JP2559174B2 - Fluid viscosity measuring device and fluid force detecting device - Google Patents
Fluid viscosity measuring device and fluid force detecting deviceInfo
- Publication number
- JP2559174B2 JP2559174B2 JP3234740A JP23474091A JP2559174B2 JP 2559174 B2 JP2559174 B2 JP 2559174B2 JP 3234740 A JP3234740 A JP 3234740A JP 23474091 A JP23474091 A JP 23474091A JP 2559174 B2 JP2559174 B2 JP 2559174B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- measured
- inner tube
- pipe
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Description
【0001】[0001]
【技術分野】本発明は、流体の粘度測定装置に関する。TECHNICAL FIELD The present invention relates to a fluid viscosity measuring device.
【0002】[0002]
【従来技術とその問題点】従来より流体の粘度測定には
幾つかの方法が考案・実用化されており、それらの代表
的なものとして細管式、回転式、落体式、振動式、熱線
式等がある。それらの測定原理と問題点は次の通り。2. Description of the Related Art Conventionally, several methods have been devised and put to practical use for measuring the viscosity of a fluid, and typical examples thereof are a capillary tube type, a rotary type, a falling body type, a vibration type, and a hot wire type. Etc. The measurement principles and problems are as follows.
【0003】細管式: オストワルド粘度計に代表され
る重力流下方式の測定方式は、高粘度流体には不向きで
あり、また、ずり速度を変化させられないので非ニュー
トン流体の流動特性は測定できず、更に、オンライン粘
度計としては使えないといった問題点がある。Capillary type: The gravity flow type measurement method represented by the Ostwald viscometer is not suitable for a high viscosity fluid, and since the shear rate cannot be changed, the flow characteristics of a non-Newtonian fluid cannot be measured. Moreover, there is a problem that it cannot be used as an online viscometer.
【0004】流体を強制的に細管の中を流し、そのとき
の流量と差圧から粘度を求める方式は、精度の良い粘度
測定が行えるが、流体の性質によっては差圧測定管内で
の閉塞が起こり差圧を正確に測定できない場合があり、
特に懸濁液の測定では細管の直径や管長を大きく取らな
ければ精度の良い粘度測定が行えないなどの問題があ
る。The method of forcibly flowing a fluid through a thin tube and determining the viscosity from the flow rate and the differential pressure at that time enables accurate viscosity measurement, but depending on the nature of the fluid, blockage in the differential pressure measuring tube may occur. It may happen that the differential pressure cannot be measured accurately,
In particular, in the measurement of suspension, there is a problem that accurate viscosity measurement cannot be performed unless the diameter and length of the thin tube are large.
【0005】回転式: 被測定液の中で円柱などの回転
体を回転させ、そのとき回転体に受けるずり応力から粘
度を求める方式のもので、回転体の形状や応力の測定方
法により幾つかの型が考案されている。小型で簡便であ
るが回転トルクの測定部に過負荷を与えないようにする
ために取り扱いには細心の注意が必要である上、絶対粘
度の測定精度では細管式より劣る。特に懸濁液の測定で
は、回転体表面付近に固形分濃度の低い部分(濃度分
極)が生じて測定誤差の原因となる。Rotation method: A method in which a rotating body such as a cylinder is rotated in the liquid to be measured, and the viscosity is obtained from the shear stress applied to the rotating body at that time, depending on the shape of the rotating body and the method of measuring the stress. Has been devised. Although it is small and simple, it requires careful handling in order to avoid overloading the rotating torque measuring section, and its absolute viscosity measurement accuracy is inferior to that of the capillary type. In particular, when measuring a suspension, a portion with a low solid content concentration (concentration polarization) is generated near the surface of the rotating body, which causes a measurement error.
【0006】落体式: 被測定液の中を球又は円柱等が
落下する際の落下速度から粘度を求める方式のもので、
測定は簡単であるが、限定されたずり応力での粘度しか
測定できず、非ニュートン流体の流動特性を測定するに
は不向きである。Falling body type: A method of obtaining the viscosity from the falling velocity when a ball or a cylinder falls in a liquid to be measured,
Although the measurement is simple, it can measure only the viscosity at a limited shear stress, and is not suitable for measuring the flow characteristics of a non-Newtonian fluid.
【0007】振動式:被測定液の中に微振動体を入れ、
振動波の位相差から粘度を求める方式のもので、均一な
溶液上材料の測定には簡便な方式であるが、振動体の近
傍で濃度分極が起こるような例えば懸濁液の測定では粘
度を低く見積もるなどの測定誤差は避けられない。Vibration type: A microvibration body is put in the liquid to be measured,
It is a method that calculates viscosity from the phase difference of the vibration wave, and is a simple method for measuring uniform material on solution, but for measuring suspension, for example, where concentration polarization occurs near the vibrating body, Measurement errors such as underestimation are unavoidable.
【0008】熱線式: 被測定液の中に熱線を浸した場
合、熱線近傍での液の対流強度と温度勾配は粘度を含む
液の物性に依存することから液の粘度を推算する方式
で、粘度の相対的変化は測定できるが、絶対粘度の測定
には不向きである。Hot wire method: When the hot wire is immersed in the liquid to be measured, the viscosity of the liquid is estimated because the convection strength and temperature gradient of the liquid near the hot wire depend on the physical properties of the liquid including the viscosity. The relative change in viscosity can be measured, but it is not suitable for measuring absolute viscosity.
【0009】以上、公知の粘度測定法では、いずれも一
長一短があり、被測定液の性状や測定目的により測定法
を選択しなければならない不便さがある。また、食品材
料のように衛生上及び品質管理上の観点から特に厳しい
サニタリー性が要求される場合には、測定精度に加えて
測定装置の構造が簡素で堅牢でなければならない。加え
て、ずり応力およびずり速度の広い範囲にわたり多様な
性状の流体の粘度と流動特性を精度良く測定することは
従来の技術では難しい。As described above, each of the known viscosity measuring methods has advantages and disadvantages, and there is an inconvenience in that the measuring method must be selected depending on the properties of the liquid to be measured and the measuring purpose. Further, when particularly strict sanitary properties are required from the viewpoints of hygiene and quality control such as food materials, the structure of the measuring device must be simple and robust in addition to the measurement accuracy. In addition, it is difficult to measure the viscosity and flow characteristics of fluids having various properties with high accuracy over a wide range of shear stress and shear rate by the conventional techniques.
【0010】[0010]
【問題点を解決するための手段】本発明は、上記のよう
な従来技術の問題点を解消し、適正な粘度測定の行える
装置を提供することを目的としている。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an apparatus capable of performing proper viscosity measurement.
【0011】すなわち、本発明に係る装置は、断面円形
状の内管と、断面円形状で内管より大きい直径の外管
と、内管を外管内に同心状に配置して軸線方向で移動可
能なるように支持する手段と、被測定流体を内管と外管
内との間に導入するための流体入口と、内管と外管との
間に形成される環状流路を軸線方向に通された上記被測
定流体を外部へ排出する流体出口と、上記環状流路を通
される被測定流体によって内管の外側周面にかけられる
軸線方向力を検出するための検出手段と、該検出手段に
よって検出された上記軸線方向力の値に基づき当該被測
定流体の粘度を算出する手段と、を有することを特徴と
する。That is, in the device according to the present invention, an inner tube having a circular cross section, an outer tube having a circular cross section and having a diameter larger than that of the inner tube, and an inner tube arranged concentrically in the outer tube and moved in the axial direction. A means for supporting as much as possible, a fluid inlet for introducing the fluid to be measured between the inner pipe and the outer pipe, and an annular flow path formed between the inner pipe and the outer pipe in the axial direction. A fluid outlet for discharging the measured fluid to the outside, a detecting means for detecting an axial force exerted on the outer peripheral surface of the inner pipe by the measured fluid passing through the annular flow path, and the detecting means. Means for calculating the viscosity of the fluid to be measured based on the value of the axial force detected by.
【0012】本発明に係る上記装置は、下記の原理に基
づくものである。The above device according to the present invention is based on the following principle.
【0013】すなわち、同心状に設定された円形断面の
外管と内管との間に形成される環状流路に粘度μ(Pa.
s)の流体を流す場合、長さL(m)の内管周面に作用す
る力Fi(N)と流量Q(m3/s)との間には理論的に次
の関係式が成り立つ。That is, the viscosity μ (Pa.Pa.s) is formed in the annular flow path formed between the outer pipe and the inner pipe having concentric circular cross sections.
When flowing a fluid of s), the following relational expression is theoretically established between the force Fi (N) acting on the inner peripheral surface of the length L (m) and the flow rate Q (m 3 / s). .
【0014】 [0014]
【0015】[0015]
【実施例】図1には本発明の実施例に係る粘度測定装置
10の全体の概要が、また、図2には同装置の要部をな
す流体力測定装置24が示されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an overall outline of a viscosity measuring device 10 according to an embodiment of the present invention, and FIG. 2 shows a fluid force measuring device 24 which is a main part of the device.
【0016】図示のように、粘度測定装置10は垂直に
設定された断面円形状の内管12と、断面円形状で内管
12より長く且つ大きい直径の外管14と、被測定流体
を内管と外管内との間に形成された環状流路16に導入
するため外管の下端に設けられた流体入口18と、環状
流路16を軸線方向に通された上記被測定流体を外部へ
排出するために外管の上端に設けられた流体出口20
と、上記環状流路を通される被測定流体によって内管1
2の外側周面にかけられる軸線方向力すなわち“ずり応
力”を検出するための検出手段22とからなる流体力検
出装置24、並びに、該検出装置によって検出された上
記軸線方向力の値に基づき当該被測定流体の粘度を算出
するためのデータ処理装置すなわちコンピュータ26と
を有しており、被測定流体はポンプ28によって流体タ
ンク30から流体入口18を通して環状流路16に供給
され、流体出口20を介して流体タンク30へ戻される
ようになっている。図示の実施例においては、外管14
の周りに恒温水ジャケット32が取りつけられており、
該ジャケットには、流体タンク30の周りに設定された
恒温水タンク33から恒温水が当該ジャケットの下端に
ある入口を介して供給され、同ジャケットの上端にある
出口34から排出されるようになっている。As shown in the figure, the viscosity measuring apparatus 10 includes an inner tube 12 having a circular cross section set vertically, an outer tube 14 having a circular cross section and having a diameter larger and larger than that of the inner tube 12, and a fluid to be measured. A fluid inlet 18 provided at the lower end of the outer pipe for introducing into the annular flow passage 16 formed between the pipe and the inside of the outer pipe, and the fluid to be measured passed through the annular flow passage 16 in the axial direction to the outside. A fluid outlet 20 provided at the upper end of the outer tube for discharging
And the inner pipe 1 by the fluid to be measured which is passed through the annular flow path.
2 is a fluid force detecting device 24 including a detecting means 22 for detecting an axial force applied to the outer peripheral surface of the outer peripheral surface, that is, "shear stress", and based on the value of the axial force detected by the detecting device. And a computer 26 for calculating the viscosity of the fluid to be measured. The fluid to be measured is supplied from the fluid tank 30 through the fluid inlet 18 to the annular flow path 16 by the pump 28, and the fluid outlet 20 is supplied. It is designed to be returned to the fluid tank 30 via the. In the illustrated embodiment, the outer tube 14
A constant temperature water jacket 32 is attached around the
The jacket is supplied with constant temperature water from a constant temperature water tank 33 set around the fluid tank 30 via an inlet at the lower end of the jacket and discharged from an outlet 34 at the upper end of the jacket. ing.
【0017】流体力測定装置24は、外管14の下端に
基台36を有しており、該基台上には円柱状の内管支持
部材38が設定されており、測定が行われず流体が供給
されない状態では図2に示す如く、内管12が内管支持
部材38上に載置されるようになっている。内管12は
その両端が閉じられた中空の部材とされており、流体が
当該流体力測定装置内に供給されると、内管支持部材3
8から浮き上がるようになっている。The fluid force measuring device 24 has a base 36 at the lower end of the outer pipe 14, and a cylindrical inner pipe support member 38 is set on the base so that the fluid is not measured. 2, the inner pipe 12 is placed on the inner pipe support member 38 as shown in FIG. The inner tube 12 is a hollow member whose both ends are closed, and when a fluid is supplied into the fluid force measuring device, the inner tube supporting member 3
It is designed to rise from 8.
【0018】検出手段22は、外管14の内側で同外管
の上端に固定され、内管12の上方に該内管と軸線方向
で整合された支持管40と、取付部材42によって該支
持管の下端に固定された感圧素子44とを有している。
取付部材42は感圧素子44を収納する上部凹所46
と、内管12の上端壁の中心部分に形成された上方突出
部48を緩く収納する下部凹所50とを有しており、こ
れら凹所の間の隔壁52には、内管の突出部48から感
圧素子44の近接位置まで伸長している力伝達ピン54
を通す貫通孔56が設けられている。The detecting means 22 is fixed to the upper end of the outer pipe 14 inside the outer pipe 14, and is supported above the inner pipe 12 by a support pipe 40 axially aligned with the inner pipe and a mounting member 42. And a pressure sensitive element 44 fixed to the lower end of the tube.
The mounting member 42 has an upper recess 46 for accommodating the pressure sensitive element 44.
And a lower recess 50 for loosely accommodating the upper protrusion 48 formed in the central portion of the upper end wall of the inner pipe 12, and the partition wall 52 between these recesses has a protrusion 52 of the inner pipe. A force transmission pin 54 extending from 48 to a position close to the pressure sensitive element 44.
A through hole 56 is provided for passing through.
【0019】内管12の下端壁の中心には、下方に伸び
る案内ピン60が設けられており、内管支持部材38の
上端面の中心には該案内ピンを緩く受け入れる案内孔6
2が形成されている。これら案内ピン60と案内孔62
との組合せは、内管上端の突出部48と下部凹所50と
の組合せとともに、内管が流体によって上方へ動かされ
るときに、当該内管を軸線方向に案内する。A guide pin 60 extending downward is provided at the center of the lower end wall of the inner pipe 12, and a guide hole 6 for loosely receiving the guide pin is provided at the center of the upper end surface of the inner pipe support member 38.
2 is formed. These guide pins 60 and guide holes 62
In combination with the protrusion 48 at the upper end of the inner pipe and the lower recess 50, guides the inner pipe axially when it is moved upward by the fluid.
【0020】粘度測定にあたっては、流体をタンク30
から流体入口18、環状流路16、流体出口20、タン
ク30の順に連続的に循環させる。In measuring the viscosity, the fluid is stored in the tank 30.
The fluid inlet 18, the annular flow path 16, the fluid outlet 20, and the tank 30 are continuously circulated in this order.
【0021】前述の如く、流体が環状流路内に充填され
ると、内管12はその浮力によって上方へ浮き上がり、
力伝達ピン54の上端が感圧素子44に当接する。更
に、流体が上記の如く循環されると、環状流路16を通
される流体のずり応力が内管12の外側周面に作用し当
該内管に上向きの軸線方向力をかける。従って力伝達部
材54は、その軸線方向力を感圧素子44へ伝達する。
該感圧素子によって検知された軸線方向力は、コンピュ
ータ26へ伝達され、当該流体の粘度が算出される。As described above, when the fluid is filled in the annular passage, the inner tube 12 floats upward due to its buoyancy.
The upper end of the force transmission pin 54 contacts the pressure sensitive element 44. Further, when the fluid is circulated as described above, the shear stress of the fluid that is passed through the annular flow passage 16 acts on the outer peripheral surface of the inner pipe 12 and applies an upward axial force to the inner pipe. Therefore, the force transmission member 54 transmits the axial force to the pressure sensitive element 44.
The axial force detected by the pressure sensitive element is transmitted to the computer 26, and the viscosity of the fluid is calculated.
【0022】 [0022]
【0023】 ここで、Lは内管外面の軸線方向長さ、 Fiは外面に
作用する軸線方向力、Qは流量、Rは外管の内半径、a
は内管の外半径とRの比であり、Fi及びその他のQ等
のパラメータが分かれば流体の粘度μを求められる。[0023] Where L is the axial length of the outer surface of the inner tube, Fi is the axial force acting on the outer surface, Q is the flow rate, R is the inner radius of the outer tube, a
Is the ratio of the outer radius of the inner tube to R, and the viscosity μ of the fluid can be obtained if Fi and other parameters such as Q are known.
【0024】正確な測定を行うためには、環状流路16
内を流体を均一に流動させる必要があり、その為には、
流体入口18から内管12の下端までの距離を、流体の
性状に応じて環状流路の幅(すなわち、外管内周面半径
と内管外周面半径との差)の数倍から100倍程度が必
要である。In order to make an accurate measurement, the annular channel 16
It is necessary to make the fluid flow uniformly in the inside, and for that,
The distance from the fluid inlet 18 to the lower end of the inner pipe 12 is about several times to 100 times the width of the annular flow path (that is, the difference between the inner peripheral surface radius of the outer pipe and the outer peripheral surface radius of the inner pipe) depending on the property of the fluid. is necessary.
【0025】また、感圧素子44が実際に検知する力
は、内管外周面に作用するずり応力Fiの外に、感圧素
子に直接作用する被測定流体の静圧P及び内管12の上
端と下端の横断面に作用する静圧力の差△Fが含まれる
ので、これらの値を補正する必要がある。Pの値は各流
量に対して測定し、また、△Fの値は理論的に次式で求
められる。In addition to the shear stress Fi acting on the outer peripheral surface of the inner pipe, the force actually detected by the pressure sensitive element 44 is the static pressure P of the fluid to be measured which directly acts on the pressure sensitive element and the inner pipe 12. Since the difference ΔF in static pressure acting on the cross section between the upper end and the lower end is included, it is necessary to correct these values. The value of P is measured for each flow rate, and the value of ΔF is theoretically obtained by the following equation.
【0026】 [0026]
【0027】[0027]
【発明の効果】本発明に係る装置は、上記の如き構成並
びに作用を有するものであり、従って、前述した従来測
定法における問題点、すなわち、流体速度を変化できな
いので非ニュートン流体の流動特性が測定できない、流
体の閉塞が起こって正確な測定ができない、絶対粘度が
測定できない等の問題点を解消し、適正な測定を行うこ
とができる。The apparatus according to the present invention has the above-mentioned structure and operation, and therefore has a problem in the above-mentioned conventional measuring method, that is, since the fluid velocity cannot be changed, the flow characteristics of the non-Newtonian fluid are It is possible to solve the problems that measurement cannot be performed, accurate measurement cannot be performed due to clogging of fluid, absolute viscosity cannot be measured, and proper measurement can be performed.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施例に係る粘度測定装置の概要を示
す図。FIG. 1 is a diagram showing an outline of a viscosity measuring device according to an embodiment of the present invention.
【図2】同装置の要部である流体力測定装置を示す断面
図。FIG. 2 is a cross-sectional view showing a fluid force measuring device which is a main part of the device.
12−−−内管、14−−−外管、16−−−環状流
路、18−−−流体入口、20−−−流体出口、22−
−−力検出手段、26−−−データ処理手段。12 --- inner tube, 14 --- outer tube, 16 --- annular flow path, 18 --- fluid inlet, 20 --- fluid outlet, 22-
--- Force detecting means, 26 --- Data processing means.
Claims (4)
るように支持する手段と、 被測定流体を内管と外管内との間に形成される環状流路
に導入するための流体入口と、 上記環状流路を軸線方向に通された上記被測定流体を外
部へ排出する流体出口と、 上記環状流路を通される被測定流体によって内管の外側
周面にかけられる軸線方向力を検出するための検出手段
と、 該検出手段によって検出された上記軸線方向力の値に基
づき当該被測定流体の粘度を算出するためのデータ処理
手段と、 を有することを特徴とする粘度測定装置。1. An inner tube having a circular cross section , both ends of which are closed, an outer tube having a circular cross section and having a diameter larger than that of the inner tube, and an inner tube which is concentrically arranged in the outer tube and is movable in an axial direction. Means for supporting the fluid to be measured, a fluid inlet for introducing the fluid to be measured into an annular flow path formed between the inner tube and the outer tube, and the fluid to be measured passed through the annular flow path in the axial direction. A fluid outlet for discharging the fluid to the outside, a detection means for detecting an axial force exerted on the outer peripheral surface of the inner pipe by the fluid to be measured that is passed through the annular flow path, and the axis detected by the detection means. And a data processing unit for calculating the viscosity of the fluid to be measured based on the value of the directional force.
るように支持する手段と、 被測定流体を内管と外管内との間に形成される環状流路
に導入するための流体入口と、 上記環状流路を軸線方向に通された上記被測定流体を外
部へ排出する流体出口と、 上記環状流路を通される被測定流体によって内管の外側
周面にかけられる軸線方向力を検出するための検出手段
と、 を有することを特徴とする流体力検出装置。2. An inner tube having a circular cross section , both ends of which are closed, an outer tube having a circular cross section and having a diameter larger than that of the inner tube, and an inner tube which is concentrically arranged in the outer tube and is movable in an axial direction. Means for supporting the fluid to be measured, a fluid inlet for introducing the fluid to be measured into an annular flow path formed between the inner tube and the outer tube, and the fluid to be measured passed through the annular flow path in the axial direction. And a detection means for detecting an axial force exerted on the outer peripheral surface of the inner pipe by the fluid to be measured which is passed through the annular flow path. Detection device.
記流体入口及び流体出口を上記外管のそれぞれ下端及び
上端に設けて被測定流体を該下端から上端へ向けて流す
ようにされており、上記測定手段が上記内管の上方位置
に設定された感圧素子とされ、上記内管の上端には当該
内管が上記軸線方向力を受けて上方へ変位する際に該感
圧素子に当接して上記軸線方向力を伝達するための伝達
部材が設けられてなる請求項2の流体力検出装置。3. The axial direction is set to be vertical, and the fluid inlet and the fluid outlet are provided at the lower end and the upper end of the outer tube, respectively, so that the fluid to be measured flows from the lower end to the upper end. The measuring means is a pressure sensitive element set at a position above the inner tube, and the upper end of the inner tube is provided with a pressure sensitive element when the inner tube receives the axial force and is displaced upward. 3. The fluid force detection device according to claim 2, further comprising a transmission member that abuts and transmits the axial force.
管の両端より軸線方向で内側に設定され、上記流体入口
が外管の一端に形成され、該流体入口から内管の対応す
る一端までの距離が、内管と外管との間に形成される環
状流路の幅の数倍から約100倍程度とされている請求
項2若しくは3の流体力検出装置。4. The inner pipe is shorter than the outer pipe, both ends of the inner pipe are set inward of both ends of the outer pipe in the axial direction, the fluid inlet is formed at one end of the outer pipe, and 4. The fluid force detecting device according to claim 2, wherein the distance to one end of the pipe is about several times to about 100 times the width of the annular flow path formed between the inner pipe and the outer pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3234740A JP2559174B2 (en) | 1991-09-13 | 1991-09-13 | Fluid viscosity measuring device and fluid force detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3234740A JP2559174B2 (en) | 1991-09-13 | 1991-09-13 | Fluid viscosity measuring device and fluid force detecting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0572101A JPH0572101A (en) | 1993-03-23 |
JP2559174B2 true JP2559174B2 (en) | 1996-12-04 |
Family
ID=16975619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3234740A Expired - Fee Related JP2559174B2 (en) | 1991-09-13 | 1991-09-13 | Fluid viscosity measuring device and fluid force detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2559174B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4693137B2 (en) * | 2004-07-30 | 2011-06-01 | 国立大学法人東京工業大学 | Pressure differential meter |
JP4815590B2 (en) * | 2006-02-28 | 2011-11-16 | 国立大学法人長岡技術科学大学 | Plane extensional viscosity measurement method and plane extensional viscosity measurement apparatus |
JP4815591B2 (en) * | 2006-02-28 | 2011-11-16 | 国立大学法人長岡技術科学大学 | Fluid analysis method and fluid analysis apparatus |
-
1991
- 1991-09-13 JP JP3234740A patent/JP2559174B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0572101A (en) | 1993-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170082474A1 (en) | Apparatus and method for detecting asymmetric flow in vibrating flowmeters | |
US4674322A (en) | On-line instrument for simultaneously measuring the viscosity, density, and surface tension of a fluid comprising a gas dissolved in a liquid | |
RU2537524C1 (en) | Method of determining viscosity and density of liquid and apparatus therefor | |
JP2559174B2 (en) | Fluid viscosity measuring device and fluid force detecting device | |
Groenesteijn et al. | Towards nanogram per second coriolis mass flow sensing | |
US4852388A (en) | Method for measuring density of Newtonian and non-Newtonian fluids | |
US20230358658A1 (en) | Dissolution monitoring method and apparatus | |
EP0333437A2 (en) | Method for measuring density of newtonian and non-newtonian fluids | |
EP3469335B1 (en) | Vibratory cavity density meter and method | |
JP3446117B2 (en) | Measurement method of viscoelasticity of liquid | |
US3751974A (en) | Turbulent flow high-molecular liquid viscosimeter | |
US4476722A (en) | Continuously monitoring and self-cleaning liquid density measurement system | |
RU2076309C1 (en) | Method of determination of bulk strength of liquids | |
US4236405A (en) | Pendulum densimeter | |
US3473401A (en) | Device for measuring paper stock consistency | |
RU2247948C2 (en) | Method and device for measuring mass flow rate of fluid | |
US3477275A (en) | Densitometer | |
BR112020016406B1 (en) | VIBRATORY METER, AND METHOD OF MONITORING SOLUTE DISSOLUTION IN A SOLUTION | |
RU2244288C1 (en) | Method of measurement of surface tension coefficient and static and dynamic wetting angles | |
SU363898A1 (en) | CENTRIFUGAL VISKOSIMETER | |
SU1126839A1 (en) | Method and device for measuring liquid viscosity | |
JPH11337466A (en) | Densimeter | |
SU979859A1 (en) | Turbine flowmeter | |
Osmers et al. | The First Normal Stress Function at High Shear Rates Using Pressure‐Driven Angular Annular Flow | |
NO880217L (en) | PROCEDURE AND DEVICE FOR DETERMINING VISCOSITY AND DENSITY OF A FLUID. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960709 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070905 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |