JP2560090B2 - Non-oriented electrical steel sheet manufacturing method - Google Patents
Non-oriented electrical steel sheet manufacturing methodInfo
- Publication number
- JP2560090B2 JP2560090B2 JP63233157A JP23315788A JP2560090B2 JP 2560090 B2 JP2560090 B2 JP 2560090B2 JP 63233157 A JP63233157 A JP 63233157A JP 23315788 A JP23315788 A JP 23315788A JP 2560090 B2 JP2560090 B2 JP 2560090B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- flux density
- hot
- steel sheet
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、無方向性電磁鋼板の製造に係り、特に小型
モーター等の回転機用鉄心材料として適した低鉄損、高
磁束密度で且つ磁束密度の面内異方性の小さい無方向性
電磁鋼板を高い生産性をもって製造する方法に関するも
のである。Description: TECHNICAL FIELD The present invention relates to the production of non-oriented electrical steel sheets, and particularly to low iron loss, high magnetic flux density and high iron density suitable for iron core materials for rotating machines such as small motors. The present invention relates to a method for manufacturing a non-oriented electrical steel sheet having a small in-plane anisotropy of magnetic flux density with high productivity.
(従来の技術) 近年、各種電気機器の分野において、省エネルギー化
や機器の小型化の観点から、それらの鉄心材料として使
用されている電磁鋼板に対しては、磁束密度が高く且つ
鉄損の低いことが強く要求されている。特に、小型モー
ター等の回転機においては、板面のあらゆる方向に磁化
されるため、低鉄損、高磁束密度であると共に、磁束密
度の面内異方性の小さい無方向性電磁鋼板を鉄心材料と
して使用することは非常に有利である。(Prior Art) In recent years, in the fields of various electric devices, from the viewpoint of energy saving and downsizing of the devices, magnetic steel sheets used as iron core materials thereof have high magnetic flux density and low iron loss. Is strongly demanded. In particular, in rotating machines such as small motors, since it is magnetized in all directions of the plate surface, a non-oriented electrical steel sheet with low iron loss and high magnetic flux density and small in-plane anisotropy of magnetic flux density is used for the iron core. Its use as a material is very advantageous.
従来、面内異方性の小さい無方向性電磁鋼板の製造方
法としては、特開昭59−123715号に記載されているよう
に、自己焼鈍により熱延板組織を粗大粒として85%以上
の強冷延を行う方法、特開昭60−125325号のように温間
圧延により未再結晶組織を持つ熱延板を75〜85%の圧下
率で冷間圧延し、実質的には85%以上の強冷延を実施す
る方法、更には特開昭61−3838号に示されるように、2
回冷延2回焼鈍法において、中間焼鈍時の再結晶率を30
〜70%に制御し、2次冷延率を6〜15%とする方法が提
案されている。また、特開昭58−104155号には、低Si高
Al鋼を用い、熱延板焼鈍を実施した材料を30〜85%の圧
下率で冷間圧延し、次いで仕上げ焼鈍を行うことにより
高磁束密度を有する無方向性電磁鋼板を得る方法が提案
されている。Conventionally, as a method for producing a non-oriented electrical steel sheet with a small in-plane anisotropy, as described in JP-A-59-123715, the hot-rolled sheet structure by self-annealing is 85% or more as coarse grains. A method of performing strong cold rolling, in which a hot-rolled sheet having an unrecrystallized structure is cold-rolled at a rolling reduction of 75 to 85% by warm rolling as described in JP-A-60-125325 to substantially 85%. The method for carrying out the above-mentioned strong cold rolling, and further, as shown in JP-A-61-1838,
The recrystallization rate during intermediate annealing was set to 30 in the double cold rolling and double annealing method.
A method has been proposed in which the secondary cold rolling rate is controlled to 6% to 15% by controlling to 70%. In addition, JP-A-58-104155 discloses that low Si and high
A method of obtaining a non-oriented electrical steel sheet having a high magnetic flux density by cold rolling a material subjected to hot-rolled sheet annealing at a reduction rate of 30 to 85% and then performing finish annealing using Al steel is proposed. ing.
(発明が解決しようとする課題) しかし乍ら、上記のいずれの方法にも以下のような問
題点がある。(Problems to be Solved by the Invention) However, any of the above methods has the following problems.
すなわち、特開昭59−123715号による方法では自己焼
鈍時の温度分布の不均一によりコイル内(長手方向、幅
方向)の磁気特性の均一性が劣る。また高温で巻き取る
ため、スケール層の発達が早く、酸洗性が劣化し、コス
トアツプを招くという問題がある。That is, in the method disclosed in JP-A-59-123715, the uniformity of magnetic properties in the coil (longitudinal direction and width direction) is poor due to the non-uniform temperature distribution during self-annealing. Further, since the film is wound at a high temperature, there is a problem that the scale layer develops quickly, the pickling property deteriorates, and the cost increases.
特開昭60−125325号による方法では、温間圧延である
ため圧延機への負荷が大きくなり、従来の圧延機では圧
延できない場合があり、実用上問題がある。In the method according to Japanese Patent Laid-Open No. 60-125325, since it is warm rolling, the load on the rolling mill is large, and it may not be possible to roll it with a conventional rolling mill, which is a problem in practice.
特開昭61−3838号による方法は2回冷延2回焼鈍法に
おいて中間焼鈍時の再結晶率を制御しているが、再結晶
率の制御が困難であり、工程数増加によるコストアツプ
も避けられない。The method according to Japanese Patent Laid-Open No. 61-3838 controls the recrystallization rate during intermediate annealing in the double cold rolling and double annealing method, but it is difficult to control the recrystallization rate and the cost increase due to the increase in the number of steps is avoided. I can't.
特開昭58−104155号に記載されているように、Si量を
過度に低下させた場合には、材料の固有抵抗が小さくな
り、過電流損が増大するため、モーター類で特に重要と
なる高周波領域での鉄損が大きくなってしまうという問
題がある。As described in JP-A-58-104155, when the amount of Si is excessively decreased, the specific resistance of the material decreases and the overcurrent loss increases, which is particularly important in motors. There is a problem that the iron loss in the high frequency region becomes large.
本発明は上記従来技術の問題点を解決するためになさ
れたものであって、低鉄損、高磁束密度で且つ磁束密度
の面内異方性の小さい無方向性電磁鋼板を高い生産性を
もって製造し得る方法を提供することを目的とするもの
である。The present invention has been made in order to solve the above-mentioned problems of the prior art, and has a low iron loss, a high magnetic flux density and a non-oriented electrical steel sheet having a small in-plane anisotropy of the magnetic flux density with high productivity. It is intended to provide a method that can be manufactured.
(課題を解決するための手段) 本発明者らは、前記目的を達成するため、高い生産性
にて低鉄損、高磁束密度で且つ磁束密度の面内異方性の
小さい無方向性電磁鋼板を得ることができる方策につい
て鋭意研究を重ねた。(Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventors have developed a non-directional electromagnetic having high productivity, low iron loss, high magnetic flux density, and small in-plane anisotropy of magnetic flux density. We have earnestly conducted research on measures to obtain steel sheets.
その結果、Si量を適当に低下させた特性組成の鋼スラ
ブをγ域で圧延を行い、低温巻取りにより熱延鋼板と
し、更に熱延板焼鈍及び高圧下率での冷間圧延を組み合
わせることにより、可能であることを見い出し、ここに
本発明をなしたものである。As a result, a steel slab with a characteristic composition in which the amount of Si is appropriately reduced is rolled in the γ region, and a hot rolled steel sheet is obtained by low-temperature winding, and hot rolled sheet annealing and cold rolling at a high pressure reduction rate are combined. The present invention has been made here by finding out that it is possible.
すなわち、本発明に係る低鉄損、高磁束密度で且つ磁
束密度の面内異方性の小さい無方向性電磁鋼板の製造方
法は、C≦0.01%、0.3%<Si≦1.0%、0.1%≦Mn≦0.7
%、P≦0.1%、S≦0.008%及びAl≦0.005%又は0.1%
≦Al≦0.5%を含有し、残部がFe及び不可避的不純物よ
りなるスラブを熱延仕上げ温度Ar3点以上で熱間圧延を
行い、その後700℃以下で巻取り製造した熱延鋼板を700
℃以上Ac1点以下の温度範囲で2分以上焼鈍し、更に続
く冷間圧延工程において、75%以上90%以下の圧下率で
最終製品厚みとし、次いで仕上げ焼鈍を行って、低鉄損
で、磁束密度を表すB50が1.76T以上、且つ磁束密度の面
内異方性を表すΔB50が0.04以下である電磁鋼板を得る
ことを特徴とするものである。That is, the method for producing a non-oriented electrical steel sheet having low iron loss, high magnetic flux density and small in-plane anisotropy of magnetic flux density according to the present invention is C ≦ 0.01%, 0.3% <Si ≦ 1.0%, 0.1% ≦ Mn ≦ 0.7
%, P ≦ 0.1%, S ≦ 0.008% and Al ≦ 0.005% or 0.1%
A slab containing ≦ Al ≦ 0.5%, the balance of which is Fe and unavoidable impurities, is hot-rolled at a hot rolling finish temperature of Ar 3 points or higher, and then rolled at 700 ° C. or less
Annealing is performed for 2 minutes or more in the temperature range of ℃ or more and Ac 1 point or less, and in the subsequent cold rolling process, the final product thickness is obtained with a reduction rate of 75% or more and 90% or less, and then finish annealing is performed to reduce the iron loss. A magnetic steel sheet having a B 50 representing a magnetic flux density of 1.76 T or more and a ΔB 50 representing an in-plane anisotropy of the magnetic flux density of 0.04 or less is obtained.
以下に本発明を更に詳細に説明する。 The present invention will be described in more detail below.
(作用) まず、本発明における化学成分の限定理由について説
明する。(Operation) First, the reasons for limiting the chemical components in the present invention will be described.
C: Cは磁気特性上有害な元素であって、少ないほど鉄損
が低下し、また時効による鉄損の劣化も防ぐことができ
る。したがって、C≦0.01%とする。C: C is a harmful element in terms of magnetic properties, and the smaller the amount, the lower the iron loss, and also the deterioration of the iron loss due to aging can be prevented. Therefore, C ≦ 0.01%.
Si: Siは固有抵抗を増加させることにより鉄損を低下させ
るが、0.3%以下ではその効果が小さく、特に高周波域
での鉄損が劣化し、また1.0%を超えて含有すると磁束
密度を低下させるので好ましくない。したがって、0.3
%<Si≦1.0%とする。Si: Si reduces iron loss by increasing the specific resistance, but its effect is small at 0.3% or less, especially iron loss in the high frequency range deteriorates, and if it exceeds 1.0%, the magnetic flux density decreases. It is not preferable because it causes. Therefore, 0.3
% <Si ≦ 1.0%.
Mn: Mnは0.1%より少ないと熱間脆性が大きくなり、一
方、0.7%を超えると磁束密度が低下するので好ましく
ない。したがって、0.1%≦Mn≦0.7%とする。Mn: If Mn is less than 0.1%, hot brittleness increases, while if it exceeds 0.7%, the magnetic flux density decreases, which is not preferable. Therefore, 0.1% ≦ Mn ≦ 0.7%.
P: Pは鋼板の打抜性を考慮して適度な硬度を付与するの
に必要な元素であるが、0.1%を超えて含有すると鋼板
の脆化を生じるので好ましくない。したがって、P≦0.
1%とする。P: P is an element necessary for imparting appropriate hardness in consideration of punchability of the steel sheet, but if it is contained in excess of 0.1%, the steel sheet becomes brittle, which is not preferable. Therefore, P ≦ 0.
1%
S: Sは0.008%より多いと磁気特性上有害なMnSとして析
出するので好ましくない元素である。したがって、S≦
0.008%とする。S: If S is more than 0.008%, it precipitates as MnS, which is harmful to the magnetic properties, so it is an undesirable element. Therefore, S ≦
It is 0.008%.
Al: Alは、磁気特性に有害な微細なAlNの析出を防止する
ために0.005%以下とするか、若しくはAlを多量に添加
して粗大AlNとして析出させ、AlNの悪影響を除くために
0.1%以上とする。しかし、後者の場合、0.5%を超えて
添加すると磁束密度が低下するので好ましくない。した
がって、Al≦0.005%、若しくは0.1≦Al≦0.5%とす
る。Al: Al is 0.005% or less in order to prevent the precipitation of fine AlN harmful to the magnetic properties, or by adding a large amount of Al to precipitate as coarse AlN, in order to eliminate the adverse effect of AlN
0.1% or more. However, in the latter case, if the content exceeds 0.5%, the magnetic flux density decreases, which is not preferable. Therefore, Al ≦ 0.005% or 0.1 ≦ Al ≦ 0.5%.
次に本発明の製造条件の限定理由について説明する。 Next, the reasons for limiting the manufacturing conditions of the present invention will be described.
上記化学成分を有する鋼スラブは通常の方法により溶
製、鋳造し、熱間圧延に供される。なお、MnS等の析出
物を無害化するため、スラブ加熱温度は1150℃以下と低
い方が望ましい。The steel slab having the above chemical composition is melted and cast by a usual method, and then subjected to hot rolling. The slab heating temperature is preferably as low as 1150 ° C. or lower in order to render the precipitates such as MnS harmless.
熱間圧延において、熱延仕上げ温度は、熱延板焼鈍時
に粗大粒とするために均一な細粒を得ておくことが必要
であるので、Ar3点以上とするが、最も望ましいのはAr3
点直上の温度である。また、巻取温度については、700
℃よりも高いとコイル冷却時のコイル内の温度のバラツ
キが大きくなり、組織が不均一となり、磁気特性も不均
一となる。更に、高温巻取の場合、スケールの発達が早
く、冷間圧延前の酸洗工程における処理時間が長くな
り、生産性が悪化する。以上の点から、巻取温度は700
℃以下とする。In hot rolling, the hot rolling finishing temperature is Ar 3 points or more, since it is necessary to obtain uniform fine grains in order to make coarse grains during annealing of the hot rolled sheet, but the most desirable is Ar. 3
The temperature just above the point. The winding temperature is 700
If the temperature is higher than ℃, the variation in temperature inside the coil during cooling of the coil becomes large, the structure becomes non-uniform, and the magnetic characteristics become non-uniform. Further, in the case of high temperature winding, the scale develops quickly, the treatment time in the pickling step before cold rolling becomes long, and the productivity deteriorates. From the above points, the winding temperature is 700
It should be below ° C.
得られた熱延鋼板は、結晶粒を粗大にして磁気特性の
改善を図るために熱延板焼鈍に供される。その場合、焼
鈍温度が700℃より低いと熱延板の結晶粒が充分大きく
ならない。一方、Ac1点を超えると一部γ変態して細粒
が表れるので好ましくない。したがって、焼鈍温度は70
0℃以上Ac1点以下と限定する。また、焼鈍時間は、2分
未満であると焼鈍の効果が充分得られないので、2分以
上必要である。The obtained hot-rolled steel sheet is subjected to hot-rolled sheet annealing in order to coarsen the crystal grains and improve the magnetic properties. In that case, if the annealing temperature is lower than 700 ° C., the crystal grains of the hot rolled sheet do not become sufficiently large. On the other hand, when the Ac 1 point is exceeded, γ transformation is partially carried out and fine grains appear, which is not preferable. Therefore, the annealing temperature is 70
Limited to 0 ° C or higher and Ac 1 point or lower. Further, if the annealing time is less than 2 minutes, the effect of annealing cannot be sufficiently obtained, so it is necessary to be 2 minutes or more.
続いて酸洗後、冷間圧延を行うが、その冷延率につい
ては、本発明者らの実験研究により、75%以上90%以下
とする必要があることが判明した。Then, after pickling, cold rolling is performed, and it has been found through experiments and studies by the present inventors that the cold rolling rate needs to be 75% or more and 90% or less.
第1図は冷延率と磁束密度B50及び磁束密度の面内異
方性ΔB50の関係を示している。なお、実験では、C:0.0
05%、Si:0.39%、Mn:0.25%、P:0.08%、S:0.002%及
びAl:0.25%を含有する鋼スラブを1100℃に加熱後、熱
間圧延にて920℃で仕上げ、520℃で巻取って各種板厚の
熱延板とし、更に750℃×3hrの熱延板焼鈍を実施し、酸
洗工程にてスケールを除去した後、冷間圧延にて0.5mm
厚さに仕上げ、仕上焼鈍(850℃×1min)を行ったもの
について磁束密度及び磁束密度の面内異方性を調べたも
のである。図中、Lは圧延方向、Cは圧延方向に直角な
方向を表わしており、ΔB50=(L方向のB50)−(C方
向のB50)である。FIG. 1 shows the relationship between the cold rolling rate, the magnetic flux density B 50, and the in-plane anisotropy ΔB 50 of the magnetic flux density. In the experiment, C: 0.0
After heating a steel slab containing 05%, Si: 0.39%, Mn: 0.25%, P: 0.08%, S: 0.002% and Al: 0.25% to 1100 ° C, finish by hot rolling at 920 ° C, 520 Rolled at ℃ to make hot-rolled sheets of various thicknesses, further heat-rolled sheet annealing at 750 ℃ × 3hr, after removing the scale in the pickling process, cold rolling 0.5mm
The magnetic flux density and the in-plane anisotropy of the magnetic flux density were examined for a product that was finished to a thickness and then subjected to finish annealing (850 ° C x 1 min). In the figure, L represents the rolling direction, C represents the direction perpendicular to the rolling direction, and ΔB 50 = (B 50 in L direction) − (B 50 in C direction).
従来の方法を上記成分系に適用した場合の電磁鋼板に
おいて得られる磁束密度B50は高々1.75Tである。ところ
が、第1図に示すように、前記熱延板焼鈍と高圧下率に
よる冷間圧延を組み合わせることによって高磁束密度が
得られ、更に圧延方向と圧延方向に直角な方向との磁束
密度の差ΔB50(面内異方性)も小さくなる。同図から
明らかなように、磁束密度を表すB50が0.76T以上の高磁
束密度で、且つ磁束密度の面内異方性を表すΔB50が0.0
4以下と小さい無方向性電磁鋼板を製造するためには、
冷間圧延時の圧下率を75〜90%にする必要があり、好ま
しくは85〜90%にする。The magnetic flux density B 50 obtained in the electrical steel sheet when the conventional method is applied to the above component system is 1.75 T at most. However, as shown in FIG. 1, a high magnetic flux density can be obtained by combining the hot-rolled sheet annealing and the cold rolling with a high pressure reduction ratio, and further, the difference in the magnetic flux density between the rolling direction and the direction perpendicular to the rolling direction. ΔB 50 (in-plane anisotropy) also decreases. As is clear from the figure, B 50 representing the magnetic flux density is a high magnetic flux density of 0.76 T or more, and ΔB 50 representing the in-plane anisotropy of the magnetic flux density is 0.0
In order to manufacture a non-oriented electrical steel sheet as small as 4 or less,
The reduction ratio during cold rolling must be 75 to 90%, preferably 85 to 90%.
一方、前記熱延板焼鈍を行わない場合には、第2図に
冷延率と磁束密度及び磁束密度の面内異方性の関係を示
すように、75〜90%の高い圧下率で冷間圧延を行って
も、熱延板焼鈍を行わないと高磁束密度が得られないこ
とが明らかである。On the other hand, when the hot-rolled sheet annealing is not performed, as shown in FIG. 2 which shows the relationship between the cold rolling rate, the magnetic flux density and the in-plane anisotropy of the magnetic flux density, the cold rolling is performed at a high rolling reduction rate of 75 to 90%. It is clear that even if hot rolling is performed, high magnetic flux density cannot be obtained unless hot-rolled sheet annealing is performed.
冷間圧延後、仕上焼鈍を行うが、その条件は特に制限
されず、800〜900℃が望ましい。Although finish annealing is performed after cold rolling, the conditions are not particularly limited, and 800 to 900 ° C is preferable.
次に本発明の実施例を示す。 Next, examples of the present invention will be described.
(実施例) 第1表に示す化学成分を有する鋼スラブを1150℃に加
熱し、γ域での熱間圧延及び520℃での巻取りを行った
後、同表に示す種々の条件にて熱延板焼鈍を施し、次い
で酸洗後、種々の圧下率の冷間圧延により板厚0.5mmと
し、最終焼鈍(850℃×1min)を施して無方向性電磁鋼
板を製造した。(Example) A steel slab having the chemical composition shown in Table 1 was heated to 1150 ° C, hot-rolled in the γ range and wound at 520 ° C, and then under various conditions shown in the same table. The hot-rolled sheet was annealed, then pickled, and then cold-rolled at various reduction ratios to a sheet thickness of 0.5 mm, and finally annealed (850 ° C x 1 min) to produce a non-oriented electrical steel sheet.
得られた各電磁鋼板の磁気特性を第2表に併記する。 Table 2 also shows the magnetic properties of the obtained electromagnetic steel sheets.
第2表において試験記号A、B、E及びGが本発明に
よる方法にて製造した場合を示しており、いずれも低鉄
損、高磁束密度で且つ磁束密度の面内異方性が小さい材
料が得られている。In Table 2, test symbols A, B, E, and G show the case of manufacturing by the method according to the present invention, and all of them are materials having low iron loss, high magnetic flux density, and small in-plane anisotropy of magnetic flux density. Has been obtained.
一方、実験記号D、Hは熱延板焼鈍を実施していない
場合の比較例であるが、本発明例と比較して、磁束密度
の面内異方性は同程度であるものの、磁束密度の値が小
さく、また鉄損が大きい。On the other hand, the experimental symbols D and H are comparative examples in the case where the hot-rolled sheet annealing is not carried out, but the in-plane anisotropy of the magnetic flux density is about the same as that of the inventive example, but the magnetic flux density is the same. Value is small and iron loss is large.
Si含有量の多い比較例Iも、磁束密度の面内異方性は
同程度であるものの、磁束密度が小さい。またSi含有量
の少ない比較例Jの場合、高周波域での鉄損が劣る。In Comparative Example I having a large Si content, the in-plane anisotropy of the magnetic flux density is about the same, but the magnetic flux density is small. Further, in the case of Comparative Example J having a small Si content, the iron loss in the high frequency range is poor.
更に冷延率が小さい比較例C、Fは磁束密度が低く、
磁束密度の面内異方性もやや大きい。Further, Comparative Examples C and F having a low cold rolling rate have a low magnetic flux density,
The in-plane anisotropy of magnetic flux density is also large.
(発明の効果) 以上詳述したように、本発明によれば、Si含有量を適
当に低くくした特定成分組成の鋼を用い、γ域での熱間
圧延、低温巻取により製造した熱延鋼板に対して、熱延
焼鈍と高圧延率での冷間圧延を組み合わせて適用する工
程によるので、低鉄損、高磁束密度で且つ磁束密度の面
内異方性の小さい無方向性電磁鋼板が得られる。しかも
酸洗工程の短時間化が図れる等、高生産性をもって製造
することができる。 (Effects of the Invention) As described in detail above, according to the present invention, the heat produced by hot rolling in the γ region and low-temperature winding using the steel of the specific component composition in which the Si content is appropriately lowered. Since it is a process of applying hot rolling annealing and cold rolling at a high rolling rate to a rolled steel sheet, it is a non-directional electromagnetic having low iron loss, high magnetic flux density and small in-plane anisotropy of magnetic flux density. A steel plate is obtained. Moreover, the pickling process can be shortened, and the product can be manufactured with high productivity.
第1図は熱延板焼鈍により結晶粒を大きくした材料の磁
束密度B50及び磁束密度の面内異方性(ΔB50)に及ぼす
冷延率の影響を示す図、 第2図は熱延板焼鈍を実施していない材料における磁束
密度B50及び磁束密度の面内異方性(ΔB50)に及ぼす冷
延率の影響を示す図である。Figure 1 shows the effect of cold rolling on the magnetic flux density B 50 and the in-plane anisotropy (ΔB 50 ) of the magnetic flux density of the material with large crystal grains by hot-rolled sheet annealing. it is a diagram showing the effect of cold rolling rate on plane anisotropy of the magnetic flux density B 50 and the magnetic flux density in the material not performed plate annealing (ΔB 50).
Claims (2)
3%<Si≦1.0%、0.1%≦Mn<0.7%、P≦0.1%、S≦
0.008%およびAl≦0.005%を含有し、残部がFeおよび不
可避的不純物よりなるスラブを熱延仕上げ温度Ar3点以
上で熱間圧延を行い、その後700℃以下で巻取り製造し
た熱延鋼板を700℃以上Ac1点以下の温度範囲で2分以上
焼鈍し、更に続く冷間圧延工程において、75%以上90%
以下の圧下率で最終製品厚みとし、次いで仕上げ焼鈍を
行って、低鉄損で、磁束密度を表すB50が1.76T以上、且
つ磁束密度の面内異方性を表すΔB50が0.04以下である
電磁鋼板を得ることを特徴とする無方向性電磁鋼板の製
造方法。1. In weight% (hereinafter the same), C ≦ 0.01%,
3% <Si ≦ 1.0%, 0.1% ≦ Mn <0.7%, P ≦ 0.1%, S ≦
A slab containing 0.008% and Al ≤ 0.005%, the balance of which is Fe and unavoidable impurities, was hot-rolled at a hot-rolling finishing temperature Ar of 3 points or higher, and then rolled at 700 ° C or lower to produce a hot-rolled steel sheet. Annealed for 2 minutes or more in the temperature range of 700 ℃ or more and Ac 1 point or less, and in the subsequent cold rolling process, 75% or more and 90% or more
The following reduction ratio in the final product thickness, then under the finish annealing, with a low iron loss, is B 50 that represents a magnetic flux density more than 1.76T, ΔB 50 to and representing in-plane anisotropy of the magnetic flux density of 0.04 or less A method for manufacturing a non-oriented electrical steel sheet, which comprises obtaining a certain electrical steel sheet.
ものである請求項1に記載の方法。2. The method according to claim 1, wherein the slab contains 0.1% ≦ Al ≦ 0.5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63233157A JP2560090B2 (en) | 1988-09-17 | 1988-09-17 | Non-oriented electrical steel sheet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63233157A JP2560090B2 (en) | 1988-09-17 | 1988-09-17 | Non-oriented electrical steel sheet manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0280517A JPH0280517A (en) | 1990-03-20 |
JP2560090B2 true JP2560090B2 (en) | 1996-12-04 |
Family
ID=16950613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63233157A Expired - Fee Related JP2560090B2 (en) | 1988-09-17 | 1988-09-17 | Non-oriented electrical steel sheet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2560090B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4946492B2 (en) * | 2007-02-16 | 2012-06-06 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5941172B2 (en) * | 1974-06-20 | 1984-10-05 | キヤノン株式会社 | Film guide device |
JPS5831367A (en) * | 1981-08-19 | 1983-02-24 | Ricoh Co Ltd | Toner recovering device |
JPH0742557B2 (en) * | 1987-02-10 | 1995-05-10 | 新日本製鐵株式会社 | Non-oriented electrical steel sheet with low iron loss after magnetic annealing |
-
1988
- 1988-09-17 JP JP63233157A patent/JP2560090B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0280517A (en) | 1990-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009185386A (en) | Method for producing non-grain-oriented electrical steel sheet | |
JPS6250529B2 (en) | ||
JPH03219020A (en) | Production of nonoriented silicon steel sheet | |
JP2003171718A (en) | Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface | |
JPH05171280A (en) | Production of nonoriented silicon steel sheet having superior magnetic property and excellent in external surface appearance | |
JP4123629B2 (en) | Electrical steel sheet and manufacturing method thereof | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP2560090B2 (en) | Non-oriented electrical steel sheet manufacturing method | |
JPS60258414A (en) | Production of non-oriented electrical iron sheet having high magnetic flux density | |
JP3348802B2 (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH032323A (en) | Manufacture of nonoriented silicon steel sheet having high magnetic flux density | |
KR100240993B1 (en) | The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss | |
JP3994667B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3368409B2 (en) | Manufacturing method of low iron loss unidirectional electrical steel sheet | |
JP3474741B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH10251752A (en) | Production of hot rolled silicon steel plate excellent in magnetic property | |
JPS5974222A (en) | Production of non-directional electrical steel sheet having excellent electromagnetic characteristic | |
JPH06192736A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3392699B2 (en) | Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics | |
JPH08269553A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH04107216A (en) | Production of nonoriented silicon steel sheet | |
JP3326083B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics | |
JPS62180015A (en) | Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density | |
JP2716987B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JPH04362128A (en) | Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |