃酸は阻止するが、同時に流体がこ
れを貫流するのは許容する手段によって処理槽内に制限
されたゆるい充填床内に配置されている。あるいはこれ
らの粒子を接着して、表面領域が自由に露出した状態の
凝集多孔体となる方法も採用できる。この種の凝集多孔
体を形成するのに適した方法には、焼結法、および結合
剤を用いて粒子の表面領域がすべて(または実質的にす
べて)これにより処理すべき流体との接触のために自由
に露出させる方法が含まれる。本発明の重要な実施態様
は金属粒状物(たとえば亜鉛および銅、ならびにそれら
の混合物および合金)を用いて望ましくない汚染物質
(たとえば塩素および細菌)を除去する氷処理装置およ
び水処理法を目的とする。これに関連して本発明の重要
な観点は、この方法がこの種の望ましくない汚染物質を
経済的にかつ長期間にわたって除去することができ、こ
れにより大部分の処理システムにおける弱点、すなわち
比較的頻繁なシステムの保守および監視が大幅に除かれ
るという知見を伴う。
The present invention provides a fluid treatment system and method that utilizes metal particulates to provide the undesirable characteristics of the prior art,
Overcoming the disadvantages and disadvantages, this material compares with the redox potential of the unwanted components to be treated,
It has a redox potential that favors the spontaneous redox reaction of the metal with unwanted components and / or is bacteriostatic or bactericidal if the unwanted component to be treated is a bacterium. The metal particulates can be of any desired shape, with various mesh sizes (preferably 4-400 mesh based on US standard screen sizes), which generally prevent particulates from escaping acid but at the same time the fluid is Flowing through it is arranged in a loose packed bed which is confined within the treatment vessel by means of permitting. Alternatively, a method in which these particles are adhered to each other to form an aggregated porous body in which the surface region is freely exposed can be adopted. Suitable methods for forming this type of agglomerated porosity include sintering methods, and the use of binders to cover all (or substantially all) surface area of the particles thereby contacting the fluid to be treated. A free exposure method is included for this purpose. An important embodiment of the present invention is directed to ice treatment equipment and water treatment processes that employ metal particulates (eg, zinc and copper, and mixtures and alloys thereof) to remove unwanted contaminants (eg, chlorine and bacteria). To do. An important aspect of the present invention in this connection is that the method is able to remove undesired pollutants of this kind economically and over a long period of time, which leads to weaknesses in most treatment systems, namely relatively With the finding that frequent system maintenance and monitoring are largely eliminated.

本発明の他の特色は、この種の金属粒状物床を他の流
体処理装置、たとえば活性炭、逆浸透またはイオン交換
処理と併用する方法を伴う。これに関連して本発明の重
要な観点は、他の処理法たとえば活性炭、逆浸透および
イオン交換などの方法の操作および寿命に有害となる可
能性のある望ましくない元素および化合物、たとえば塩
素および細菌の除去を伴う。
Another feature of the invention involves the use of a bed of metal particulates of this type in combination with other fluid treatment equipment such as activated carbon, reverse osmosis or ion exchange treatments. In this context, an important aspect of the present invention is that undesired elements and compounds that can be detrimental to the operation and life of other processes such as activated carbon, reverse osmosis and ion exchange, such as chlorine and bacteria. With the removal of.

本発明の他の特色は、この種の金属粒状物床を他の型
の流体処理装置、たとえば活性炭、イオン交換、または
逆浸透と併用した装置および方法を提供することを伴
う。これに関連して本発明の重要な観点は、この種の媒
体上における細菌の増殖の遅延および/またはこの種の
媒体上に存在する可能性のある細菌の破壊を伴う。
Another feature of the present invention involves providing an apparatus and method of using a bed of metal particulates of this type with other types of fluid treatment equipment, such as activated carbon, ion exchange, or reverse osmosis. An important aspect of the invention in this connection involves the delay of the growth of bacteria on this kind of medium and / or the destruction of the bacteria which may be present on this kind of medium.

本発明の他の特色は流体のpHを調整したのちこれを上
記の金属粒状物床に導通することを伴う。これに関連し
て本発明の重要な観点は、pH依存性の酸化還元活性をも
つ汚染物質の除去を高めるために、処理前に流体のpHを
調整することを伴う。
Another feature of the invention involves adjusting the pH of the fluid and then passing it through the bed of metal particulates described above. An important aspect of the invention in this context involves adjusting the pH of the fluid prior to treatment to enhance the removal of contaminants with pH-dependent redox activity.

本発明の他の特色は、この種の金属粒状物床を含む2
個の容器をこれらの間に挿入されたpHフィーダーと共に
順次配列された状態で併用することを伴う。この流体処
理法により、利用者は第1容器の入口における供給流体
のpHを利用して当初の供給流体のpHにおける処理に対し
てより反応しやすい汚染物質を処理し、次いで他のpHに
おいてより効果的に処理されると思われる汚染物質を処
理するためにpHを調整したのち流体を再び第2容器内で
処理することができる。
Another feature of the invention includes a bed of metal granules of this type.
This involves using the individual containers in sequence with the pH feeder inserted between them. This fluid treatment method allows the user to utilize the pH of the feed fluid at the inlet of the first container to treat contaminants that are more responsive to treatment at the original feed fluid pH, and then at other pHs. The fluid can be treated again in the second vessel after the pH has been adjusted to treat contaminants that would be effectively treated.

従って本発明の重要な目的は、改良された流体処理装
置および方法を提供することである。
Accordingly, an important object of the present invention is to provide an improved fluid treatment device and method.

本発明の他の目的は、経済的に使用でき、比較的長い
寿命をもつため頻繁な保守および監視が避けられ、また
処理媒体を再生する必要性が除かれ、従って他の一般的
処理法、たとえば逆浸透法およびイオン交換法などに固
有の濃縮された汚染物質を廃棄する必要性が除かれる流
体処理装置および方法を提供することである。
Another object of the present invention is that it is economical to use, has a relatively long life, avoids frequent maintenance and monitoring, and eliminates the need to reclaim the processing medium, and thus other common processing methods, It is an object of the present invention to provide a fluid treatment device and method that obviates the need to dispose of concentrated pollutants inherent in reverse osmosis and ion exchange, for example.

本発明の他の目的は、水などの流体中に存在する望ま
しくない成分、たとえば塩素および細菌を、この種の成
分が処理媒体中に濃縮されることなく処理するための新
規な方法を提供することである。
Another object of the present invention is to provide a novel method for treating unwanted constituents present in fluids such as water, eg chlorine and bacteria, without such constituents being concentrated in the treatment medium. That is.

本発明の他の目的は、処理したい望ましくない成分の
酸化還元電位に対比して流体が金属粒子と接触した際に
金属粒状物と望ましくない成分との間で自発的な酸化還
元反応が起こる条件を確立することを特色とする金属粒
状物床に、望ましくない成分を含有する原料流体を導通
することによる流体処理を含む流体処理法を提供するこ
とである。
Another object of the present invention is the conditions under which a spontaneous redox reaction occurs between the metal particulates and the undesired components when the fluid contacts the metal particles relative to the redox potential of the undesired components to be treated. Is to provide a fluid treatment process that includes fluid treatment by passing a feed fluid containing undesired constituents to a bed of metal granules.

本発明の他の目的は、流体をまず金属粒状物床に導通
して存在する望ましくない成分、たとえば逆浸透圧法ま
たはイオン交換法など一般的に流体処理法に有害な塩素
などを処理し、次いでこの流体をこの種の一般的な処理
過程に導通する、改良された流体処理法を提供すること
である。
Another object of the invention is to first treat the fluid with undesired components present in conduction through the bed of metal granules, such as chlorine, which is generally detrimental to fluid treatment processes such as reverse osmosis or ion exchange. It is an object of the present invention to provide an improved fluid treatment method which brings this fluid into a general treatment process of this kind.

本発明の他の目的は、流体をまず一般的な流体処理過
程、たとえば活性炭処理過程に導通し、次いでこの流体
を金属粒状物床に導通して望ましくない成分、たとえば
有害細菌を処理するための装置および改良法を提供する
ことである。
Another object of the present invention is to first pass the fluid through a conventional fluid treatment process, such as an activated carbon treatment process, and then pass the fluid through a bed of metal particles to treat unwanted components such as harmful bacteria. An apparatus and an improved method.

本発明の他の目的は、金属粒状物および一般的な処理
媒体、たとえば活性炭、イオン交換樹脂もしくは逆浸透
膜の双方を含む床に流体を導通して、望ましくない成分
を処理するための装置および改良法を提供することであ
る。
Another object of the present invention is an apparatus and apparatus for treating undesired components by passing a fluid through a bed containing both metal particulates and common treatment media such as activated carbon, ion exchange resins or reverse osmosis membranes. It is to provide an improved method.

本発明のこれらの目的ならびに他の目的および利点
は、金属粒状物床を含む流体処理装置、ならびに望まし
くない元素および化合物を含有する流体をこの種の金属
粒状物床に導通することを含む流体処理法を提供するこ
とにより達成される。粒状物は好ましくは亜鉛および銅
などの金属ならびにそれらの混合物および合金から選ば
れ、処理したい望ましくない成分(たとえば塩素)に対
比して、流体が金属粒子と接触した際に金属粒状物と望
ましくない性分との間で自発的な酸化および還元反応が
起こる条件を確立するために好ましい酸化還元電位をも
ち、ならびに/あるいは処理したい望ましくない成分が
細菌である場合には静菌性または殺菌性をもつ。
These and other objects and advantages of the present invention include a fluid treatment apparatus that includes a bed of metal particulates, and a fluid treatment that includes passing a fluid containing undesirable elements and compounds to a bed of metal particulates of this type. Achieved by providing the law. The particulates are preferably selected from metals such as zinc and copper and mixtures and alloys thereof, which are undesired with the metallic particulates when the fluid is in contact with the metallic particles, in contrast to the unwanted constituents (eg chlorine) which one wishes to treat. It has a favorable redox potential in order to establish conditions under which spontaneous oxidation and reduction reactions occur with the sex component, and / or bacteriostatic or bactericidal properties when the unwanted constituent to be treated is a bacterium. Hold.

図面の簡単な説明 第1図は、ゆるく充填した金属粒状物床を示す本発明
の流体処理装置の一形態の垂直断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical cross-sectional view of one form of the fluid treatment arrangement of the present invention showing a loosely packed bed of metal particulates.

第2図は、互いに分離されているが共通のハウジング
に内包された活性炭床および金属粒状物床を示す本発明
の流体処理装置の一形態の垂直断面図である。
FIG. 2 is a vertical cross-sectional view of one form of the fluid treatment apparatus of the present invention showing an activated carbon bed and a metal particulate bed that are separate from each other but are enclosed in a common housing.

第3図は、連続した活性炭床および金属粒状物床を示
す本発明の流体処理装置の一形態の垂直断面図である。
FIG. 3 is a vertical cross-sectional view of one form of the fluid treatment apparatus of the present invention showing a continuous activated carbon bed and a metal granular material bed.

第4図は、共通のハウジングに内包された活性炭床な
どおよび金属粒状物床による一般的処理法を示す本発明
の流体処理装置の一形態の垂直断面図である。
FIG. 4 is a vertical cross-sectional view of one form of the fluid treatment apparatus of the present invention showing a general treatment method using a bed of activated carbon or the like and a bed of metal particles contained in a common housing.

本発明の重要な観点は水、特に飲料水の処理を目的と
するが、本発明の装置および方法は各種の望ましくない
汚染物質を含む他の種々の供給流体の処理にも有利に採
用できることは認められるであろう。従って説明だけの
ために本発明は大部分において水が被処理供給流体であ
る形態に関して記述されるであろう。
While an important aspect of the present invention is directed to the treatment of water, especially drinking water, it is understood that the apparatus and method of the present invention can be advantageously employed in the treatment of a variety of other feed fluids containing a variety of undesirable contaminants. Will be recognized. Thus, for purposes of explanation only, the present invention will be described in large part in the form where water is the feed fluid to be treated.

特定の上水道の組成をそこに含まれる特定の汚染物
質、たとえば溶存塩素およびニトレートに関して、この
水をアルミニウム、鉄、亜鉛、スズおよび銅などの金
属、ならびにそれらの混合物および合金と接触させるこ
とによって変更しうることが今回見出された。たとえば
高濃度の溶存塩素を含有する水を、金属粒状物(たとえ
ば黄銅)を収容したキャニスターに導通すると、流出水
に検出される塩素水準がすべて除かれないにしても大幅
に低下することが認められた。
Modifying the composition of a particular water supply for the particular pollutants contained therein, such as dissolved chlorine and nitrates, by contacting this water with metals such as aluminum, iron, zinc, tin and copper, and mixtures and alloys thereof. This time it was possible to find out. For example, passing water containing a high concentration of dissolved chlorine through a canister containing metal particulates (eg brass) was found to significantly reduce the chlorine levels detected in the effluent, if not eliminated. Was given.

またこの流体処理法は特定の条件下で流出水のニトレ
ート濃度を著しく低下させ、および/または除去するの
にも有効であることも見出された。さらに黄銅粒状物を
含有する処理媒体は一般の細菌性汚染物質、たとえば大
腸菌(E.coli)およびシュードモナス属菌(Pseudomona
s)に関して有効な殺菌剤および/または静菌剤として
作用することが見出された。また接触した際に衣服を汚
染する可能性のある溶存鉄、たとえば鉄(II)を含有す
る水を黄銅床に導通すると、流出水は見掛け上溶存鉄を
含まず、これと接触しても衣服を汚染しないことが見出
された。さらに、タンニンで汚染された水を黄銅床に導
通すると流出水が透明であり、見掛け上タンニンを含ま
ないことが見出された。これらの知見の結果、本発明に
より開発されたものは他の種類の無機不純物、たとえば
硫化水素および二酸化イオウ(数例を挙げたにすぎな
い)、ならびに有機汚染物質に広く利用されると考えら
れる。
It has also been found that this fluid treatment method is also effective in significantly reducing and / or removing the nitrate concentration of effluent under certain conditions. Furthermore, treatment media containing brass granules are used for common bacterial pollutants such as E. coli and Pseudomonas.
It has been found to act as an effective fungicide and / or bacteriostat for s). When water containing dissolved iron, which may contaminate clothes when contacted, such as iron (II), is conducted to the brass floor, the effluent does not apparently contain dissolved iron, and even if it comes in contact with it, clothes Was found not to pollute. Furthermore, it was found that when water contaminated with tannin was passed through a brass bed, the effluent was transparent and apparently contained no tannin. As a result of these findings, it is believed that those developed in accordance with the present invention find widespread use in other types of inorganic impurities such as hydrogen sulfide and sulfur dioxide (to name only a few), and organic pollutants. .

さらに普通の操作条件下でこの種の流体処理法の有効
寿命は他の一般的な処理システムの有効寿命をはるかに
越えると考えられる。従ってこの知見は一般的システム
の主な欠点の1つ、すなわち有効処理源を頻繁に補充す
る必要性、および同時にシステムを定期的に保守し、監
視する必要性を除くのに役立つ点で、当技術分野におけ
るかなりの前進をもたらす。
Moreover, under normal operating conditions, the useful life of this type of fluid treatment method is believed to be far beyond that of other conventional treatment systems. This finding is thus useful in eliminating one of the main drawbacks of the general system, namely the need to frequently replenish the available processing sources, and at the same time the system to be regularly maintained and monitored. Brings considerable progress in the technical field.

さらにこの方法は家庭、商業および工業における各種
の用途について広範な潜在的利用性をもつ。たとえば塩
素およびヨウ素が有効な抗菌薬であることを留意して、
飲料水(特に外国地における)はまず水を塩素処理また
はヨウ素処理により処理し次いで塩素処理またはヨウ素
処理された水を本発明に従って金属粒子と接触させるこ
とによって処理水をより口に合う安全な形に変えること
ができるであろう。
Moreover, this method has wide potential utility for various home, commercial and industrial applications. Keeping in mind, for example, that chlorine and iodine are effective antimicrobial agents,
Drinking water (especially in foreign land) is treated in a safe form that is more palatable by first treating the water by chlorination or iodine treatment and then contacting the chlorinated or iodine treated water with metal particles according to the present invention. Could be changed to

前記のように、この開発は水処理以外に、他の液状流
体媒質およびガス状流体媒質自体および液体に溶存する
ガス状流体媒質を含む他の流体媒質にも適用することを
意図したものである。たとえば有害ガス、特にハロゲ
ン、たとえば塩素、臭素およびフッ素を金属性物質床が
収容されたキャニスターに導通することにより除去する
ことが本発明により考慮され、その範囲に含まれる。こ
の種の用途はたとえばガスマスクにおいて汚染空気精製
の別法を提供し、あるいはさらに一般的なスクラビング
法の別法として、またはこれと組合わせて使用できる。
As mentioned above, this development is intended to apply to other fluid media besides water treatment, including other liquid and gaseous fluid media themselves and gaseous fluid media dissolved in liquids. . For example, the removal of harmful gases, especially halogens such as chlorine, bromine and fluorine, by passing them through a canister containing a bed of metallic material is contemplated by and within the scope of the present invention. This type of application provides an alternative to polluted air purification, for example in gas masks, or can be used as an alternative to the more general scrubbing method or in combination therewith.

ここで図面について述べると、第1図は一般に10と表
示される流体(水など)処理用の装置において典型的に
具体化された本発明を示し、この装置が入口12、出口1
4、および金属粒状物18の充填床を含む処理槽16を含む
ことを示す。処理槽16は目的とする用途に応じて種々の
形状および寸法のものであってもよい。たとえば処理槽
16は第1図に示すキャニスターの形をとってもよい。
Referring now to the drawings, FIG. 1 illustrates the present invention typically embodied in an apparatus for treating a fluid (such as water), generally designated as 10, which apparatus has an inlet 12, an outlet 1
4, and a treatment tank 16 containing a packed bed of metal particulates 18 is shown. The treatment tank 16 may be of various shapes and sizes depending on the intended use. For example, processing tank
16 may take the form of a canister shown in FIG.

第1図に示すように、流体処理槽16は不透過性の側壁
20、ならびに上壁および底壁22および24からなる。上壁
22および底壁24には処理される流体をそれぞれ処理槽16
に流入させ、これから流出させる入口12および出口14が
含まれる。流体処理槽16はさらに有孔性または透過性の
上板26および28を含む。これらはそれぞれ流体を流体処
理槽16へ導入し、これから排出させ、一方金属粒状物18
が逃散するのを防止する。本発明の他の観点によれば、
金属粒状物床を他の流体処理媒体と組合わせて、または
連結して使用し、増強された流体処理システムを得るこ
とができる。
As shown in FIG. 1, the fluid treatment tank 16 has an impermeable side wall.
20 and top and bottom walls 22 and 24. Upper wall
22 and the bottom wall 24 are each provided with a treatment tank 16 for treating the treated fluid.
An inlet 12 and an outlet 14 are included for entering and exiting. Fluid treatment tank 16 further includes perforated or permeable top plates 26 and 28. Each of these introduces a fluid into the fluid treatment tank 16 and then discharges it while the metal particulates 18
Prevent them from escaping. According to another aspect of the invention,
The bed of metal particles can be used in combination with or in connection with other fluid treatment media to provide an enhanced fluid treatment system.

第2〜4図はこの種の増強された流体処理システムの
例を示す。第2図において装置40は流体処理槽16を含
み、これはさらに有孔性または透過性の中板42を含み、
これが槽16を上室44および下室46に分割している。上室
には一般的な流体処理媒体、たとえば活性炭48が含ま
れ、下室に金属粒状物18の充填床が含まれる。第4図の
場合、装置50には、金属粒状物18と混和された一般的な
流体処理媒体、たとえば活性炭48を含む処理槽16が含ま
れる。処理媒体48はもちろんいかなる一般的な処理媒体
であってもよく、他の例としては逆浸透媒体があげら
れ、この場合微細なメッシュの金属粒状物18をその膜上
にフロック処理(flock)することができる。
2-4 show examples of such enhanced fluid treatment systems. In FIG. 2, apparatus 40 includes fluid treatment vessel 16, which further includes a perforated or permeable midplate 42,
This divides the tank 16 into an upper chamber 44 and a lower chamber 46. The upper chamber contains a conventional fluid treatment medium, such as activated carbon 48, and the lower chamber contains a packed bed of metal particulates 18. In the case of FIG. 4, the apparatus 50 includes a treatment vessel 16 containing a conventional fluid treatment medium, eg activated carbon 48, admixed with the metal particulates 18. The treatment medium 48 can, of course, be any conventional treatment medium, another example being a reverse osmosis medium, in which the fine mesh metal particulates 18 are flocked onto the membrane. be able to.

第3図において、装置60は順次連結された2個の流体
処理槽62および16を含む。流体処理槽62は入口64、およ
び出口66を含み、これは流体処理槽16の入口12に連結し
ている。流体処理槽62は一般的な処理媒体、たとえば活
性炭66の充填床を含む。流体処理槽62は不透過性の側壁
68、ならびに上壁および底壁70および72からなる。上壁
70および底壁72には、処理すべき流体をそれぞれ処理槽
62に流入され、これから流出させる入口64および出66が
含まれる。流体処理槽62はさらに有孔性または透過性の
上板および底板74および76を含み、これらは流体をそれ
ぞれ処理槽62に導入し、これから排出させ、一方活性炭
66の逃散を防止する。
In FIG. 3, device 60 includes two fluid treatment vessels 62 and 16 connected in series. The fluid treatment tank 62 includes an inlet 64 and an outlet 66, which are connected to the inlet 12 of the fluid treatment tank 16. The fluid treatment tank 62 contains a packed bed of conventional treatment media, such as activated carbon 66. Fluid treatment tank 62 is an impermeable side wall
68, and top and bottom walls 70 and 72. Upper wall
70 and the bottom wall 72 respectively contain a treatment tank for the fluid to be treated.
An inlet 64 and an outlet 66 are included that enter and exit 62. The fluid treatment tank 62 further includes perforated or permeable top and bottom plates 74 and 76, which respectively introduce fluid into the treatment tank 62 and discharge it from the activated carbon.
Prevent the escape of 66.

第2図および第3図に示した上記の流体処理媒体の相
対位置は、目的とする用途に応じて逆転させうることは
認識されるであろう。たとえば前記のように一般的な処
理媒体が活性炭である場合は、金属粒状物床を活性炭の
下流に置き、活性炭から排出される流体に含有される有
害な細菌を処理することが望ましいであろう。他方、一
般的な処理媒体が逆浸透媒体またはイオン交換媒体であ
る場合、金属粒状物床をこの種の媒体の上流に置き、こ
れらの媒体にとって有害となる可能性のある溶存塩素な
どの成分を除去することが望ましいであろう。
It will be appreciated that the relative positions of the above fluid treatment media shown in FIGS. 2 and 3 may be reversed depending on the intended application. For example, if the common treatment medium is activated carbon as described above, it may be desirable to place a bed of metal particulates downstream of the activated carbon to treat harmful bacteria contained in the fluid discharged from the activated carbon. . On the other hand, if the typical treatment medium is a reverse osmosis medium or an ion exchange medium, place a bed of metal particulates upstream of this type of medium to remove components such as dissolved chlorine that may be harmful to these mediums. It would be desirable to remove.

本発明は数種の異なる金属ならびにそれらの混合物お
よび合金の使用をも考慮する。本発明はいかなる特定の
理論にも限定されないが、本発明の処理法は少なくとも
無機成分、たとえば溶存塩素に関しては自発的な酸化−
還元反応により達成されると仮定さる。従って金属粒状
物は、処理したい望ましくない成分と対比して相対的に
良好な酸化還元剤であり、これにより流体が金属粒状物
と接触した際に金属粒状物と望ましくない成分との間で
自発的な酸化反応および還元反応の条件が確立される一
群の金属(それらの混合物および合金を含む)から選ば
れるべきであると考えられる。
The present invention also contemplates the use of several different metals and their mixtures and alloys. Although the present invention is not limited to any particular theory, the process of the present invention is not limited to spontaneous oxidation-at least with respect to inorganic components, such as dissolved chlorine.
It is assumed to be achieved by a reduction reaction. Thus, the metal particulates are relatively good redox agents as opposed to the unwanted components that one wants to treat, which allows the spontaneous interaction between the metal particulates and the unwanted components when the fluid contacts the metal particulates. It is believed that it should be selected from the group of metals, including their mixtures and alloys, where the conditions for the typical oxidation and reduction reactions are established.

異種のものの相対的な還元または酸化されやすさは、
それらの標準還元電位(25℃におけるE゜値)から予想
できる。異種のものについてのE゜値を比較することに
よって、酸化還元が自発的に起こるか否かを判定するこ
とができる。本発明によれば、処理したい元素または化
合物と対比して相対的に良好な酸化還元剤である金属
は、この種の元素および化合物と自発的に反応すると予
想される金属である。
The relative susceptibility to reduction or oxidation of different species is
It can be predicted from their standard reduction potential (E ° value at 25 ° C). By comparing the E ° values for different species, one can determine whether redox occurs spontaneously. According to the invention, a metal which is a relatively good redox agent compared to the element or compound to be treated is a metal which is expected to react spontaneously with this type of element and compound.

たとえば約7のpHをもつ25℃の水に溶解した塩素はHO
ClおよびClO-として存在し、酸性側ではHOClが優位であ
り、塩基側ではClO-が優位である。簡単にするためClO-
が反応種であると仮定すると、下記の酸化還元反応が本
発明により考慮される代表的なものである。
For example, chlorine dissolved in water at 25 ° C with a pH of about 7 is HO
Cl and ClO - exist as, in the acidic side, HOCl is dominant, the base side ClO - predominates. ClO For the sake of simplicity -
Assuming that is the reactive species, the following redox reactions are representative of those contemplated by the present invention.

Zn(s)→Zn2+(aq)+2e- E゜=0.76VClO-(aq)+H2O+2e-→Cl-(aq)+2OH-(aq) E゜=0.89V Zn(s)+ClO-(aq)+H2O→Zn2++Cl-(aq)+2OH-(aq) E =1.65V Cu(s)→Cu2+(aq)+2e- E゜=−0.34VClO-(aq)+H2O+2e-→Cl-(aq)+2OH-(aq) E゜= 0.89V Cu(s)+ClO-(aq)+H2O→Cu+2(aq)+Cl-+2OH- E =+0.55V 計算されるように亜鉛および銅は双方とも次亜塩素酸塩
(ClO-)とそれぞれ自発的に反応し、亜鉛の方がより大
きな正の電位をもつので理論的にはいっそう自発的であ
ろう。
Zn (s) → Zn 2+ (aq) + 2e E ° = 0.76V ClO (aq) + H 2 O + 2e → Cl (aq) + 2OH (aq) E ° = 0.89V Zn (s) + ClO ( aq) + H 2 O → Zn 2+ + Cl - (aq) + 2OH - (aq) E = 1.65V Cu (s) → Cu 2+ (aq) + 2e - E ° = -0.34V ClO - (aq) + H 2 O + 2e - → Cl - (aq) + 2OH - (aq) E ° = 0.89V Cu (s) + ClO - (aq) + H 2 O → Cu +2 (aq) + Cl - + 2OH - E = + as 0.55V are calculated zinc and copper are both hypochlorite (ClO -) and react spontaneously respectively, theoretically because towards zinc has a greater positive potential will become more spontaneous.

亜鉛および銅は共に一般的な無機汚染物質、たとえば
塩素に関して、相対的に良好な還元剤であるので、かつ
両者とも溶液中で適度の濃度において、不利な影響を与
えることなく耐容されるので、好ましい金属である。他
の金属、たとえば鉄およびアルミニウムも理論的には良
好な還元剤であるが、これらの金属は欠点をもち、この
ためこれらを一般的な商業的用途に利用することは制限
される。たとえば比較的高い濃度の鉄の飲料水中におい
て毒作用を与えることなく耐容されるが、このような濃
度は鉄細菌を供給しやすく、また家庭用として用いた場
合衣服などの品物を汚染しやすい。これに関連して、接
触した際に衣服を汚染する可能性のある溶存鉄、たとえ
ば鉄(II)を含有する水を黄銅床に導通した場合、溶出
水は見掛け上溶存鉄を含有せず、これと接触しても衣服
を汚染しないことが今回見出された。さらに鉄を基礎と
する金属粒子床は早期に目詰りしやすい。またアルミニ
ウムを基礎とする処理床はスキャブを生じやすく(Sca
b)、すなわち表面に酸化物被膜を生じやすく、従って
短期間の使用後に実際上無効となる。
Since zinc and copper are both relatively good reducing agents for common inorganic pollutants, such as chlorine, and both are tolerated in solution at moderate concentrations without adverse effects, It is the preferred metal. Other metals, such as iron and aluminum, are also theoretically good reducing agents, but these metals have drawbacks which limit their use in general commercial applications. For example, iron having a relatively high concentration is tolerated in drinking water without poisoning, but such a concentration easily supplies iron bacteria and, when used for household purposes, easily contaminates articles such as clothes. In this regard, when water containing dissolved iron, which may contaminate clothing when contacted, such as iron (II), is passed through the brass floor, the dissolved water apparently contains no dissolved iron, It has now been found that contact with it does not contaminate clothing. Furthermore, iron-based metal particle beds are prone to premature clogging. Also, aluminum-based treated floors are more susceptible to scavenging (Sca
b), that is, it is prone to oxide coatings on the surface and is therefore practically ineffective after short periods of use.

実施に際して亜鉛および銅の合金、たとえば黄銅は、
溶存塩素の除去に際し純粋な亜鉛もしくは純粋な銅また
はそれらの不均質な混合物よりも有効であることが認め
られた。特筆した黄銅の有効性のほかに、黄銅は化学的
安全性の見地からも好ましい金属である。これは水性媒
体中において特にそうである。黄銅は純粋なナトリウ
ム、カリウム、カルシウムまたは亜鉛などの金属が示す
ような水性流体に対する激しい反応性をもたないからで
ある。
In practice zinc and copper alloys, such as brass,
It has been found to be more effective at removing dissolved chlorine than pure zinc or pure copper or heterogeneous mixtures thereof. In addition to the noted effectiveness of brass, brass is also a preferred metal from a chemical safety standpoint. This is especially so in aqueous media. This is because brass does not have a vigorous reactivity to aqueous fluids as shown by metals such as pure sodium, potassium, calcium or zinc.

銅/亜鉛合金、たとえば黄銅は流出物に溶存した金属
濃度の見地からも好ましい金属である。これに関連し
て、亜鉛、銅およびそれらの合金と無機汚染物質、たと
えば溶存塩素との酸化還元反応の副生物はそれぞれ溶存
亜鉛、溶存銅、およびそれらの混合物であることが注目
される。亜鉛または銅を単独で用いて過度に塩素処理さ
れた飲料水を処理する場合、比較的希薄ではあるがEPA
が推奨する指針を越える溶存金属濃度を生じる可能性が
ある。さらにのちに述べるように、生じる望ましくない
金属濃度はさらに一般的な処理法、たとえばイオン交換
法または逆浸透法による処理によって効果的に除くこと
はできるが、銅/亜鉛合金、たとえば黄銅を処理媒体と
して用いた場合、生じる溶存金属濃度は飲料水中の溶存
亜鉛および溶存銅について十分に現行EPA指針の範囲内
にあることが認められた。
Copper / zinc alloys, such as brass, are the preferred metals from the standpoint of metal concentration dissolved in the effluent. In this connection, it is noted that the by-products of the redox reaction of zinc, copper and their alloys with inorganic pollutants, such as dissolved chlorine, are dissolved zinc, dissolved copper, and mixtures thereof, respectively. EPA, albeit relatively dilute, when treating drinking water that has been over-chlorinated with zinc or copper alone.
Dissolved metal concentrations may exceed the guidelines recommended by. As will be discussed further below, copper / zinc alloys, such as brass, can be effectively removed by removing undesired metal concentrations by more conventional processing methods such as ion exchange or reverse osmosis. It was found that the resulting dissolved metal concentrations when used as are well within the current EPA guidelines for dissolved zinc and dissolved copper in drinking water.

前記のように本発明の他の形態は、水を金属粒状物
(たとえば黄銅)床、および一般的な処理法、たとえば
逆浸透もしくはイオン交換もしくは活性炭の双方に導通
することによる精製法である。逆浸透処理法にしばしば
用いられる半透膜、たとえば酢酸セルロースは、イオン
交換樹脂の架橋にしばしば用いられるジビニルベンゼン
の場合と同様に溶存塩素による分解を受けやすい場合が
多いという事実から特に有利である。逆浸透膜またはイ
オン交換装置と連結して黄銅床を用いることにより、膜
または樹脂の寿命を実質的に延長することができる。さ
らに逆浸透、イオン交換および活性炭を用いる一般的処
理法はそれぞれ細菌による汚染および/または細菌の蓄
積を生じやすい。これに関連して、一般に下水により汚
染された上水道中に見出される大腸菌、および他の望ま
しくない生物、たとえばシュードモナス属菌などの細菌
と戦うために、銅または銅合金、たとえば黄銅を処理シ
ステムに用いるのが有効であることが認められた。
As mentioned above, another aspect of the invention is a purification process by passing water through a bed of metal particulates (eg brass) and common treatment methods such as reverse osmosis or ion exchange or activated carbon. Semi-permeable membranes often used in reverse osmosis processes, such as cellulose acetate, are particularly advantageous due to the fact that they are often subject to decomposition by dissolved chlorine, as are divinylbenzenes often used to crosslink ion exchange resins. . By using a brass bed in conjunction with a reverse osmosis membrane or ion exchange device, the life of the membrane or resin can be substantially extended. Furthermore, common treatment methods using reverse osmosis, ion exchange and activated carbon, respectively, are susceptible to bacterial contamination and / or bacterial accumulation, respectively. In this regard, copper or copper alloys, such as brass, are used in the treatment system to combat E. coli and other unwanted organisms commonly found in sewage-contaminated water supplies, and bacteria such as Pseudomonas spp. Was found to be effective.

“黄銅”という語はここでは銅−亜鉛合金一般を示す
ために用いられること、ならびにこの種の合金は他の成
分を含有する可能性があり、および/または一般に異な
る命名法により呼ばれていることは認められるであろ
う。たとえば銅および亜鉛を含有する一般に青銅と呼ば
れる合金、たとえば(以下のものに限定されない)ほぼ
57% Cu−40% Zn−3% Pbから構成される美術青銅、
ほぼ58.5% Cu−39% Zn−1.4% Fe−1% Sn−0.1% M
nから構成されるマンガン青銅A、およびほぼ65.5% Cu
−23.3% Zn−4.5% Al−3.7% Mn−3% Feから構成さ
れるマンガン青銅B、ならびに他の金属、たとえば60%
Cu−40% Znから構成されるムンツメタルがここでは一
般に黄銅と呼ばれ、本発明の範囲に含まれる。
The term "brass" is used herein to refer to copper-zinc alloys in general, and alloys of this type may contain other components and / or are commonly referred to by different nomenclature. It will be appreciated. Alloys commonly referred to as bronze containing, for example, copper and zinc, including (but not limited to)
Art bronze composed of 57% Cu-40% Zn-3% Pb,
Almost 58.5% Cu-39% Zn-1.4% Fe-1% Sn-0.1% M
Manganese bronze A composed of n, and approximately 65.5% Cu
-23.3% Zn-4.5% Al-3.7% Mn-3% Manganese bronze B composed of Fe, as well as other metals, such as 60%
The Munz metal composed of Cu-40% Zn, commonly referred to herein as brass, is within the scope of the invention.

選ばれた金属が黄銅である場合、たとえば塩酸溶液で
黄銅を洗浄し、次いで黄銅をリンスすることにより黄銅
の表面から汚染物質、たとえば鉄やすり屑その他の異物
(黄銅の活性を妨げる可能性がある)が洗い流されるで
あろう。しかし大気または供給流体(たとえば水)に暴
露されている黄銅表面は緑色のさびを生じる場合がある
ことが認められている。これはカーボネートおよび/ま
たは酸化物複合体であると思われる。その表面自体を物
理的に掻き取って緑色のさびを除くと、除かれたさびも
優れた精製作用を示す。
If the metal of choice is brass, contaminants such as iron filings and other foreign matter (brass activity can be impaired from the brass surface by washing the brass with, for example, a hydrochloric acid solution and then rinsing the brass. ) Will be washed away. However, it has been recognized that brass surfaces exposed to the atmosphere or feed fluids (eg, water) can cause green rust. It appears to be a carbonate and / or oxide complex. When the surface itself is physically scraped to remove the green rust, the removed rust also exhibits an excellent purification action.

塩素を添加し、黄銅床を通過させることにより処理し
た水の定性分析により、この種の処理は水中の塩素の量
を一貫して減少させることが示された。以下に示す実施
例IおよびIIは、水処理に用いた黄銅および処理された
水それぞれについて処理前および処理後の双方の組成の
定性分析を別個の研究所で行ったものを記載する。下記
の実施例Iに記載するように、黄銅の分析から、水を黄
銅床に導通することにより酸化−還元過程が起こった場
合に予想されるように黄銅の組成が実際に変化したこと
が示された。また下記の実施例IIに示すように、流入水
および黄銅床を通過した流出水についての別個の研究室
の分析により、流入水に含有されていた塩素が実質的に
除かれたことが実際に確認された。
A qualitative analysis of water treated by adding chlorine and passing it through a brass bed showed that this type of treatment consistently reduced the amount of chlorine in the water. Examples I and II set forth below describe the qualitative analysis of the composition both before and after treatment in separate laboratories for the brass used for water treatment and the treated water, respectively. As described in Example I below, analysis of the brass showed that the brass composition actually changed as would be expected if the oxidation-reduction process occurred by passing water through the brass bed. Was done. Also, as shown in Example II below, a separate laboratory analysis of the influent and the effluent that passed through the brass bed showed that chlorine contained in the influent was substantially removed. confirmed.

実施例 I 黄銅の逃散を防止するためのスクリーン間に捕捉され
た14+30メッシュの黄銅の7.6cm×15.2cm(3インチ×
6インチ)充填床を収容した円筒に水を導通した。黄銅
床に導通した水はミシガン州ビレッジ・オブ・コンスタ
ンチン給水所から得たものであり、塩素処理されてはい
ないが約10〜13ppmの溶存ニトレートを含有する。塩素
水準低下の程度を調べるために約2〜13ppmの量の塩素
を流入水に導入した。約193m3(51,000ガロン)の水が
黄銅床を通過したのちに、黄銅床の高さは約1.3m(1/2
インチ)縮小した。黄銅床を構成した新鮮な黄銅試料、
および約193m3(51,000ガロン)の水が通過したのちの
黄銅床から取り出した黄銅試料を分析した。
EXAMPLE I 7.6 cm x 15.2 cm (3 in x x 14 x 30 mesh brass trapped between screens to prevent brass escape.
Water was passed through the cylinder containing the 6 inch) packed bed. The water conducted to the brass bed was obtained from the Village of Constantine Water Station, Michigan and is not chlorinated but contains about 10-13 ppm dissolved nitrate. Chlorine was introduced into the influent in an amount of about 2 to 13 ppm to examine the extent of the decrease in chlorine level. After approximately 193 m 3 (51,000 gallons) of water has passed through the brass floor, the brass floor is approximately 1.3 m (1/2
Inch) reduced. A fresh brass sample that made up the brass floor,
And brass samples taken from the brass bed after passage of approximately 193 m 3 (51,000 gallons) of water were analyzed.

これらの試料の元素組成はベックマン・スペクトラス
パンVIスペクトロメーターを用いて、直結プラズマー原
子発光分析法により測定した。0.1000gを50/50濃硝酸/
蒸留水混合物20mlに溶解することによりプラズマ発光分
析用試料を調製した。次いで蒸溜水の添加により総溶液
重量を100.00gにした。
The elemental composition of these samples was measured by direct coupling plasma atomic emission spectrometry using a Beckman Spectraspan VI spectrometer. 0.1000g in 50/50 concentrated nitric acid /
A sample for plasma emission analysis was prepared by dissolving in 20 ml of a mixture of distilled water. The total solution weight was then brought to 100.00 g by adding distilled water.

元素組成は各元素につき下記の発光系列から得た値の
平均として測定された。銅:213.598nm.,233.008nm;鉄:2
38.204nm.,259.940nm.,371.994nm.;亜鉛:213.856nm.,20
6.200nm.,202.548nm.;鉛:104.783nm.,283.306nm,.368.3
48nm..結果は下記のとおりであった。 黄銅の分析 処理前 処理後 銅 % 59.2 65.0 亜鉛% 35.2 27.8 鉛 % 2.5 2.5 鉄 % 0.2 0.2 スズおよびアルミニウムについての発光波長も調べた
が、これらの元素は1対1000の試料希釈度で検出できな
かった。
The elemental composition was measured as the average of the values obtained from the following emission series for each element. Copper: 213.598 nm., 233.008 nm; Iron: 2
38.204nm., 259.940nm., 371.994nm .; Zinc: 213.856nm., 20
6.200nm., 202.548nm .; Lead: 104.783nm., 283.306nm, .368.3
48nm .. The results were as follows. Analytical treatment of brass Copper after pretreatment Copper% 59.2 65.0 Zinc% 35.2 27.8 Lead% 2.5 2.5 Iron% 0.2 0.2 The emission wavelengths of tin and aluminum were also examined, but these elements could not be detected at a 1: 1000 sample dilution. It was

実施例 II 流入水、および実施例Iの黄銅床を約193m3(51,000
ガロン)の水の処理に使用したのちに通過した流出水の
2組の試料を別個の研究室に分析のために送った。試料
セットAはミシガン州ビレッジ・オブ・コンスタンチン
給水所により給水された非塩素処理水道水であり、試料
セットBは塩素を添加した水道水であった。各分析の結
果は下記のとおりであった。 試料セットA パラメーター 単位 流入 流出 ニトリット態窒素 mg/ 10.35 9.34 ニトレート+ニトリット mg/ 0.01 0.01 有機窒素 mg/ 10.35 9.35 アルミニウム(Al) mg/ 0.5 0.5 銅(Cu) mg/ 0.04 0.27 鉄(Fe) mg/ 0.05 0.34 カリウム(K) mg/ 1.00 1.47 ナトリウム(Na) mg/ 3.8 5.2 亜鉛(Zn) mg/ 0.12 1.3 試料セットB パラメーター 単位 流入 流出 塩化物 mg/ 29.5 32.0 塩素 mg/ 13.0 0.1 ニトレート態窒素 mg/ 11.35 10.69 ニトリット態窒素 mg/ 0.01 0.01 ニトレート+ニトリット mg/ 11.35 10.69 アルミニウム(Al) mg/ 0.5 0.5 カルシウム(Ca) mg/ 93.0 94 銅(Cu) mg/ 0.05 0.26 マグネシウム(Mg) mg/ 24.0 24.4 カリウム(K) mg/ 1.02 1.06 ナトリウム(Na) mg/ 17.1 17.8 亜鉛(Zn) mg/ 0.11 4.5 以上の各例は本発明方法およびこれにより得られる効
果を説明するために提示されたものであり、その一般的
範囲を限定するためのものではない。実施例IIの試料セ
ットBの結果によって最も良く示されるように、本発明
方法は望ましくはない汚染物質、たとえば溶存塩素の除
去に有効である。陽イオン、たとえば亜鉛および銅の陽
イオンの濃度は、酸化−還元過程に起こった場合に予想
されたように流出水中で実際に上昇した。
Example II Influent water and the brass floor of Example I at about 193 m 3 (51,000
Gallons of water were used to treat and then two sets of samples of effluent were passed to separate laboratories for analysis. Sample set A was non-chlorinated tap water supplied by the Village of Constantine Water Station in Michigan, and sample set B was tap water with chlorine added. The results of each analysis are as follows. Sample set A Parameter unit Inflow Outflow Nitrit nitrogen Nitrogen mg / 10.35 9.34 Nitrate + Nitrit mg / 0.01 0.01 Organic nitrogen mg / 10.35 9.35 Aluminum (Al) mg / 0.5 0.5 Copper (Cu) mg / 0.04 0.27 Iron (Fe) mg / 0.05 0.34 Potassium (K) mg / 1.00 1.47 Sodium (Na) mg / 3.8 5.2 Zinc (Zn) mg / 0.12 1.3 Sample Set B Parameter Unit Inlet Outflow Chloride mg / 29.5 32.0 Chlorine mg / 13.0 0.1 Nitrate Nitrogen mg / 11.35 10.69 Nitrite nitrogen mg / 0.01 0.01 Nitrate + nitrite mg / 11.35 10.69 Aluminum (Al) mg / 0.5 0.5 Calcium (Ca) mg / 93.0 94 Copper (Cu) mg / 0.05 0.26 Magnesium (Mg) mg / 24.0 24.4 Potassium (K) mg / 1.02 1.06 Sodium (Na) mg / 17.1 17.8 Zinc (Zn) mg / 0.11 4.5 Each of the above examples is presented to explain the method of the present invention and the effects obtained thereby, and its general range To limit It's not meant to be. As best shown by the results of Sample Set B of Example II, the method of the present invention is effective in removing undesired contaminants such as dissolved chlorine. The concentration of cations, such as zinc and copper cations, actually increased in the effluent water as would be expected if it occurred during the oxidation-reduction process.

さらに約6.9のpHをもつ流入水道水は黄銅床を通過し
たのち約7.2のpHをもつことが認められた。さらに水
の、特に酸性のpH値をもつ水のpH値が黄銅系処理床を通
過した結果上昇したことが注目される。これは、クロリ
ドイオンは一般に飲料水中に存在するので、またクロリ
ドは塩素が標的汚染物質である場合に黄銅処理後に生じ
るイオンであるので、本発明の特に有利な特色である。
クロリドイオンは酸性媒質中では潜在的に腐食性の物質
である。処理水のpHが処理と同時に上昇することによ
り、存在するクロリドイオンの潜在的腐食作用は中和さ
れる傾向を示す。
Furthermore, it was found that inflowing tap water with a pH of about 6.9 had a pH of about 7.2 after passing through the brass bed. It is further noted that the pH value of water, especially water with acidic pH values, increased as a result of passing through the brass-treated bed. This is a particularly advantageous feature of the present invention because chloride ions are generally present in drinking water, and chloride is an ion generated after brass treatment when chlorine is the target contaminant.
Chloride ions are potentially corrosive substances in acidic media. By increasing the pH of the treated water at the same time as the treatment, the potential corrosive action of chloride ions present tends to be neutralized.

実施例IIの試料セットAおよびB双方の結果により示
されるように、この処理法により水中の溶存ニトレート
の水準も低下した。流体が少なくともわずかに酸性であ
り、たとえば6.5以下のpHをもつ場合、本発明の処理法
によって溶存ニトレートの転換が促進され、溶存ニトレ
ートの濃度が著しく低化することが認められた。酸性媒
質中での溶存ニトレートの転換はある程度は可逆的であ
ること、すなわちその後流出水のpH値を上昇させること
により溶存ニトレートの存在を検出しうることが認めら
れた。これに関連してきわめて意外なことに、比較的高
いpH値、たとえば10〜12のpH値においてはニトレートの
除去を効果的に、かつ見掛け上不可逆的に行いうること
が認められた。
This treatment also reduced the level of dissolved nitrate in the water, as shown by the results for both sample sets A and B of Example II. It has been observed that when the fluid is at least slightly acidic, for example having a pH of 6.5 or less, the process of the present invention promotes conversion of dissolved nitrate and significantly reduces dissolved nitrate concentration. It was found that the conversion of dissolved nitrate in acidic medium is reversible to some extent, that is, the presence of dissolved nitrate can be detected by subsequently increasing the pH value of the effluent. In this connection, it was surprisingly found that at relatively high pH values, for example pH values between 10 and 12, nitrate removal can be effected effectively and apparently irreversibly.

従って、望ましくない成分が酸性媒質中でより効果的
に除去されるならば、一般的な酸供給装置を水処理法に
取り入れることができる。あるいは望まくない成分が塩
基性媒質中でより効果的に除去されるならば、一般的な
塩基供給装置による前処理を採用することができる。異
なるpHを要求する複数の元素または化合物を処理する場
合は、一般的な適宜な酸または塩基の供給装置が間に挿
入された状態で順次配置された金属粒状物(たとえば黄
銅)の連続床に被処理水を導通することができる。
Thus, conventional acid feeders can be incorporated into the water treatment process provided that the unwanted components are more effectively removed in the acidic medium. Alternatively, if the undesired components are more effectively removed in the basic medium, pretreatment with a general base feeding device can be adopted. When treating multiple elements or compounds that require different pH, a continuous bed of metal granules (eg brass) is placed in sequence with a common suitable acid or base feeder inserted between them. The water to be treated can be conducted.

さらに、汚染物質除去の速度および程度は金属と流体
の接触時間に依存することが認められた。従ってたとえ
ばより小さなメッシュの金属を用いることにより充填床
の接触表面積を増大させると、除去の速度および程度が
高まるであろう。あるいはまたはこれと共に流体の流速
を低下させて、より長い接触期間を得ることもできる。
さらに、たとえば空気を流体に噴入するか、または金属
粒状物床を大気に暴露することにより流体または金属粒
状物に酸素を供給すると処理過程を高めうることが認め
られた。
Furthermore, it was found that the rate and extent of contaminant removal depended on the metal-fluid contact time. Thus, increasing the contact surface area of the packed bed, for example by using a smaller mesh metal, will increase the rate and extent of removal. Alternatively or in conjunction therewith, the fluid flow rate may be reduced to provide a longer contact period.
Further, it has been found that supplying oxygen to the fluid or metal particulates can enhance the process by, for example, injecting air into the fluid or exposing the bed of metal particulates to the atmosphere.

金属粒子のメッシュサイズを適宜変えることができ、
これも流体の処理に際して影響を与えることが認められ
た。たとえば金属粒状物の一般的なメッシュサイズは米
国標準スクリーンサイズに基づき4〜400メッシュであ
ろう。この範囲よりも高いメッシュサイズおよびこれよ
りも低いもの双方を採用できるが通常は4〜30メッシュ
のメッシュサイズが大部分の用途にとって好ましいであ
ろう。金属粒状物を他の別形態で、たとえばこれらの粒
状物を接着して希望する形状の多孔体にすることにより
製造された凝集多孔体の形で供給しうることは認められ
るであろう。この種の凝集多孔体を製造するのに適した
方法には、焼結法、および結合剤を使用し、これにより
粒子の表面領域がすべて、もしくは実質的にすべて、こ
れで処理される流体との接触のために自由に露出してい
る状態となす方法が含まれる。
The mesh size of the metal particles can be changed appropriately,
It was also found that this also had an effect on the treatment of the fluid. For example, a typical mesh size for metal particulates would be 4-400 mesh based on US standard screen sizes. Both mesh sizes above and below this range can be employed, but a mesh size of 4-30 mesh will usually be preferred for most applications. It will be appreciated that the metal particulates may be provided in other alternative forms, for example in the form of agglomerated porous bodies made by adhering these particulates into a desired shaped porous body. Suitable methods for producing this type of agglomerated porosity include the use of sintering methods and binders whereby all, or substantially all, of the surface area of the particles and the fluid being treated therewith. Includes a method of leaving it freely exposed for contact with.

種々の重量%の銅および亜鉛から構成される黄銅は異
なる流出濃度の溶存金属を与えることが認められた。こ
れに関連してまた現在の排出液規制との関連において、
約1:1の比率の銅:亜鉛を含む黄銅が好ましく、約3:2の
比率の銅:亜鉛を含む黄銅がより好ましく、約7:3の比
率の銅:亜鉛を含む黄銅がきわめて好ましい。銅は亜鉛
よりも良好な殺菌および静菌薬であるため、黄銅中の銅
の%を高めることによって増強された雑菌性/静菌性の
処理剤が得られることは、もちろん認識されるであろ
う。
It has been found that brass composed of various weight percent copper and zinc gives different effluent concentrations of dissolved metals. In this regard, and in relation to current emission regulations,
Brass with a copper: zinc ratio of about 1: 1 is preferred, brass with a copper: zinc ratio of about 3: 2 is more preferred, and brass with a copper: zinc ratio of about 7: 3 is highly preferred. It is, of course, recognized that copper is a better bactericidal and bacteriostatic agent than zinc, thus increasing the% copper in brass results in an enhanced bacteriostatic / bacteriostatic treatment. Let's do it.

直径15.2cm(6インチ)の円筒に収容された14×30メ
ッシュの黄銅の51cm(60インチ)の充填床が家庭におけ
る利用者の全圧流水量を与え、長年にわたって黄銅床を
交換することなしに、塩素処理された流入水を効果的に
処理すると考えられる。
A 51 cm (60 inch) packed bed of 14 x 30 mesh brass housed in a cylinder with a diameter of 15.2 cm (6 inches) provides the user's total pressurized water flow at home, without the need to replace the brass bed over the years. , It is considered that chlorinated influent water is effectively treated.

以下に示す実施例IIIおよびIVはそれぞれ大腸菌およ
びシュードモナス属菌を接種した水について、それぞれ
黄銅;50%黄銅と50%活性炭の混合物;亜鉛;銅;なら
びに活性炭による処理の前および後において別個の研究
室により行われた定量分析を示す。
Examples III and IV below show separate studies of water inoculated with Escherichia coli and Pseudomonas, respectively; brass; 50% brass and 50% activated carbon mixture respectively; zinc; copper; and before and after treatment with activated carbon. 3 shows a quantitative analysis performed by the laboratory.

実施例 III 初期接種用大腸菌は標準法寒天上に増殖され、リン酸
塩緩衝化食塩液に懸濁された一夜保存培養物から調製さ
れた。適度な濃度(Single strength)のトリプチック
大豆肉汁培地を接種用懸濁液に添加して、最終トリプチ
ック大豆肉汁培地濃度10%となし、従って細菌を増殖さ
せるために適切な利用栄養素を得た。
Example III Escherichia coli for initial inoculation was prepared from standard overnight cultures grown on standard agar and suspended in phosphate buffered saline. Single strength tryptic soy broth medium was added to the inoculum suspension to give a final tryptic soy broth medium concentration of 10%, thus obtaining the appropriate utilization nutrients for growing bacteria.

下記の被験材料それぞれ約100cm3を各400mlのビーカ
ーに入れた。
About 100 cm 3 of each of the following test materials was placed in each 400 ml beaker.

被験材料 1.黄銅削り屑(おおまかな元素組成:70%Cuおよび30%Z
n(重量)); 2.黄銅(上記と同じ)と市販の活性炭粒子の50:50混合
物; 3.粒状亜鉛; 4.粒状銅; 5.市販の活性炭。
Test material 1. Brass shavings (rough elemental composition: 70% Cu and 30% Z
n (weight)); 2. 50:50 mixture of brass (same as above) and commercial activated carbon particles; 3. Granular zinc; 4. Granular copper; 5. Commercial activated carbon.

接種物(上記により調製)を各ビーカーに液面が被験
材料の表面直下になるのに十分な量添加した。被験材料
の添加前に接種物の微生物を計数した。各ビーカーを室
温で16時間インキュベートし、次いで得られた流体1ml
につき微生物の計数を行った。
The inoculum (prepared as described above) was added to each beaker in an amount sufficient to bring the liquid level just below the surface of the test material. The inoculum was counted for microbes prior to addition of test material. Incubate each beaker for 16 hours at room temperature, then 1 ml of the resulting fluid
The microorganisms were counted.

結果は下記のとおりであった。 The results were as follows.

黄銅、50%黄銅/50%活性炭、亜鉛および銅を用いる
試験は同じ日に同一接種物を用いて行われた。活性炭を
用いる試験は同じく別個の研究室において後日に、上記
と同じ様式で調製された異なる接種物を用いて行われ
た。
Tests with brass, 50% brass / 50% activated carbon, zinc and copper were performed on the same day with the same inoculum. The test with activated charcoal was also carried out later in a separate laboratory with different inoculum prepared in the same manner as above.

実施例 IV 初期接種用シュードモナス属菌を、標準法寒天上で増
殖され、リン酸塩緩衝化食塩液に験濁された一夜保存培
養物から調製した。適度な濃度(single strength)の
トリプチック大豆肉汁培地を接種用懸濁液に添加して、
最終トリプチック大豆肉汁培地濃度10%となし、従って
細菌を増殖させるために適切な利用栄養素を得た。
Example IV Pseudomonas spp. For initial inoculation was prepared from overnight stock cultures grown on standard method agar and suspended in phosphate buffered saline. Add a single strength tryptic soybean broth medium to the inoculation suspension,
A final tryptic soy broth medium concentration of 10% was obtained, thus obtaining suitable utilization nutrients for growing bacteria.

下記の被験材料それぞれ約100cm3を各400mlのビーカ
ーに入れた。
About 100 cm 3 of each of the following test materials was placed in each 400 ml beaker.

被験材料 1.黄銅削り屑(おおまかな元素組成:70%Cuおよび30%Z
n(重量)); 2.黄銅(上記と同じ)と市販の活性炭粒子の50:50混合
物; 3.粒状亜鉛; 4.粒状銅; 5.市販の活性炭 接種物(上記により調製)を各ビーカーに液面が被験
材料の表面直下になるのに十分な量添加した。被験材料
の添加前に接種物の微生物を計数した。各ビーカーを室
温で16時間インキュベートし、次いで得られた流体1ml
につき微生物の計数を行った。
Test material 1. Brass shavings (rough elemental composition: 70% Cu and 30% Z
n (weight)); 2. 50:50 mixture of brass (same as above) and commercial activated carbon particles; 3. Granular zinc; 4. Granular copper; 5. Commercial activated carbon inoculum (prepared above) in each beaker Was added in an amount sufficient to bring the liquid surface directly below the surface of the test material. The inoculum was counted for microbes prior to addition of test material. Incubate each beaker for 16 hours at room temperature, then 1 ml of the resulting fluid
The microorganisms were counted.

結果は下記のとおりであった。 The results were as follows.

以上の各例は本発明方法およびそれにより得られる効
果を説明するための提示されたものであり、その一般的
範囲を限定するためのものではない。上記のように銅お
よび黄銅は共に単独で処理媒体として用いた場合にきわ
めて有効な殺菌薬であることが証明された。実施例III
に最も良く示されるように、活性炭は細菌の増殖に対す
る繁殖地を提供し、活性炭を単独で用いた場合100倍以
上の細菌増加が認められた。しかし黄銅削り屑を活性炭
と混合することにより、有効な殺菌性媒体が得られた。
もちろん銅または黄銅を他の流体処理法、たとえばイオ
ン交換法および逆浸透法と併用して同様な殺菌性/静菌
性媒体が得られることは認識されるであろう。さらに、
この金属系殺菌薬は他の処理媒体と分離されていてもよ
く、あるいはたとえば活性炭に銅または黄銅を含浸させ
ることによりこれと一体化されていてもよいことは認識
されるであろう。実施例IVは本発明が抗微生物薬に対し
て比較的大きな抵抗性をもつ生物、たとえばシュードモ
ナス属菌の増殖抑制にも有効であることを示す。
The above examples are presented for explaining the method of the present invention and the effects obtained thereby, and are not intended to limit the general scope thereof. As mentioned above, both copper and brass proved to be extremely effective bactericides when used alone as treatment media. Example III
As shown best in, activated carbon provided a breeding ground for bacterial growth, and a 100-fold or more increase in bacterial was observed when activated carbon was used alone. However, an effective bactericidal medium was obtained by mixing brass shavings with activated carbon.
Of course, it will be appreciated that copper or brass can be used in combination with other fluid treatment methods, such as ion exchange and reverse osmosis to provide similar bactericidal / bacteriostatic media. further,
It will be appreciated that the metal-based bactericide may be separate from the other treatment medium or may be integrated therewith, for example by impregnating activated carbon with copper or brass. Example IV shows that the present invention is also effective in suppressing the growth of organisms having relatively large resistance to antimicrobial agents, such as Pseudomonas sp.

本発明方法は望ましくない成分を化学的に処理するほ
かに、望ましくない懸濁固体を物理的に過するために
も利用される。この観点の本発明は懸濁した鉄を除去す
るために特に利用される。この鉄は水中に天然に、塩素
処理などの前処理の結果、または本方法に用いられる金
属粒子床との反応の結果存在するものである。水を溶存
鉄の処理のために塩素で前処理する場合、本方法は生じ
る懸濁鉄を過するだけでなく、水中に残留する塩素を
も処理するであろう。金属粒状物床を収容したキャニス
ターは定期的に逆洗浄して、粒状物床中に集められた
過物を除去し、粒状物床の目詰りを除くことができる。
しかし他の処理法、たとえば逆浸透法およびイオン交換
法の場合と異なり、この種の逆洗浄は濃縮された望まし
くない成分落とすものではない。
In addition to chemically treating undesired components, the method of the present invention is utilized to physically pass undesired suspended solids. The invention of this aspect is particularly utilized to remove suspended iron. This iron is naturally present in water, as a result of pretreatment such as chlorination, or as a result of reaction with the bed of metal particles used in the method. If the water is pretreated with chlorine for the treatment of dissolved iron, the method will not only pass through the resulting suspended iron, but will also treat the chlorine remaining in the water. The canister containing the metal particulate bed can be backwashed periodically to remove excess material collected in the particulate bed and to clear the particulate bed from clogging.
However, unlike other processing methods, such as reverse osmosis and ion exchange, this type of backwash does not remove concentrated unwanted components.

本発明の他の別形態は、水を金属粒状物(たとえば黄
銅)床、ならびに過材および/または過助剤(たと
えば砂)床の双方に導通して、望ましくない懸濁物の
過を高めることによる精製法である。
Another aspect of the invention is to conduct water through both the metal particulate (eg brass) bed and the wood and / or super-auxiliary (eg sand) bed to enhance the undesired suspension. This is a purification method.

当業者には本発明の精神および範囲から逸脱すること
なく多くの修正および変更をなしうることは認識される
であろう。従って本発明の範囲は請求の範囲によっての
み制限されるべきである。
One of ordinary skill in the art will recognize that many modifications and variations can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be limited only by the claims.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 531 C02F 1/50 531F 540 540D 550 550B 550H 560 560B 560D 560E 1/58 ZAB 1/58 ZABA 1/64 CCZ 1/64 CCZZ 1/66 510 1/66 510A 521 521J 530 530B 540 540A 540G (56)参考文献 特開 昭61−502103(JP,A) 特開 昭60−147283(JP,A) 特開 昭55−64898(JP,A) 特開 昭61−178089(JP,A) 特開 昭61−72099(JP,A) 特開 昭56−111081(JP,A) 実開 昭62−106697(JP,U) 実公 昭54−45020(JP,Y2)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location C02F 1/50 531 C02F 1/50 531F 540 540D 550 550B 550H 560 560B 560D 560E 1/58 ZAB 1 / 58 ZABA 1/64 CCZ 1/64 CCZZ 1/66 510 1/66 510A 521 521J 530 530B 540 540A 540G (56) Reference JP 61-502103 (JP, A) JP 60-147283 (JP, 147283) A) JP 55-64898 (JP, A) JP 61-178089 (JP, A) JP 61-72099 (JP, A) JP 56-111081 (JP, A) -106697 (JP, U) Actual public Sho 54-45020 (JP, Y2)

Claims (25)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】流体を処理して該流体の中に含まれる望ま
しくない細菌成分を死滅させ、および抑制する方法であ
って、上記成分を含有する流体を、銅を少なくとも50重
量%含有する銅/亜鉛合金の微細な金属と接触させるこ
とにより該成分を死滅させ、および抑制することからな
る前記方法。
1. A method of treating a fluid to kill and control unwanted bacterial constituents contained in the fluid, the fluid containing said constituent comprising at least 50% by weight copper. / A method of killing and inhibiting said components by contacting them with a fine metal of a zinc alloy.
【請求項2】接触を、流体を銅/亜鉛合金の微細な金属
からなる床を導通させることによって行う、請求の範囲
第1項に記載の方法。
2. The method according to claim 1, wherein the contacting is carried out by passing a fluid through a bed of fine metal of a copper / zinc alloy.
【請求項3】微細な金属が金属粒子である、請求の範囲
第1項又は第2項に記載の方法。
3. The method according to claim 1 or 2, wherein the fine metal is a metal particle.
【請求項4】合金中の銅対亜鉛の比率が重量で1:1であ
る、請求の範囲第1項に記載の方法。
4. The method of claim 1 wherein the ratio of copper to zinc in the alloy is 1: 1 by weight.
【請求項5】合金中の銅対亜鉛の比率が重量で3:2であ
る、請求の範囲第1項に記載の方法。
5. A method according to claim 1 wherein the ratio of copper to zinc in the alloy is 3: 2 by weight.
【請求項6】合金中の銅対亜鉛の比率が重量で7:3であ
る、請求の範囲第1項に記載の方法。
6. The method of claim 1 wherein the ratio of copper to zinc in the alloy is 7: 3 by weight.
【請求項7】活性炭と密に混和された、銅と亜鉛の微細
な金属からなることを改良点とする、改良された活性炭
型流体処理用媒体。
7. An improved activated carbon type fluid treatment medium, characterized in that it comprises finely divided metals of copper and zinc intimately mixed with activated carbon.
【請求項8】微細な金属が金属粒子である、請求の範囲
第7項に記載の活性炭型流体用媒体。
8. The activated carbon type fluid medium according to claim 7, wherein the fine metal is metal particles.
【請求項9】銅と亜鉛が銅/亜鉛合金の形で存在する、
請求の範囲第7項に記載の活性炭型流体処理用媒体。
9. Copper and zinc are present in the form of a copper / zinc alloy,
The activated carbon type fluid treatment medium according to claim 7.
【請求項10】銅/亜鉛合金中の銅含量が少なくとも50
重量%である、請求の範囲第9項に記載の活性炭型流体
処理用媒体。
10. The copper content in the copper / zinc alloy is at least 50.
The activated carbon-type fluid treatment medium according to claim 9, which is in a weight percentage.
【請求項11】流体を処理するための装置にして、該装
置はこれを被処理流体の供給部に連結する装置入口手
段;銅と亜鉛の微細な金属からなる第1の流体処理媒体
および活性炭からなる第2の流体処理媒体を内包する室
手段;並びに該室手段と連絡する流体入口通路および流
体出口通路の組み合わせからなり;そして該室手段は該
処理媒体に流体を貫流させかつ該処理媒体の逃散を防止
するように構成および配置されている、前記流体処理装
置。
11. A device for treating a fluid, said device comprising means for connecting the device to a supply part of a fluid to be treated; a first fluid treatment medium comprising fine metal of copper and zinc and activated carbon. A second fluid treatment medium containing a chamber means; and a combination of a fluid inlet passage and a fluid outlet passage communicating with the chamber means; and the chamber means allowing the fluid to flow through the treatment medium and the treatment medium. The fluid treatment arrangement configured and arranged to prevent escape of the fluid.
【請求項12】微細な金属が金属粒子である、請求の範
囲第11項に記載の流体処理装置。
12. The fluid treatment apparatus according to claim 11, wherein the fine metal is metal particles.
【請求項13】銅と亜鉛が銅/亜鉛合金の形で存在す
る、請求の範囲第11項に記載の流体処理装置。
13. The fluid treatment arrangement of claim 11 wherein copper and zinc are present in the form of a copper / zinc alloy.
【請求項14】銅/亜鉛合金中の銅含量が少なくとも50
重量%である、請求の範囲第13項に記載の流体処理装
置。
14. A copper / zinc alloy having a copper content of at least 50.
14. The fluid treatment device of claim 13, which is in weight percent.
【請求項15】流体を処理するための装置にして、該装
置はこれを被処理流体の供給部に連結する装置入口手
段;銅と亜鉛の微細な金属からなる第1の流体処理媒体
およびイオン交換樹脂処理媒体である第2の流体処理媒
体を内包する室手段;並びに該室手段と連絡する流体入
口通路および流体出口通路の組み合わせからなり;そし
て該室手段は該処理媒体に流体を貫流させかつ該処理媒
体の逃散を防止するように構成および配置されている、
前記流体処理装置。
15. A device for treating a fluid, said device comprising means for connecting the device to a supply of the fluid to be treated; a first fluid treatment medium consisting of fine metal of copper and zinc and ions. A chamber means enclosing a second fluid treatment medium that is an exchange resin treatment medium; and a combination of a fluid inlet passage and a fluid outlet passage in communication with the chamber means; and the chamber means allowing fluid to flow through the treatment medium. And configured and arranged to prevent escape of the processing medium,
The fluid treatment device.
【請求項16】微細な金属が金属粒子である、請求の範
囲第15項に記載の流体処理装置。
16. The fluid treatment apparatus according to claim 15, wherein the fine metal is metal particles.
【請求項17】銅と亜鉛が銅/亜鉛合金の形で存在す
る、請求の範囲第15項に記載の流体処理装置。
17. The fluid treatment arrangement of claim 15 wherein copper and zinc are present in the form of a copper / zinc alloy.
【請求項18】銅/亜鉛合金中の銅含量が少なくとも50
重量%である、請求の範囲第17項に記載の流体処理装
置。
18. The copper content of the copper / zinc alloy is at least 50.
18. The fluid treatment device of claim 17, wherein the fluid treatment device is in weight percent.
【請求項19】流体を処理するための装置にして、該装
置はこれを被処理流体の供給部に連結する装置入口手
段;銅と亜鉛の微細に金属からなる第1の流体処理媒体
および逆浸透型処理媒体である第2の流体処理媒体を内
包する室手段;並びに該室手段と連絡する流体入口通路
および流体出口通路の組み合わせからなり;そして該室
手段は該処理媒体に流体を貫流させかつ該処理媒体の逃
散を防止するように構成および配置されている、前記流
体処理装置。
19. A device for treating a fluid, said device comprising means for connecting the device to a supply of the fluid to be treated; a first fluid treatment medium consisting of finely divided metal of copper and zinc and a reverse. Chamber means for enclosing a second fluid treatment medium which is an osmotic treatment medium; and a combination of fluid inlet passages and fluid outlet passages communicating with the chamber means; and the chamber means allowing fluid to flow through the treatment medium. And the fluid treatment arrangement configured and arranged to prevent escape of the treatment medium.
【請求項20】微細な金属が金属粒子である、請求の範
囲第19項に記載の流体処理装置。
20. The fluid treatment apparatus according to claim 19, wherein the fine metal is metal particles.
【請求項21】銅と亜鉛が銅/亜鉛合金の形で存在す
る、請求の範囲第19項に記載の流体処理装置。
21. The fluid treatment arrangement of claim 19 wherein copper and zinc are present in the form of a copper / zinc alloy.
【請求項22】銅/亜鉛合金中の銅含量が少なくとも50
重量%である、請求の範囲第21項に記載の流体処理装
置。
22. The copper content in the copper / zinc alloy is at least 50.
The fluid treatment device of claim 21, wherein the fluid treatment device is in weight percent.
【請求項23】含有される懸濁タンニンを除去するため
の流体処理法であって、該タンニンを含有する該流体を
銅/亜鉛合金の微細な金属と接触させることにより該タ
ンニンを除去することからなる、上記方法。
23. A fluid treatment method for removing suspended tannins contained therein, comprising removing the tannins by contacting the fluid containing the tannins with a fine metal of a copper / zinc alloy. Consisting of the above method.
【請求項24】流体のpHを上昇させるための流体処理法
であって、該流体を銅/亜鉛合金の微細な金属と接触さ
せることからなる、上記方法。
24. A fluid treatment method for increasing the pH of a fluid, said method comprising contacting said fluid with a fine metal of a copper / zinc alloy.
【請求項25】含有される溶存鉄を除去するための流体
処理法であって、該溶存鉄を含有する該流体を銅/亜鉛
合金の微細な金属と接触させることにより該溶存鉄を除
去することからなる、上記方法。
25. A fluid treatment method for removing contained dissolved iron, which comprises removing the dissolved iron by contacting the fluid containing the dissolved iron with a fine metal of a copper / zinc alloy. Consisting of the above method.
JP61505434A 1985-09-23 1986-09-23 Fluid processing method and processing apparatus Expired - Lifetime JP2566230B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77922685A 1985-09-23 1985-09-23
US779226 2001-02-08

Publications (2)

Publication Number Publication Date
JPS63501276A JPS63501276A (en) 1988-05-19
JP2566230B2 true JP2566230B2 (en) 1996-12-25

Family

ID=25115731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61505434A Expired - Lifetime JP2566230B2 (en) 1985-09-23 1986-09-23 Fluid processing method and processing apparatus

Country Status (10)

Country Link
EP (1) EP0238639B1 (en)
JP (1) JP2566230B2 (en)
KR (1) KR940009276B1 (en)
AT (1) ATE83225T1 (en)
AU (1) AU600919B2 (en)
DE (1) DE3687269T2 (en)
HK (1) HK40697A (en)
NO (1) NO171779C (en)
OA (1) OA08601A (en)
WO (1) WO1987001688A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6432690A (en) * 1989-09-05 1991-04-08 Global Star Products Limited Filtered drinking straw
US5269919A (en) * 1992-01-17 1993-12-14 Von Medlin Wallace Self-contained water treatment system
EP0610981B1 (en) * 1993-02-09 1997-10-29 Agfa-Gevaert N.V. A method for making a lithographic offset plate by the silver salt diffusion transfer process
US5407573A (en) * 1993-06-01 1995-04-18 Alpine Water Purification, Inc. Continuous flow water-purifying device
DE202015106890U1 (en) 2015-12-17 2017-03-20 Hans Sasserath Gmbh & Co. Kg backwash filter
US11472719B2 (en) 2019-08-07 2022-10-18 Derek FRENCH Coated granular water filtration media
WO2024167574A1 (en) * 2023-02-10 2024-08-15 Delta Faucet Company Reverse osmosis pre-filter with scale reduction

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1428618A (en) * 1920-08-24 1922-09-12 Fred W Wagner Purification of waste liquid
US1557234A (en) * 1923-09-14 1925-10-13 Bechhold Heinrich Filter
GB279085A (en) * 1926-10-14 1929-04-12 Georg Alexander Krause A method of, and apparatus for, sterilizing water and other liquids
US2216844A (en) * 1936-10-07 1940-10-08 Kuhl Georg Walter Process for softening water
CH272578A (en) * 1947-06-19 1950-12-31 Sahli Werner Passage device for water.
CH339888A (en) * 1954-06-23 1959-07-15 Katadyn Ges Mbh Deutsche Device for the treatment of liquids, in particular drinking water
US3617559A (en) * 1970-04-30 1971-11-02 Us Interior Neutralization of ferrous iron-containing acid wastes
US4108790A (en) * 1971-11-02 1978-08-22 Exxon Research & Engineering Co. Corrosion inhibitor
DE2316668A1 (en) * 1972-04-03 1973-10-18 Sunwave Kogyo K K DEVICE FOR PURIFYING WATER
US4000033A (en) * 1973-04-25 1976-12-28 Canadian Patents And Development Limited Removal of color and organic matter from kraft process bleach effluents
JPS5064898A (en) * 1973-10-15 1975-06-02
US4108772A (en) * 1976-03-30 1978-08-22 E. I. Du Pont De Nemours And Company Sludge disinfection
SE441143B (en) * 1976-09-02 1985-09-16 Hoechst Ag MEMBRANE UNIT AND DEVICE FOR DISPOSAL OF BLOOD METABOLITES
JPS5445020U (en) * 1977-09-03 1979-03-28
US4332685A (en) * 1978-01-26 1982-06-01 Ecodyne Corporation Method and apparatus for treating water
US4219419A (en) * 1978-09-14 1980-08-26 Envirogenics Systems Company Treatment of reducible hydrocarbon containing aqueous stream
US4396512A (en) * 1979-06-01 1983-08-02 Everpure, Inc. Bacteriostatic filter media
US4416854A (en) * 1979-08-24 1983-11-22 Sharon G. Nielsen Method for killing water borne microorganisms
DE3001674A1 (en) * 1980-01-18 1981-07-23 Fichtel & Sachs Ag, 8720 Schweinfurt Drinking water filter - with filter element including acidulating and biocidal substances
US4430226A (en) * 1981-03-09 1984-02-07 Millipore Corporation Method and apparatus for producing ultrapure water
US4414115A (en) * 1981-12-21 1983-11-08 Aluminum Company Of America Removal of copper and zinc species from Bayer process liquor by filtration
US4427643A (en) * 1982-06-08 1984-01-24 Frito-Lay, Inc. Method and apparatus for generating high pH limewater
US4455236A (en) * 1982-12-20 1984-06-19 General Electric Company Method for removing hydrogen sulfide from aqueous streams
JPS60147283A (en) * 1984-01-09 1985-08-03 Yasuo Sato Water deodorizing jig
WO1985005099A1 (en) * 1984-04-30 1985-11-21 Heskett Don E Method of treating fluids
JPS6172099A (en) * 1984-09-18 1986-04-14 Keiyoo:Kk Agent for preventing degradation of liquid such as water-soluble metal working fluid, water, etc.
JPS6313837Y2 (en) * 1984-12-21 1988-04-19
JPS61178089A (en) * 1985-01-31 1986-08-09 Mitsubishi Chem Ind Ltd Purification of aqueous solution containing organic substance

Also Published As

Publication number Publication date
EP0238639A1 (en) 1987-09-30
OA08601A (en) 1988-11-30
ATE83225T1 (en) 1992-12-15
JPS63501276A (en) 1988-05-19
DE3687269D1 (en) 1993-01-21
KR940009276B1 (en) 1994-10-06
AU600919B2 (en) 1990-08-30
DE3687269T2 (en) 1993-07-01
NO171779C (en) 1993-05-05
EP0238639A4 (en) 1988-12-12
HK40697A (en) 1997-04-11
KR870700574A (en) 1987-12-30
EP0238639B1 (en) 1992-12-09
AU6541086A (en) 1987-04-07
WO1987001688A1 (en) 1987-03-26
NO872170D0 (en) 1987-05-22
NO171779B (en) 1993-01-25
NO872170L (en) 1988-01-14

Similar Documents

Publication Publication Date Title
US5198118A (en) Method for treating fluids
US5314623A (en) Method for treating fluids
US5415770A (en) Apparatus for treating fluids
US5275737A (en) Method for treating fluids
US5122274A (en) Method of treating fluids
US4642192A (en) Method of treating fluids
US5269932A (en) Method of treating fluids
US4198296A (en) Process and apparatus for treating drinking water
US5082570A (en) Regenerable inorganic media for the selective removal of contaminants from water sources
US5149437A (en) Water filter
US20110139726A1 (en) Filtration media coated with zero-valent metals, their process of making, and use
US6197204B1 (en) Zinc oxide fluid treatment
EP1202936A1 (en) Novel materials and methods for water purification
SI25327A (en) Remediation apparatus and procedure for remediation of water from small biological wastewater treatment plants
JP2566230B2 (en) Fluid processing method and processing apparatus
US5603844A (en) Instant, chemical-free dechlorination of water supplies
CA1254680A (en) Method for treating fluids
WO2005075367A1 (en) The method of water treatment and the device for water treatment
US20060237371A1 (en) Sorbent for selective removal of contaminants from fluids
GB1602768A (en) Method and apparatus for producing biologically safe drinking water from natural water
US20050061747A1 (en) Flow-through fluidized filter tubes for water treatment
Hou et al. Microporous filters with oxidizing power for iron and manganese removal from water
RU2203228C2 (en) Method of cleaning and decontamination of water
US20020063089A1 (en) Water filtration device employing far infrared media
JPH0724490U (en) Water purifier