JP2564030B2 - Method for producing carbon thin film electrode for electrochemical measurement - Google Patents
Method for producing carbon thin film electrode for electrochemical measurementInfo
- Publication number
- JP2564030B2 JP2564030B2 JP2257072A JP25707290A JP2564030B2 JP 2564030 B2 JP2564030 B2 JP 2564030B2 JP 2257072 A JP2257072 A JP 2257072A JP 25707290 A JP25707290 A JP 25707290A JP 2564030 B2 JP2564030 B2 JP 2564030B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- film
- thin film
- substrate
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、フローセル、または液体クロマトグラフ
ィ、バイオセンサーなどに使用される電気化学測定用電
極の製造法に関する。TECHNICAL FIELD The present invention relates to a method for producing an electrode for electrochemical measurement used in a flow cell, a liquid chromatography, a biosensor, or the like.
[従来の技術] 電気化学測定は溶液中の水素イオン濃度、微量金属イ
オン検出、生体中の微量成分などの検出に利用されてい
る。測定に使用される電極材料としては、広い電位範囲
における測定が可能であることが重要である。測定可能
の電位範囲、即ち電位窓は電極、溶媒、支持電解質によ
り相異し、この電位窓の範囲内では電極は理想分極す
る。[Prior Art] Electrochemical measurement is used for detecting hydrogen ion concentration in a solution, detection of trace metal ions, detection of trace components in a living body, and the like. It is important that the electrode material used for measurement be capable of measurement in a wide potential range. The measurable potential range, that is, the potential window differs depending on the electrode, the solvent, and the supporting electrolyte, and the electrode is ideally polarized within this potential window.
最も一般的な水溶液系の場合、電解質の種類が同一で
ある場合は、(1)水素過電圧(実際の水素発生電位と
理論的平衡電位との差)が大きいもの(2)酸素過電圧
(実際の酸素の発生電位と理論的平衡電位との差)が大
きいもの、および(3)電極の溶解電位が高いものの電
位窓が広い。In the case of the most common aqueous solution system, if the type of electrolyte is the same, (1) hydrogen overvoltage (difference between actual hydrogen generation potential and theoretical equilibrium potential) is large (2) oxygen overvoltage (actual The potential window is wide for those having a large difference between the oxygen generation potential and the theoretical equilibrium potential) and (3) having a high electrode dissolution potential.
実際、電極材料としては金、白金、パラジウムなど貴
金属、水銀、SnO2、In2O3などの半導体、グラッシーカ
ーボン、結晶性カーボンなど半金属が使用されている。
こえらの材料中、貴金属類では酸素過電圧が高く酸化溶
解し難いため、酸化側では広い電位範囲内において測定
用電極として使用可能である。しかしながら、金電極で
は、ハロゲンイオンやシアンなどを含有する溶液中では
錯形成して溶解が生起し易く、測定可能の電位範囲は小
さくなる。また、貴金属は水素過電圧が小さいために還
元側の測定に使用し難い欠点もあり使用が限定される。
一方、水銀電極では、水素過電圧が大きく還元側の測定
には適するが、酸化側では溶解が生じるため酸化反応の
測定には使用できない。SnO2、In2O3は透明電極として
使用され、測定可能の電位範囲も相当に広いが、還元側
では、錫やインジウムに電極が還元される欠点がある。In fact, as electrode materials, precious metals such as gold, platinum and palladium, semiconductors such as mercury, SnO 2 and In 2 O 3 , semimetals such as glassy carbon and crystalline carbon are used.
Among these materials, noble metals have a high oxygen overvoltage and are difficult to oxidize and dissolve, and thus can be used as a measuring electrode in a wide potential range on the oxidizing side. However, the gold electrode is likely to be complexed and dissolved in a solution containing halogen ions, cyan, etc., and the measurable potential range becomes small. Further, since noble metals have a small hydrogen overvoltage, they are difficult to use for measurement on the reduction side, and their use is limited.
On the other hand, a mercury electrode has a large hydrogen overvoltage and is suitable for measurement on the reduction side, but cannot be used for measurement of an oxidation reaction because dissolution occurs on the oxidation side. SnO 2 and In 2 O 3 are used as transparent electrodes, and the measurable potential range is considerably wide, but on the reducing side, the electrodes are reduced to tin or indium.
カーボン電極は、耐蝕性が強く、酸化側還元側とも電
位窓が広いために巾広い電位における物質検出が可能で
あり、センサーとして、またクロマトグラム用の検出器
として、最も広く利用されている。The carbon electrode has strong corrosion resistance and has a wide potential window on both the oxidation side and the reduction side, so that it can detect substances in a wide potential range, and is most widely used as a sensor and a detector for a chromatogram.
一方、近年、微量の溶液試料、生体内部などの微小領
域の分析を目的として、微小電極が積極的に研究され
て、センサーや生体細胞内物質の測定などへの応用が試
みられている。On the other hand, in recent years, microelectrodes have been positively studied for the purpose of analyzing a minute amount of a solution sample, a minute region such as the inside of a living body, and application to a sensor or measurement of a substance in a living cell has been attempted.
また、微小電極は高感度であって、応答が速いことが
知られており、フローインジェクションやクロマトグラ
フィの検出電極としても注目されている。この微小電極
の応答挙動は、電極形状に依存し、電極サイズが減少す
るに従って、応答が速くなるため、種々の電極形状や電
極の微細化が検討されている。カーボン電極ではガラス
細管に封入した炭素繊維やガラス細管の内壁表面上にCV
D法によりカーボン膜を析出させ、その端面が微小リン
グ電極として利用された例が、Anal.Chem.、58(198
6)、1782に報告されている。Further, it is known that microelectrodes have high sensitivity and quick response, and are attracting attention as detection electrodes for flow injection and chromatography. The response behavior of the microelectrode depends on the electrode shape, and the response becomes faster as the electrode size decreases, so various electrode shapes and miniaturization of electrodes have been studied. In the carbon electrode, carbon fibers enclosed in the glass capillary or CV on the inner wall surface of the glass capillary.
An example in which a carbon film was deposited by the D method and the end face thereof was used as a minute ring electrode was reported in Anal. Chem., 58 (198
6), 1782.
これらの電極は生体内など微小領域の測定には有利で
あるが、検出できる電流値はnAオーダー以下に低下し、
測定時にノイズ増加や感度の低下が生じるため、低濃度
の試料の測定が困難となり測定時に電気的シールドを必
要とするなどの問題があった。Although these electrodes are advantageous for measuring minute areas such as in vivo, the detectable current value drops below the nA order,
Since noise increases and sensitivity decreases during measurement, there is a problem that it is difficult to measure a low-concentration sample and an electric shield is required during measurement.
電極の感度向上のため、作用電極数を増加する即ち、
アレイ化することが提案されている。To improve the sensitivity of the electrodes, increase the number of working electrodes, that is,
Arraying has been proposed.
アレイ化の試みとして、多数の炭素繊維をエポキシ樹
脂などのプラスチック中に封入使用した例がAnal.Che
m.、61(1989)、159に、グラッシーカーボン、または
結晶性カーボンの電極上に絶縁膜がコートされた後、レ
ーザーが使用されて微細な孔が多数穿設されてアレイ電
極が多数作製された例がAnal.Chem.、62(1990)、1339
に、報告されているが、電極の作製に長時間が必要とい
う欠点を有する。特に、前者では電極間の距離が正確に
制御できないことが原因して応答の再現性に問題があ
る。In an attempt to make an array, an example of encapsulating a large number of carbon fibers in a plastic such as epoxy resin is used in Anal.Che.
m., 61 (1989), 159, a glassy carbon or crystalline carbon electrode is coated with an insulating film, and then a laser is used to form a large number of fine holes to form a large number of array electrodes. An example is Anal. Chem., 62 (1990), 1339.
However, it has a drawback that it takes a long time to manufacture an electrode. In particular, the former has a problem in the reproducibility of the response because the distance between the electrodes cannot be controlled accurately.
微小アレイ電極を作製する方法として、近年、リソグ
ラフィ技術の応用が提案されている。In recent years, application of lithography technology has been proposed as a method for producing a microarray electrode.
この方法ではレジストが基板に塗布され、電極パター
ンを有する画像マスクが重ねられ、露光、現像された
後、金属薄膜が蒸着法などにより形成され、レジストが
剥離させられて、基板上に微小電極が得られるリフトオ
フ法や、絶縁性基板上に金属薄膜が作製された後、レジ
ストが塗布され、電極パターンを有する画像マスクが重
ねられて、露光させられ、現像されて、更に残留のレジ
ストがマスクにされ露出部分の金属薄膜がエッチングさ
れて、電極パターンが得られるエッチング法が知られて
いる。In this method, a resist is applied to a substrate, an image mask having an electrode pattern is overlaid, exposed and developed, and then a metal thin film is formed by a vapor deposition method or the like, and the resist is peeled off to form a microelectrode on the substrate. The resulting lift-off method or after a metal thin film is formed on an insulating substrate, a resist is applied, an image mask having an electrode pattern is overlaid, exposed, and developed, and the remaining resist is used as a mask. An etching method is known in which an electrode pattern is obtained by etching the exposed metal thin film.
この方法では、任意の形状、一定の電極間距離を有す
る微小電極が、多数、再現性よく、基板上に作製され得
る。In this method, a large number of microelectrodes having an arbitrary shape and a constant interelectrode distance can be produced on the substrate with good reproducibility.
このようなリソグラフィ技術をカーボン電極に応用す
るためには均一であって加工耐性があり、パターン形成
が可能であるカーボン薄膜が必要である。近年、スパッ
タ法またはCVD法により種々のカーボン薄膜が得られて
おり、これを微細加工してミクロンあるいはサブミクロ
ンオーダーのパターンの作製が可能であることが報告さ
れている。しかしながら、ガラス、またはシリコンなど
の基板上に上記の真空プロセスによって作製されたカー
ボン膜は、水中または有機溶媒中では膜の破損や剥離が
生じ、繰り返して電気化学測定を行うことが不可能であ
った。In order to apply such a lithographic technique to a carbon electrode, a carbon thin film that is uniform, has process resistance, and is capable of pattern formation is required. In recent years, various carbon thin films have been obtained by a sputtering method or a CVD method, and it has been reported that microfabrication of these carbon thin films can produce a micron or submicron order pattern. However, a carbon film produced by the above vacuum process on a substrate such as glass or silicon is damaged or peeled off in water or an organic solvent, and it is impossible to repeatedly perform an electrochemical measurement. It was
また、充分に高導電性の膜が得られないためにバンド
状、くし型などの形状としてミクロンオーダーにまで細
線化させられた場合は抵抗が著しく増加して、電気化学
測定の際に正確な電位を印加できない欠点があった。In addition, because a sufficiently high-conductivity film cannot be obtained, if the wire is made into a band shape, a comb shape, or the like, and the wire is made finer to the micron order, the resistance increases remarkably, and it is There was a drawback that an electric potential could not be applied.
[発明の目的] この発明の目的は、上記の現状製品を改良するため
に、水中、有機溶媒中において膜剥離や破壊が発生する
ことなく安定であり、微細パターンの形成が可能の電気
化学測定用カーボン薄膜電極の製造方法を提供すること
にある。[Object of the Invention] An object of the present invention is to improve the above-mentioned current products, and is stable in water and in an organic solvent without film peeling or destruction, and is an electrochemical measurement capable of forming a fine pattern. Another object of the present invention is to provide a method of manufacturing a carbon thin-film electrode for use in a car.
[発明の構成] この発明を概説すれば、この発明は絶縁性基板上に、
あるいは絶縁性の基板との間に導電性膜を挟み、全面ま
たはパターン状に形成された導電性カーボン薄膜およ
び、全面かまたは一部がパターン状の絶縁膜を以て覆わ
れた該導電性カーボン薄膜からなる電気化学測定用の電
極において、導電性カーボン薄膜を有機化合物の気相成
長法、または蒸着法により作製するか、あるいは、基板
上に高分子薄膜を塗布法、スピンコート法、電解重合
法、またはキャスト法により形成した後に加熱によって
炭化して作製するか、あるいは基板上に高分子薄膜を、
塗布法、スピンコート法、またはキャスト法により形成
し、その後、カーボンのスパッタ法またはCVD法により
導電性カーボン膜を作製することを特徴とする。[Structure of the Invention] The present invention will be summarized as follows.
Alternatively, a conductive carbon thin film formed by sandwiching a conductive film between an insulating substrate and the conductive carbon thin film formed entirely or in a pattern, and the conductive carbon thin film entirely or partially covered with a patterned insulating film In the electrode for electrochemical measurement consisting of, a conductive carbon thin film is prepared by a vapor deposition method of an organic compound, or a vapor deposition method, or a polymer thin film is applied on a substrate by a coating method, a spin coating method, an electrolytic polymerization method, Alternatively, it is formed by casting and then carbonized by heating, or a polymer thin film is formed on the substrate.
It is characterized in that it is formed by a coating method, a spin coating method, or a casting method, and then a conductive carbon film is formed by a carbon sputtering method or a CVD method.
この発明の方法により作製されたカーボン薄膜は微細
パターン化することが可能であり、水中、有機溶媒中に
おいて膜剥離や破壊を発生させず、安定な電気化学測定
が可能という特長がある。The carbon thin film produced by the method of the present invention can be formed into a fine pattern, and is characterized in that it does not cause film peeling or destruction in water or an organic solvent, and enables stable electrochemical measurement.
即ち、従来既知のグラッシーカーボン、結晶性カーボ
ン、炭素繊維、カーボンペースト電極では微小アレイ電
極化することが困難であった。That is, it has been difficult to form a fine array electrode with the conventionally known glassy carbon, crystalline carbon, carbon fiber, and carbon paste electrodes.
また、従来既知のカーボン薄膜では電極に応用した場
合、水中などでは膜が破壊され、その使用が困難であっ
た。これに対し、この発明の電極においてはカーボン膜
を有機化合物の気相成長によって高結晶性の緻密な膜と
した形態を以て得ることが可能であるために均一性と密
着性に優れており、あるいはまた、当初に、高分子薄膜
の形態を以て膜を作製しておき、その後、炭化してカー
ボン化したり、高分子を接着相として先にコートしてお
き、その後、スパッタ法などによってカーボン膜を作製
することにより、基板との密着性が高く、剥離し難いな
どの利点を有する。In addition, when a conventionally known carbon thin film is applied to an electrode, the film is broken in water or the like, which makes it difficult to use. On the other hand, in the electrode of the present invention, it is possible to obtain a carbon film in the form of a dense film having high crystallinity by vapor phase growth of an organic compound, and therefore it is excellent in uniformity and adhesion, or In addition, first, a film was formed in the form of a polymer thin film, then carbonized to carbonize, or a polymer was previously coated as an adhesive phase, and then a carbon film was formed by a sputtering method or the like. This has advantages such as high adhesion to the substrate and difficulty in peeling.
更に、絶縁性基板との間に導電性膜を設ければカーボ
ン膜自体が薄いことなどのために電導度が低くても導電
性膜があるため電極としての導電率は低下しないのであ
り、正しい電位の印加不可能などという問題は解決する
ことができる。Furthermore, if a conductive film is provided between the insulating substrate and the carbon film itself is thin, the conductivity as an electrode does not decrease because of the conductive film even if the conductivity is low. The problem that the potential cannot be applied can be solved.
また、炭化させる高分子に導電性高分子や有機半導体
を選定した場合は、従来のプロセスにより作製されたカ
ーボン膜に比較して、極めて大きい導電性が得られるた
め、微細パタンを作製しても抵抗の増加を相当に抑制す
ることができる。In addition, when a conductive polymer or an organic semiconductor is selected as the polymer to be carbonized, extremely large conductivity can be obtained as compared with a carbon film prepared by a conventional process, and therefore even if a fine pattern is prepared. The increase in resistance can be suppressed considerably.
次に、形成されるパターンとしては、円形、環状のも
のや、方形、六角形などの多角形、線形、またはこれら
をアレイ状に並べたディスクアレイや、くし形などを挙
げることができる。更にはこれら種々の形状の作用電極
に加えて、電気化学測定において必要である参照電極と
対向電極をも一体化して作製することも可能である。Next, the pattern to be formed may be circular, annular, polygonal such as rectangular or hexagonal, linear, or a disk array in which these are arranged in an array or a comb. Further, in addition to the working electrodes having these various shapes, it is possible to integrally manufacture a reference electrode and a counter electrode which are necessary for electrochemical measurement.
次に、パターンの作製の方法としては、表面、あるい
は全体が絶縁性の基板上、またはその基板上に蒸着、ス
パッタデポジション、CVD、液相エピタキシャル成長な
どによって金属、半導体を形成した上に蒸着、CVD、高
分子膜の炭化などにより導電性カーボン薄膜を形成し、
これにレジストを塗布後に、パターンを露光、現像して
カーボン膜の一部を露出させる方法、またはその後、反
応性イオンエッチングや、アルゴンミリングによって、
パターンをカーボン膜に転写する方法を挙げることがで
きる。更に、カーボン膜の形成の後、蒸着、スパッタデ
ポジション、CVDなどによって、窒化シリコンや、酸化
シリコンなどの絶縁膜を形成して、その上にレジストパ
ターンを形成した後、反応性イオンエッチングやアルゴ
ンミリングにより絶縁膜の一部をエッチングして、下地
のカーボン膜を露出させることにより、電極パターンを
形成することもできる。Next, as a method of forming a pattern, a surface, or a substrate having an entire insulating property, or vapor deposition on the substrate, sputter deposition, CVD, liquid phase epitaxial growth, or the like on which a metal or semiconductor is formed, is vapor deposited, Form a conductive carbon thin film by CVD, carbonization of polymer film, etc.
After applying a resist to this, a method of exposing and developing the pattern to expose a part of the carbon film, or thereafter, by reactive ion etching or argon milling,
The method of transferring a pattern to a carbon film can be mentioned. Furthermore, after forming the carbon film, an insulating film such as silicon nitride or silicon oxide is formed by vapor deposition, sputter deposition, CVD, etc., and a resist pattern is formed on the insulating film, followed by reactive ion etching or argon. An electrode pattern can also be formed by etching a part of the insulating film by milling to expose the underlying carbon film.
その表面、または全体が絶縁性の基板としては酸化膜
付シリコン基板、石英板、アルミナ基板、ガラス基板、
プラスチック基板などを挙げることができる。導電性基
板としては金、白金、銀、パラジウム、クロム、チタ
ン、ステンレスおよびこれらを絶縁性の基板上にコート
したものなどを挙げることができる。A silicon substrate with an oxide film, a quartz plate, an alumina substrate, a glass substrate, or a substrate whose surface or the whole is insulative
A plastic substrate can be used. Examples of the conductive substrate include gold, platinum, silver, palladium, chromium, titanium, stainless steel, and those obtained by coating these on an insulating substrate.
また、pおよびn型のシリコン、pおよびn型のゲル
マニウム、硫化カドミウム、二酸化チタン酸化亜鉛、ガ
リウム燐、ガリウム砒素、インジウム燐、カドミウムセ
レン、カドミウムテルル、二硫化モリブデン、セレン化
タングステン、二酸化銅、酸化錫、酸化インジウム、イ
ンジウム錫酸化物などの半導体を基板上にコートして得
ることも可能である。Further, p and n type silicon, p and n type germanium, cadmium sulfide, titanium dioxide zinc oxide, gallium phosphide, gallium arsenide, indium phosphide, cadmium selenium, cadmium tellurium, molybdenum disulfide, tungsten selenide, copper dioxide, It is also possible to obtain by coating a substrate with a semiconductor such as tin oxide, indium oxide, or indium tin oxide.
カーボン薄膜を得るために、絶縁性の基板上に直接
に、または絶縁性基板との間に、導電性膜を介在させ、
全面的に被覆するかまたはパターン状に被覆して形成さ
れる導電性カーボン薄膜および全面または一部がパター
ン状の絶縁膜を以て被覆したカーボン薄膜よりなる電気
化学測定用電極の作製において、カーボン薄膜が有機化
合物の気相成長法が蒸着法により作製される電気化学測
定用のカーボン薄膜電極の作製法のために使用される有
機化合物には、ナフタレンテトラカルボン酸無水物、ペ
リレンテトラカルボン酸無水物、フタロシアニンとその
誘導体などがあり、絶縁性基板上に直接に、または絶縁
性基板との間に導電性膜を介在させ、全面を被覆するか
またはパターン状に被覆して形成される導電性カーボン
薄膜、および全面または一部がパターン状の絶縁膜を以
て被覆したカーボン薄膜よりなる電気化学測定用電極の
製造法であってカーボン薄膜が基板への塗布法、スピン
コート法、電解重合法またはキャスト法により高分子薄
膜が形成された後に加熱により炭化させられて作製され
る製造法において使用される高分子には、ポリフェニレ
ンビニレン、ポリチエニレンビニレン、ポリフリレンビ
ニレン、ポリイミド、ポリピロール、ポリチオフェン、
ポリアニリン、ポリイミド、フェノール樹脂とその誘導
体などが挙げられる。In order to obtain a carbon thin film, a conductive film is interposed directly on the insulating substrate or between the insulating substrate and
In the production of an electrochemical measurement electrode composed of a conductive carbon thin film which is entirely covered or formed by patterning and a carbon thin film which is entirely or partially covered with a patterned insulating film, the carbon thin film is The organic compound used for the method for producing the carbon thin film electrode for electrochemical measurement in which the vapor growth method of the organic compound is produced by the vapor deposition method includes naphthalene tetracarboxylic acid anhydride, perylene tetracarboxylic acid anhydride, and A conductive carbon thin film that includes phthalocyanine and its derivatives, and is formed by coating a conductive film directly on an insulating substrate or by interposing a conductive film between the insulating substrate and covering the entire surface or in a pattern. , And a method for manufacturing an electrode for electrochemical measurement, which comprises a carbon thin film whose entire surface or a part is covered with a patterned insulating film. Polyphenylene vinylene is a polymer used in the production method in which the Bonn thin film is formed by coating the substrate with a spin coating method, electrolytic polymerization method, or casting method, and then carbonizing it by heating. , Polythienylene vinylene, polyfurylene vinylene, polyimide, polypyrrole, polythiophene,
Examples thereof include polyaniline, polyimide, phenol resin and its derivatives.
電極にパターンを形成させたり、絶縁膜として使用す
る材料には、感光性高分子、酸化シリコン二酸化シリコ
ン、窒化シリコン、シリコーン樹脂ポリイミドとその誘
導体、エポキシ樹脂、高分子熱硬化物などを挙げること
ができる。Examples of materials used for forming patterns on electrodes or used as insulating films include photosensitive polymers, silicon oxide silicon dioxide, silicon nitride, silicone resin polyimide and its derivatives, epoxy resins, and thermosetting polymers. it can.
[実施例] 以下に図面を参照し、この発明を実施例により詳細に
説明するが、この発明はこれらの実施例により限定され
るものでないことは勿論である。EXAMPLES The present invention will be described in detail below with reference to the examples with reference to the drawings, but it goes without saying that the present invention is not limited to these examples.
実施例 1 大阪チタニウム社製1μm酸化膜付シリコンウエハー
をプライマー処理して、接着性を向上させ、その上に、
Gagnonらの方法など、“Polymer"、28(1987)No.4、56
8に記載の方法により合成されたポリフェニレンビニレ
ン前駆体を、スピンコートした後、乾燥させた。この前
駆体塗布を、数回繰り返した後、200℃において加熱し
乾燥させて一部置換基が離脱したポリフェニレンビニレ
ン前駆体膜を形成させた。その後、この基板を石英製の
減圧可能容器中に入れて10-3Torrにおいて室温から950
℃まで昇温させ、30分間保持した後、冷却した。室温に
まで冷却した後、常圧に返して、絶縁性シリコン基板上
に金属光沢を有し表面抵抗3kΩの導電性炭素膜が形成さ
れた基板を得た。Example 1 A silicon wafer with a 1 μm oxide film manufactured by Osaka Titanium Co., Ltd. was treated with a primer to improve the adhesiveness, and then,
Gagnon et al., “Polymer”, 28 (1987) No. 4, 56
The polyphenylene vinylene precursor synthesized by the method described in 8 was spin-coated and then dried. After repeating this precursor coating several times, it was heated and dried at 200 ° C. to form a polyphenylene vinylene precursor film in which some of the substituents were removed. The substrate is then placed in a decompressible quartz container at room temperature to 950 at 10 -3 Torr.
The temperature was raised to 0 ° C., held for 30 minutes, and then cooled. After cooling to room temperature, the pressure was returned to normal pressure to obtain a substrate on which a conductive carbon film having a metallic luster and a surface resistance of 3 kΩ was formed on an insulating silicon substrate.
この電極をPrinceton Applied Research社製のポテン
シオスタットPAR273に接続して、電極の一部を0.1mol/L
燐酸緩衛溶液に浸漬させ、電位を−0.8〜1.2Vまで掃引
し、得られるボルタングラムを、金や白金の電極のもの
と比較すると、カーボン電極では、殆ど残余電流が観測
されず、広い電位窓が得られたのに対して、白金や金電
極では、還元側において水素の還元電流などが認めら
れ、ポリフェニレンビニレンから得られたカーボン電極
が通常のグラッシーカーボン電極同様の優れた挙動を示
すことが確認された。This electrode was connected to Princeton Applied Research's potentiostat PAR273, and a part of the electrode was adjusted to 0.1 mol / L.
Immersion in a phosphoric acid loosening solution, sweeping the potential to -0.8 to 1.2 V, and comparing the resulting voltammograms with those of gold or platinum electrodes, the carbon electrode showed almost no residual current and a wide potential. Whereas a window was obtained, a reduction current of hydrogen was observed on the reduction side with platinum and gold electrodes, and the carbon electrode obtained from polyphenylene vinylene exhibits the same excellent behavior as ordinary glassy carbon electrodes. Was confirmed.
実施例 2 実施例1と同様に、その断面が第1図Aとして示され
る大阪チタニウム社製の1μm酸化膜付シリコン基板1
上にポリフェニレンビニレン前駆体の塗布を数回繰り返
した後に、200℃において加熱し乾燥させて、第1図B
に示される前駆体膜2を形成させた。その後、10-3Torr
の減圧下、950℃にて30分間、加熱した後冷却して、金
属光沢を有し表面抵抗3kΩの第1図Cに図示の導電性炭
素膜3が形成された基板を得た。Example 2 Similar to Example 1, a 1 μm oxide film-attached silicon substrate 1 manufactured by Osaka Titanium Co., Ltd., whose cross section is shown in FIG. 1A.
After coating the polyphenylene vinylene precursor on the surface several times, it was heated and dried at 200 ° C.
The precursor film 2 shown in 1 was formed. Then 10 -3 Torr
Under reduced pressure, the substrate was heated at 950 ° C. for 30 minutes and then cooled to obtain a substrate having a conductive carbon film 3 shown in FIG. 1C having a metallic luster and a surface resistance of 3 kΩ.
この基板に第1図Dに示される東京応化製V3ポジ型レ
ジスト薄膜4を塗布し、90℃、90秒間のプリベーク後、
クロムマスクを使用し、キャノン製マスクアライナーPL
A501により30秒間密着露光した。東京応化製のレジスト
現像液NMD−W中において、20℃・40秒間の現像を行っ
て、水洗し乾燥させ、導電性カーボン膜表面を露出させ
た第1図Eのパターン化レジスト膜5を有するマイクロ
ディスクアレイ電極を得た。作製した電極の拡大斜視模
式図が第2図として示される。This substrate is coated with V3 positive resist thin film 4 manufactured by Tokyo Ohka Co., Ltd. shown in FIG. 1D, and after prebaking at 90 ° C. for 90 seconds,
Canon mask aligner PL using chrome mask
Contact exposure was performed with A501 for 30 seconds. In the resist developer NMD-W manufactured by Tokyo Ohka Co., Ltd., development is carried out at 20 ° C. for 40 seconds, followed by washing with water and drying to have the patterned resist film 5 of FIG. 1E in which the conductive carbon film surface is exposed. A microdisk array electrode was obtained. An enlarged perspective schematic view of the produced electrode is shown as FIG.
微小孔電極6の直径は2μm、その個数は2500とされ
た。The diameter of the micropore electrode 6 was 2 μm, and the number thereof was 2500.
この電極を、銀/塩化銀電極、白金線それぞれを参照
電極と対向電極に使用し、100μmol/Lのフェロセニルメ
チルトリメチルアンモニウムブロマイド、所謂、水溶性
フェロセンを含む燐酸緩衝溶液中に浸漬し、0〜0.7Vの
範囲内を電位掃引すると、電位掃引速度に依存しない大
きさ0.060μAの限界電流が得られた。この値はマイク
ロディスク電極の理論電流値:i=4nrDFC(n:価数、r:電
極半径、D:拡散係数、F:ファラデー定数、C:活性種の濃
度)に電極個数:2500を乗じた値:0.059μAとよく一致
した。This electrode was used as a silver / silver chloride electrode and a platinum wire as a reference electrode and a counter electrode, respectively, and immersed in a phosphate buffer solution containing 100 μmol / L ferrocenylmethyltrimethylammonium bromide, so-called water-soluble ferrocene, When the potential was swept within the range of 0 to 0.7 V, a limiting current of 0.060 μA, which was independent of the potential sweep speed, was obtained. This value was obtained by multiplying the theoretical current value of the microdisk electrode: i = 4nrDFC (n: valence, r: electrode radius, D: diffusion coefficient, F: Faraday constant, C: concentration of active species) by the number of electrodes: 2500. The value was in good agreement with 0.059 μA.
実施例 3 実施例2において使用の酸化膜付シリコン基板と同様
の基板上に、金を厚さ1000Å蒸着したものについて、実
施例2同様の操作を行い、実施例2で得た基板より導電
率が高い表面抵抗6Ωの基板を得た。この電極を実施例
2同様の方法により微細加工して、電極直径:1μm、個
数10,000のアレイ電極を得た。Example 3 The same operation as in Example 2 was performed on a substrate having the same thickness as that of the silicon substrate with an oxide film used in Example 2 and having a thickness of 1000 Å deposited on the substrate. A substrate having a high surface resistance of 6Ω was obtained. This electrode was finely processed in the same manner as in Example 2 to obtain an array electrode having an electrode diameter of 1 μm and a number of 10,000.
この電極を、銀/塩化銀電極、白金線それぞれを参照
電極、対向電極に使用して100μmol/Lの水溶性フェロセ
ン含有の燐酸緩衝溶液中に浸漬し0〜0.7Vの範囲内を10
0mV/secの速度を以て電位掃引すると電位掃引速度に依
存しない大きさ0.12μAの限界電流が得られた。This electrode is immersed in a phosphate buffer solution containing 100 μmol / L of water-soluble ferrocene by using a silver / silver chloride electrode and a platinum wire as a reference electrode and a counter electrode, respectively, and the range of 0 to 0.7 V is adjusted to 10 V.
When the potential was swept at a speed of 0 mV / sec, a limiting current of 0.12 μA, which was independent of the potential sweep speed, was obtained.
この値はマイクロディスク電極の理論電流値にディス
ク個数を乗じた値にほぼ一致した。This value was almost the same as the theoretical current value of the microdisk electrode multiplied by the number of disks.
また、電位掃引速度を10V/secにして測定を行うと、
拡散律速に基いた酸化、還元のピークが得られて、酸化
電流と還元電流のピークセパレーションは、60mV以下の
値が得られ、測定電流に対して電極の抵抗を充分に低下
させ電極の導電性不足によるiR降下を抑制することがで
きた。Also, when the potential sweep speed is 10 V / sec and measurement is performed,
Oxidation and reduction peaks based on diffusion rate control are obtained, and the peak separation of oxidation current and reduction current is less than 60 mV. The iR drop due to the shortage could be suppressed.
また、このディスクアレイ電極を、実施例2の方法に
従って、活性種を含まない0.1mol/L燐酸緩衝溶液中にお
いて、電位を−0.8〜1.2Vまで掃引すると、得られるポ
ルタングラムは実施例2において得られたものと一致
し、金薄膜上に作製したカーボン膜がピンホールフリー
であることが確認された。In addition, when the potential of this disk array electrode was swept to −0.8 to 1.2 V in a 0.1 mol / L phosphate buffer solution containing no active species according to the method of Example 2, the obtained portangram was obtained in Example 2. Consistent with what was obtained, it was confirmed that the carbon film formed on the gold thin film was pinhole-free.
実施例 4 実施例3において導電性カーボン膜を形成した基板
を、Applied Materials社製プラズマCVD装置AMP−3300
中に入れて、窒素、シラン、アンモニアを、それぞれ、
流量78、23、48SCCM、基板温度を300℃、圧力0.2Torr、
パワー500Wの条件下に、導電膜上に窒化シリコンの絶縁
膜を0.3μmの厚さを以て形成させた。Example 4 The substrate on which the conductive carbon film was formed in Example 3 was used as a plasma CVD apparatus AMP-3300 manufactured by Applied Materials.
Put in, nitrogen, silane, ammonia, respectively,
Flow rate 78, 23, 48SCCM, substrate temperature 300 ℃, pressure 0.2Torr,
An insulating film of silicon nitride having a thickness of 0.3 μm was formed on the conductive film under the condition of power of 500 W.
その後、実施例2同様のレジストワークによりマイク
ロディスクパターンを形成させ、アネルバ製の反応性イ
オンエッチング装置DEM−451によりCF4/O2=9/1のガス
混合物をエッチャントに使用して、圧力2Pa、ガスの流
量25SCCM、パワー70Wの条件下に、窒化シリコン絶縁層
がディスク状にエッチングされたマイクロディスク電極
を得た。After that, a microdisk pattern was formed by the same resist work as in Example 2, and a gas mixture of CF 4 / O 2 = 9/1 was used as an etchant by a reactive ion etching device DEM-451 manufactured by Anerva, and a pressure of 2 Pa was used. Under the conditions of a gas flow rate of 25 SCCM and a power of 70 W, a microdisk electrode in which the silicon nitride insulating layer was disk-shaped was obtained.
ディスク直径は0.5μm、個数40,000とした。 The disk diameter was 0.5 μm and the number was 40,000.
この電極を、銀/塩化銀電極、白金線それぞれを参照
電極と対向電極に使用し、100nmol/Lの水溶性フェロセ
ン含有の燐酸緩衝溶液中に浸漬し0〜0.7Vの範囲内を10
0mV/secの速度を以て電位掃引すると電位掃引速度に依
存しない大きさ0.24nAの限界電流が得られた。This electrode is used as a reference electrode and a counter electrode using a silver / silver chloride electrode and a platinum wire, respectively, and immersed in a phosphate buffer solution containing 100 nmol / L of water-soluble ferrocene.
When the potential was swept at a speed of 0 mV / sec, a limiting current of 0.24 nA, which did not depend on the potential sweep speed, was obtained.
この値はマイクロディスク電極の理論電流値にディス
ク個数を乗じた値にほぼ一致した。This value was almost the same as the theoretical current value of the microdisk electrode multiplied by the number of disks.
実施例 5 大阪チタニウム社製の1μm酸化膜付シリコン基板
と、3、4、9、10−ペリレンテトラカルボン酸無水物
を、内部を減圧することが可能である石英製チューブ中
に入れて、例えば、Apply.Phys.Lett.、36(1980)、86
7に記載のKaplanらの方法により1000℃、10-3Torrの条
件下、3、4、9、10−ペリレンテトラカルボン酸無水
物を加熱分解しシリコン基板上に熱分解物を堆積付着さ
せた。Example 5 A silicon substrate with a 1 μm oxide film manufactured by Osaka Titanium Co., Ltd. and 3,4,9,10-perylenetetracarboxylic acid anhydride were placed in a quartz tube capable of being depressurized, and, for example, , Apply.Phys.Lett., 36 (1980), 86
According to the method of Kaplan et al. Described in 7, the thermal decomposition of 3,4,9,10-perylenetetracarboxylic acid anhydride was carried out under the condition of 1000 ° C. and 10 −3 Torr, and the thermal decomposition product was deposited and deposited on the silicon substrate. .
1000℃にて15分間、保持した後に冷却して、常温、常
圧下に基板を取出して、表面抵抗100Ω程度のポリペリ
ナフタレン導電性炭素膜を有する基板を得た。実施例2
と同様にレジストワークにより導電性炭素膜マイクロデ
ィスク電極を作製した。After holding at 1000 ° C. for 15 minutes and then cooling, the substrate was taken out at room temperature and atmospheric pressure to obtain a substrate having a polyperinaphthalene conductive carbon film having a surface resistance of about 100Ω. Example 2
A conductive carbon film microdisk electrode was produced by a resist work in the same manner as in.
電極の直径は、2μm、個数は2500とした。 The electrodes had a diameter of 2 μm and the number was 2500.
この電極を、銀/塩化銀電極、白金線それぞれを参照
電極、対向電極に使用して、100μmol/Lの水溶性フェロ
セン含有の燐酸緩衝溶液中に浸漬し0〜0.7Vの範囲内を
電位掃引すると、電位掃引速度に依存しない大きさ0.06
0μAの限界電流が得られて、この値はマイクロディス
ク電極の理論電流値に電極個数を乗じた値とよく一致し
た。This electrode is used as a silver / silver chloride electrode and a platinum wire as a reference electrode and a counter electrode, respectively, and is immersed in a phosphate buffer solution containing 100 μmol / L of water-soluble ferrocene, and the potential is swept in the range of 0 to 0.7 V. Then, the magnitude which does not depend on the potential sweep speed is 0.06.
A limiting current of 0 μA was obtained, and this value was in good agreement with the theoretical current value of the microdisk electrode multiplied by the number of electrodes.
また、同様方法により金、白金製のアレイ電極を作製
し、活性種を含まない0.1mol/L燐酸緩衝溶液中において
電位を−1.0〜1.2Vまで掃引し得られたボルタングラム
を比較すると、このカーボンマイクロディスク電極で
は、殆ど残余電流が観測されず、広い電位窓が得られた
のに対して、白金や金の電極では還元側で水素の還元電
流などが得られた。In addition, gold and platinum array electrodes were prepared by the same method, and the voltamgram obtained by sweeping the potential to -1.0 to 1.2 V in a 0.1 mol / L phosphate buffer solution containing no active species was compared. In the carbon microdisk electrode, almost no residual current was observed, and a wide potential window was obtained, whereas in the platinum or gold electrode, a reduction current of hydrogen or the like was obtained on the reduction side.
この電極を、燐酸緩衝溶液中において、例えばAnal.C
hem.、53(1981)、1386に記載のGononらの方法によっ
て電位範囲0〜3V、周波数70Hzにおいて12秒間、活性化
を行った後に、ドーパミン:1μmol/L、L−アスコルビ
ン酸10μmol/L含有の燐酸緩衝溶液中に浸漬し、微分パ
ターンボルタンメトリー測定を行うと、ドーパミンとL
−アスコルビン酸の酸化に基くピークが、約190mV分離
して得られた。This electrode is placed in a phosphate buffer solution, for example Anal.C.
hem., 53 (1981), 1386, followed by activation for 12 seconds at a potential range of 0 to 3 V and a frequency of 70 Hz by the method of Gonon et al., then containing dopamine: 1 μmol / L, L-ascorbic acid: 10 μmol / L Dpamine and L
-A peak based on the oxidation of ascorbic acid was obtained with approximately 190 mV separation.
これはカーボン繊維やグラッシーカーボン電極を使用
して測定した値にほぼ一致し、気相合成により得られた
薄膜が電気化学的にはカーボン電極と同様挙動を示すこ
とが確認された。This is almost in agreement with the value measured using a carbon fiber or a glassy carbon electrode, and it was confirmed that the thin film obtained by vapor phase synthesis behaves electrochemically like a carbon electrode.
実施例 6 酸化膜付シリコン基板上に白金膜を1000Å蒸着したも
のに、実施例5同様の操作を行い表面抵抗数Ωの導電性
炭素被覆膜を得た。Example 6 A conductive carbon coating film having a surface resistance of several Ω was obtained by performing the same operation as in Example 5 on a platinum film having a thickness of 1000 liters deposited on a silicon substrate with an oxide film.
実施例4同様に、窒化シリコン絶縁膜を形成しパター
ン化を行って窒化シリコン絶縁掃を有するマイクロディ
スク電極を得た。Similarly to Example 4, a silicon nitride insulating film was formed and patterned to obtain a microdisk electrode having a silicon nitride insulating sweep.
ディスク直径0.5μm、個数40,000とした。 The disk diameter was 0.5 μm and the number was 40,000.
この電極を、銀/塩化銀電極、白金線それぞれを参照
電極、対向電極に使用して100μmol/Lのフェロセンと0.
1mol/Lの支持電解質テトラエチルアンモニウムテトラフ
ルオロボレート含有のアセトニトリル溶液中に浸漬し
て、0〜0.7Vの範囲内を100mV/secの速度を以て電位掃
引すると、電位掃引速度に依存しない大きさ0.97μAの
限界電流が得られた。この値はマイクロディスク電極の
り理論電流値にディスク個数を乗じた値にほぼ一致し
た。また、このディスク電極上に水銀をメッキした後、
カドミウムイオン10ppb鉛イオン5ppbを含む塩化ナトリ
ウム水溶液中に銀/塩化銀電極、白金線とともに浸漬
し、溶液を撹拌しつつ、銀/塩化銀電極に対して、−0.
9Vの電位を60秒間印加した。その後、電位を−0.8〜−
0.1Vまで、50mV/secの速度を以て、微分パルス法によっ
て電位掃引すると、カドミウム、鉛の酸化によるストリ
ッピングボルタングラムを得ることができた。This electrode was used as a silver / silver chloride electrode and a platinum wire as a reference electrode and a counter electrode, respectively, and 100 μmol / L ferrocene and 0.
When it is immersed in an acetonitrile solution containing 1 mol / L of supporting electrolyte tetraethylammonium tetrafluoroborate and the potential is swept at a rate of 100 mV / sec in the range of 0 to 0.7 V, the magnitude of 0.97 μA independent of the potential sweep rate is obtained. The limiting current was obtained. This value was almost the same as the theoretical current value of the microdisk electrode multiplied by the number of disks. Also, after plating the disc electrode with mercury,
Cadmium ion 10 ppb Lead ion 5 ppb in a sodium chloride aqueous solution containing a silver / silver chloride electrode and platinum wire, and while stirring the solution, to the silver / silver chloride electrode, −0.
A potential of 9V was applied for 60 seconds. After that, change the potential from -0.8 to-
By stripping the potential by differential pulse method at a rate of 50 mV / sec up to 0.1 V, a stripping voltammgram due to the oxidation of cadmium and lead could be obtained.
実施例 7 酸化膜付シリコン基板上に、ポリイミド膜を1μmの
厚さに塗布して、電気炉中において200℃30分間、加熱
して熱硬化させた。この基板をアネルバ製のスパッタ装
置SPF−332H内の所定の位置に取付け、カーボン膜を200
W、20分間、0.4Paの条件下に、ポリイミド上に形成させ
た。Example 7 A polyimide film was applied on a silicon substrate with an oxide film to a thickness of 1 μm, and heated in an electric furnace at 200 ° C. for 30 minutes to be thermally cured. This substrate was attached at a predetermined position in the Anerva sputter system SPF-332H, and a carbon film
It was formed on a polyimide under the conditions of W, 0.4 Pa for 20 minutes.
この電極を、実施例2同様方法により微細加工し、電
極直径1μm、個数10,000のアレイ電極を得た。この電
極を、銀/塩化銀電極、白金線それぞれを参照電極、対
向電極に使用して、100μmol/Lの水溶性フェロセン含有
燐酸緩衝溶液中に浸漬し、0〜0.7Vの範囲内を100mV/se
cの速度を以て電位掃引すると、電位掃引速度に依存し
ない大きさ0.12μAの限界電流が得られた。This electrode was microfabricated by the same method as in Example 2 to obtain an array electrode having an electrode diameter of 1 μm and a number of 10,000. This electrode is immersed in 100 μmol / L of a water-soluble ferrocene-containing phosphate buffer solution using a silver / silver chloride electrode and a platinum wire as a reference electrode and a counter electrode, and 100 mV / V in the range of 0 to 0.7 V. se
When the potential was swept at the speed of c, a limiting current of 0.12 μA, which did not depend on the potential sweep speed, was obtained.
この値はマイクロディスク電極の理論電流値にディス
ク個数を乗じた値にほぼ一致した。This value was almost the same as the theoretical current value of the microdisk electrode multiplied by the number of disks.
実施例 8 第3図に図示の酸化膜付シリコン基板A上に、熱分解
温度1100℃において、実施例5の類似の操作を行って、
第3図Bに図示の表面抵抗20Ωの導電性カーボン膜3を
得た。Example 8 The same operation as in Example 5 was performed on the silicon substrate A with an oxide film shown in FIG. 3 at a thermal decomposition temperature of 1100 ° C.,
A conductive carbon film 3 having a surface resistance of 20Ω shown in FIG. 3B was obtained.
この電極に東京応化社製のフォトレジストV3を第3図
C図示のようにコートし、90℃において90秒間、熱硬化
させた後、クロムマスクを使用しキャノン社製のマスク
アライナーPLF−521により25秒間、密着露光、現像され
た。その後、この基板をアネルバ製の反応性イオンエッ
チング装置DEM−451中に入れて、酸素ガスの流量100SCC
M1Pa、70Wの条件下に10分間、エッチングしカーボン膜
をパターニングして、第3図Dとして示される下部電極
を得た。This electrode is coated with a photoresist V3 made by Tokyo Ohka Co., Ltd. as shown in FIG. 3C and heat-cured at 90.degree. C. for 90 seconds. Then, using a mask mask liner PLF-521 made by Canon, using a chrome mask. It was contact exposed and developed for 25 seconds. After that, this substrate was placed in a reactive ion etching device DEM-451 manufactured by Anelva, and the flow rate of oxygen gas was 100 SCC.
The carbon film was patterned by etching for 10 minutes under the conditions of M1Pa and 70W to obtain a lower electrode shown in FIG. 3D.
次に、この基板はレジストを溶媒によって除去した
後、Applied Materials社製プラズマCVD装置AMP−3300
に入れ、実施例4と同様条件下に第3図Eに図示の厚さ
0.3μmの窒化シリコンの絶縁膜7を形成した。Next, after removing the resist with a solvent from this substrate, a plasma CVD apparatus AMP-3300 manufactured by Applied Materials, Inc.
The thickness shown in FIG. 3E under the same conditions as in Example 4.
An insulating film 7 of silicon nitride having a thickness of 0.3 μm was formed.
更に、この基板上に再びレジストをコートし、マスク
を使用し、第3図F図示のように、くし形パターンに露
光させて現像した後、アネルバ製のスパッタ装置SPF−3
32H内の所定位置に取付け、第4図G図示のように、ク
ロム膜をパワー100W、0.4Pa、10秒間にて、白金膜をパ
ワー600W、0.4Pa、60秒間にての条件下に、順次に形成
した。Further, the substrate is again coated with a resist, a mask is used, and as shown in FIG. 3F, a comb pattern is exposed and developed, and then the sputtering apparatus SPF-3 manufactured by Anerva is used.
Mounted at a predetermined position in 32H, as shown in Fig. 4G, the chrome film was sequentially powered at 100W, 0.4Pa for 10 seconds, and the platinum film was sequentially powered at 600W, 0.4Pa for 60 seconds. Formed.
その後に、この基板はメチルエチルケトン中へ浸漬
し、超音波洗浄を行い、電極形成部分以外のレジストを
剥離させて、第4図H図示のように、上部くし形作用電
極を形成した。After that, this substrate was immersed in methyl ethyl ketone and subjected to ultrasonic cleaning to remove the resist other than the electrode forming portion to form an upper comb-shaped working electrode as shown in FIG. 4H.
次いで、再度、この基板をプラズマCVD装置に入れ
て、第4図I図示のように、厚さ0.3μmの窒化シリコ
ン絶縁膜を形成させた。Then, this substrate was put into the plasma CVD apparatus again to form a silicon nitride insulating film having a thickness of 0.3 μm as shown in FIG.
最後に、レジストを基板上に、再び塗布して、クロム
マスクによって、第4図J図示のように、くし形電極と
パッド部分が露出するようにパターニングした後に、反
応性イオンエッチング装置を使用してCF4ガス流量25SCC
M、2Pa、パワー70Wの条件下に上部白金電極と下部カー
ボン電極の露出まで、第4図H図示のように窒化シリコ
ン膜をエッチングした。Finally, the resist is coated again on the substrate and patterned by a chrome mask to expose the comb-shaped electrode and the pad portion as shown in FIG. 4J, and then a reactive ion etching apparatus is used. CF 4 gas flow rate 25SCC
The silicon nitride film was etched as shown in FIG. 4H until the upper platinum electrode and the lower carbon electrode were exposed under the conditions of M, 2 Pa and power of 70 W.
この結果、第4図K図示のように、上部電極と下部電
極の間が、絶縁性段差によって分離され、咬み合ったく
し形電極が得られた。As a result, as shown in FIG. 4K, the upper electrode and the lower electrode were separated by the insulating step, and the interdigitated comb-shaped electrode was obtained.
上部電極と下部電極の各々のくしの巾5μm、ギャッ
プ0.3μ、くしの本数100とした。The width of each of the upper and lower electrodes was 5 μm, the gap was 0.3 μ, and the number of combs was 100.
この電極をルテニウムヘキサミン100μmol/L、と支持
電解質テトラエチルアンモニウムテトラフルオロボレー
ト0.1mol/Lを含むアセトニトリル溶液中に浸漬して、白
金製の上部電極を0Vに固定して、カーボン製の下部電極
を、0〜−0.7Vの範囲内において100mV/secの速度を以
て電位掃引すると、白金電極、カーボン電極の両極にて
それぞれ、ルテニウムヘキサミンの酸化と還元に基く限
界電流が観測された。ま、ルテニウムヘキサミンの濃度
を1μmol/Lにして同様の測定を行い、両側が白金製の
くし形電極と比較すると水素の還元電流などにより白金
電極では酸化電流が良好に得られなかったのに対して、
このくし形電極では、下部電極の酸化側電極がカーボン
製であるために、残余電流、即ち、ルテニウムヘキサミ
ンの還元電流以外のファラデー電流が小さく、高いS/N
比にて酸化側の電流測定を行うことができた。This electrode is ruthenium hexamine 100 μmol / L, and immersed in an acetonitrile solution containing a supporting electrolyte tetraethylammonium tetrafluoroborate 0.1 mol / L, the platinum upper electrode is fixed at 0 V, and the carbon lower electrode is When the potential was swept at a rate of 100 mV / sec in the range of 0 to -0.7 V, the limiting currents due to the oxidation and reduction of ruthenium hexamine were observed at both the platinum electrode and the carbon electrode. In addition, the same measurement was carried out with the concentration of ruthenium hexamine set to 1 μmol / L. Compared with a platinum comb electrode on both sides, the platinum electrode could not obtain a good oxidation current due to the reduction current of hydrogen, etc. hand,
In this comb-shaped electrode, since the oxidation side electrode of the lower electrode is made of carbon, the residual current, that is, the faradaic current other than the reduction current of ruthenium hexamine is small and the S / N ratio is high.
The current on the oxidation side could be measured by the ratio.
[発明の効果] 以上に説明したように、この発明の電気化学的測定用
カーボン薄膜電極の製造方法により、 1)高分子を塗布した後、炭化または有機化合物の気相
重合反応により作製するか、または高分子の密着層とし
て使用するために基板との密着性が大きく、水中や有機
溶媒中で電位を印加しても膜破壊や剥離を生起させず、
繰り返して電気化学的測定を行うことができる。[Effects of the Invention] As described above, according to the method for producing a carbon thin film electrode for electrochemical measurement of the present invention, 1) is it produced by coating a polymer and then carbonizing or vapor-phase polymerization reaction of an organic compound? , Or high adhesion to the substrate for use as a polymer adhesion layer, does not cause film breakage or peeling even when a potential is applied in water or an organic solvent,
The electrochemical measurement can be repeated.
2)膜質が均一であって緻密であるために、微小パター
ンを作製することができる。2) Since the film quality is uniform and dense, a fine pattern can be produced.
3)高導電性の有機導電性材料が原料として使用される
と、通常のグラッシーカーボン電極よりも導電性が大き
い膜が得られるため、くし形電極のように微細にパター
ン化させても電気化学測定の際に、基板が高抵抗である
ことにより生じるIR降下を小さくすることができる。3) When a highly conductive organic conductive material is used as a raw material, a film having a higher conductivity than an ordinary glassy carbon electrode can be obtained. Therefore, even if it is finely patterned like a comb-shaped electrode, electrochemical The IR drop caused by the high resistance of the substrate during measurement can be reduced.
などの利点が得られる。更に、得られたカーボン膜は電
位窓の広さなど市販のグラッシーカーボン電極と、ほぼ
同等の電気化学特性を有するためにバイオセンサーや液
体クロマトグラフィ、フローインジェクションの電気化
学検出器として極めて有用である。The advantages such as are obtained. Further, the obtained carbon film has electrochemical properties almost equal to those of a commercially available glassy carbon electrode such as the width of the potential window, and thus is extremely useful as an electrochemical detector for biosensors, liquid chromatography, and flow injection.
第1図は、この発明の電気化学測定用カーボン薄膜電極
の製造工程各段階における断面概略図、第2図は、実施
例2によって作成されたカーボン薄膜電極の拡大斜視
図、第3図と第4図は実施例8の製造過程における素材
の各状態説明用の断面概略図である。 1:酸化膜付シリコン基板 2:前駆体膜 3:導電性炭素膜 4:レジスト薄膜 5:パターン化レジスト膜 6:微小孔電極 7:窒化シリコン絶縁膜 8:白金/クロム積層膜FIG. 1 is a schematic cross-sectional view in each step of the production process of the carbon thin film electrode for electrochemical measurement of the present invention, and FIG. 2 is an enlarged perspective view of the carbon thin film electrode prepared in Example 2, FIG. 3 and FIG. FIG. 4 is a schematic cross-sectional view for explaining each state of the material in the manufacturing process of Example 8. 1: Silicon substrate with oxide film 2: Precursor film 3: Conductive carbon film 4: Resist thin film 5: Patterned resist film 6: Microporous electrode 7: Silicon nitride insulating film 8: Platinum / chromium laminated film
フロントページの続き (56)参考文献 特開 平1−301159(JP,A) 特開 昭63−317758(JP,A) 実開 昭61−50263(JP,U)Continuation of the front page (56) References JP-A-1-301159 (JP, A) JP-A-63-317758 (JP, A) Actually-opened Shou 61-50263 (JP, U)
Claims (2)
は絶縁性基板との間に導電性膜を介在させて絶縁性基板
を全面的、またはパターン状に被覆して形成される導電
性カーボン薄膜、および、導電性カーボン薄膜の全面、
または一部を被覆するパターン状の絶縁膜からなる電気
化学測定用電極の製造方法において、導電性カーボン薄
膜が基板上への塗布法、スピンコート法、電解重合法、
またはキャスト法により高分子薄膜が形成された後に、
加熱により炭化させられて作製されることを特徴とする
電気化学測定用カーボン薄膜電極の製造方法。1. An insulating substrate, a conductive material formed directly on the insulating substrate, or by forming an electrically conductive film between the insulating substrate and the insulating substrate to cover the entire surface or a pattern. Of the conductive carbon thin film and the conductive carbon thin film,
Alternatively, in a method for producing an electrochemical measurement electrode comprising a patterned insulating film that partially covers, a method of coating a conductive carbon thin film on a substrate, a spin coating method, an electrolytic polymerization method,
Or after the polymer thin film is formed by the casting method,
A method for producing a carbon thin film electrode for electrochemical measurement, characterized by being produced by being carbonized by heating.
は絶縁性基板との間に導電性膜を介在させて絶縁性基板
を全面的、またはパターン状に被覆して形成される導電
性カーボン薄膜、および、導電性カーボン薄膜の全面、
または一部を被覆するパターン状の絶縁膜からなる電気
化学測定用電極の製造方法において、高分子薄膜が基板
への塗布法、スピンコート法、またはキャスト法により
形成された後、スパッタ法、あるいはCVD法により導電
性カーボン薄膜が作製されることを特徴とする電気化学
測定用カーボン薄膜電極の製造方法。2. An insulating substrate, a conductive material formed directly on the insulating substrate, or by forming an electrically conductive film between the insulating substrate and the insulating substrate to cover the entire surface or a pattern. Of the conductive carbon thin film and the conductive carbon thin film,
Alternatively, in a method of manufacturing an electrochemical measurement electrode comprising a patterned insulating film that partially covers, a polymer thin film is formed on a substrate by a coating method, a spin coating method, or a casting method, and then a sputtering method, or A method for producing a carbon thin film electrode for electrochemical measurement, characterized in that a conductive carbon thin film is produced by a CVD method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2257072A JP2564030B2 (en) | 1990-09-28 | 1990-09-28 | Method for producing carbon thin film electrode for electrochemical measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2257072A JP2564030B2 (en) | 1990-09-28 | 1990-09-28 | Method for producing carbon thin film electrode for electrochemical measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04136748A JPH04136748A (en) | 1992-05-11 |
JP2564030B2 true JP2564030B2 (en) | 1996-12-18 |
Family
ID=17301359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2257072A Expired - Lifetime JP2564030B2 (en) | 1990-09-28 | 1990-09-28 | Method for producing carbon thin film electrode for electrochemical measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2564030B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100396786C (en) * | 2003-06-11 | 2008-06-25 | 中国科学院电子学研究所 | Multiple parameter micro sensor |
US7638035B2 (en) | 2007-07-20 | 2009-12-29 | Panasonic Corporation | Electrode plate for electrochemical measurements |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3985953B2 (en) * | 2002-08-15 | 2007-10-03 | 独立行政法人産業技術総合研究所 | High-sensitivity electrochemical detection method for chemical substances and high-sensitivity detection apparatus for chemical substances |
CN101627301B (en) | 2007-11-01 | 2012-08-08 | 松下电器产业株式会社 | Electrode plate for electrochemical measurement, electrochemical measuring instrument having the electrode plate for electrochemical measurement, and method for determining target substance using the |
JP4418030B2 (en) | 2008-05-28 | 2010-02-17 | パナソニック株式会社 | Method for detecting or quantifying target substance using electrochemical measuring device, electrochemical measuring device, and electrode plate for electrochemical measurement |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2577045B2 (en) * | 1988-05-30 | 1997-01-29 | 日本電信電話株式会社 | Microelectrode cell for electrochemical measurement and method for producing the same |
-
1990
- 1990-09-28 JP JP2257072A patent/JP2564030B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100396786C (en) * | 2003-06-11 | 2008-06-25 | 中国科学院电子学研究所 | Multiple parameter micro sensor |
US7638035B2 (en) | 2007-07-20 | 2009-12-29 | Panasonic Corporation | Electrode plate for electrochemical measurements |
Also Published As
Publication number | Publication date |
---|---|
JPH04136748A (en) | 1992-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5389215A (en) | Electrochemical detection method and apparatus therefor | |
US20110308942A1 (en) | Microelectrode array sensor for detection of heavy metals in aqueous solutions | |
EP0185941B1 (en) | Polymer-based microelectronic pH-sensor | |
Chidsey et al. | Micrometer-spaced platinum interdigitated array electrode: fabrication, theory, and initial use | |
EP0569908B1 (en) | Electrochemical detection method and apparatus therefor | |
Niwa | Electroanalysis with interdigitated array microelectrodes | |
Fiaccabrino et al. | Thin‐film microfabrication of electrochemical transducers | |
JPH0815202A (en) | Method for depositing semiconductor organic polymer | |
JP2992603B2 (en) | Wall jet type electrochemical detector and method of manufacturing the same | |
JP2564030B2 (en) | Method for producing carbon thin film electrode for electrochemical measurement | |
JP5814173B2 (en) | Carbon electrode for electrochemical measurement and manufacturing method thereof | |
JPH03179248A (en) | Fine pore array electrode for electrochemical analysis and manufacture thereof | |
JP2556993B2 (en) | Micropore electrode cell for electrochemical measurement and method for producing the same | |
JP2622589B2 (en) | Microelectrode cell for electrochemical measurement and method for producing the same | |
WO1998041853A1 (en) | Gas sensor | |
KR100990815B1 (en) | Hydrogen Sensor And Method For Manufacturing The Same | |
JPH0389156A (en) | Gas sensor element | |
JP2577045B2 (en) | Microelectrode cell for electrochemical measurement and method for producing the same | |
JPH07101672B2 (en) | Method for fixing fine materials and forming electrodes | |
JP2590004B2 (en) | Comb-shaped modified microelectrode cell and method for producing the same | |
JPH08247988A (en) | Electrochemical detector and manufacture thereof | |
RU2319953C1 (en) | Method of manufacturing sensor for semiconductive gas transducer | |
JPH02140655A (en) | Electrochemical detector and production thereof | |
JPH03246460A (en) | Electrochemical detector | |
JP3047048B2 (en) | Wall jet type electrochemical detector and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070919 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 15 |