[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2556840B2 - Negative electrode for non-aqueous lithium secondary battery - Google Patents

Negative electrode for non-aqueous lithium secondary battery

Info

Publication number
JP2556840B2
JP2556840B2 JP61173326A JP17332686A JP2556840B2 JP 2556840 B2 JP2556840 B2 JP 2556840B2 JP 61173326 A JP61173326 A JP 61173326A JP 17332686 A JP17332686 A JP 17332686A JP 2556840 B2 JP2556840 B2 JP 2556840B2
Authority
JP
Japan
Prior art keywords
carbon
peak intensity
negative electrode
electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61173326A
Other languages
Japanese (ja)
Other versions
JPS6324555A (en
Inventor
元男 毛利
英明 田中
友成 鈴木
善光 田島
芳和 好本
重夫 中島
三千世 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to US07/030,886 priority Critical patent/US4863814A/en
Priority to DE3750754T priority patent/DE3750754T2/en
Priority to EP87302651A priority patent/EP0239410B1/en
Publication of JPS6324555A publication Critical patent/JPS6324555A/en
Application granted granted Critical
Publication of JP2556840B2 publication Critical patent/JP2556840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は非水リチウム2次電池の負極に関し、特にリ
チウム(Li)やカリウム(K)等のアルカリ金属,アル
カリ土類金属,希土類金属もしくは遷移金属をドーバン
ド物質とする電池の電極活物質あるいはハロゲン,ハロ
ゲン化合物,酸素酸をドーバンド物質とする電池の電極
活物質に関するものである。
Description: TECHNICAL FIELD The present invention relates to a negative electrode for a non-aqueous lithium secondary battery, and particularly to an alkali metal such as lithium (Li) or potassium (K), an alkaline earth metal, a rare earth metal or a transition metal. The present invention relates to an electrode active material for a battery that uses a do-band substance or an electrode active material for a battery that uses a halogen, a halogen compound or oxyacid as a do-band substance.

<従来技術> 近年、炭素材料を電池の電極に応用しようとする研究
が活発である。例えば、活性炭もしくは活性炭素を電極
材料に用いたものがあるが、これらは炭素原子が作る六
角網面の積層に全く規則性がないため、各イオンのドー
プができず、電解液との界面に電気二重層を形成するに
すぎない。従ってこれを負極材料に用いた場合、陽イオ
ンのドープは起こりにくく、電気二重層に蓄えられるイ
オンに相当する量の電気容量しか得られない。又、炭素
原子がつくる六角網面が規則的に配列したものは黒鉛構
造と称される。これは六角網面の炭素層が平行に積層さ
れた層状構造を有する。この層間にドーパント物質は出
入りすることができるが層間隔は3.354Åと狭く、又六
角網面が非常に規則正しく積層されているため常温付近
においてドーパント物質のドープされる量は少ない。ま
た上述した活性炭の如き無定形炭素と称される層状構造
が全く不規則なものと、黒鉛の如き規則的に炭素原子が
配列されたものとの中間的な構造をもつものも炭素材料
として存在する。これらは一般に乱層構造と称される
が、この範疇に入る炭素材料は幅広く出現する。
<Prior Art> In recent years, research has been actively conducted to apply a carbon material to a battery electrode. For example, there is a material that uses activated carbon or activated carbon as an electrode material, but since these layers have no regularity in the stacking of hexagonal mesh planes created by carbon atoms, it is not possible to dope each ion and form an interface with the electrolyte. It only forms an electric double layer. Therefore, when this is used for the negative electrode material, cation doping is unlikely to occur, and only an amount of electric capacity corresponding to the ions stored in the electric double layer can be obtained. Further, a hexagonal mesh plane formed by carbon atoms arranged regularly is called a graphite structure. It has a layered structure in which hexagonal mesh plane carbon layers are laminated in parallel. The dopant substance can enter and leave between the layers, but the layer spacing is as narrow as 3.354Å, and the hexagonal mesh planes are laminated very regularly, so the amount of the dopant substance doped at around room temperature is small. There are also carbon materials that have an intermediate structure between a layered structure called amorphous carbon called activated carbon, which is completely irregular, and a structure in which carbon atoms are regularly arranged, such as graphite. To do. These are generally referred to as turbostratic structures, but carbon materials that fall into this category are widespread.

<発明の目的> 本発明は、従来の炭素材料に比べて著しく大きな電気
容量を有し、かつ充放電繰り返し特性の良い炭素からな
る非水リチウム2次電池用負極を提供することを目的と
する。
<Object of the Invention> An object of the present invention is to provide a negative electrode for a non-aqueous lithium secondary battery, which has a significantly large electric capacity as compared with a conventional carbon material and is made of carbon having good charge-discharge repeating characteristics. .

<発明の概要> 種々の炭素材料についてリチウム,ナトリウム等のア
ルカリ金属をドーパント物質とする電極材料として評価
した結果、次のことが判明した。すなわち、高度に配向
された黒鉛構造からなる炭素よりもわずかに乱層構造を
有しかつ選択的配向を有する構造をもつもので電極材料
として最も良好な特性を示す。この良好な特性を示す炭
素材料の詳細なデータを各手段により解析した結果につ
いて以下に説明する。
<Summary of Invention> As a result of evaluating various carbon materials as electrode materials using an alkali metal such as lithium or sodium as a dopant substance, the following has been found. That is, it has a structure having a slightly disordered structure and selective orientation as compared with carbon having a highly oriented graphite structure, and exhibits the best characteristics as an electrode material. The results of analyzing the detailed data of the carbon material exhibiting this good characteristic by each means will be described below.

X線回折法より炭素平面の層間隔を求めた。その結
果、電極材料として良好なものの間間隔は3.37Å〜3.55
Åの値をとるものであった。また、黒鉛のように鋭いピ
ークを示すものではなくかなり幅広い回折ピークを示
す。回折ピークの半値幅から結晶子の大きさを求める方
法を用いて結晶子の大きさを求めると(002)面の回折
ピークからC軸方向の結晶子の大きさは20Å〜1000Åで
あり(110)面の回折ピークはほとんどあらわれないも
のや、あらわれても非常にブロードであることからab軸
方向の結晶子の大きさは非常に小さいものであると認め
られる。また、この炭素材料の反射電子線回折パターン
もブロードなリング状であり、結晶子がこの様に非常に
細かいことを反映している。これらリングは黒鉛構造の
(002),(004),(006)反射に相当する。一方、こ
れら回折リングをより詳細に検討した結果、各リングは
均一ではなく弧状又はブロードなスポットになってお
り、これより、各結晶子の方位がランダムでなく、各結
晶子の(00l)面が特定の方向に揃っていることがわか
った。これを更に定量化すると、各結晶子間のc軸方向
の相対的な傾きが±75度の範囲内にあり、本炭素材料
は、上記配向性を有する結晶子を主成分とする方位配列
を有する炭素材料として特徴づけられる。また、レーザ
ーラマンスペクトルによって黒鉛化への進行度合をみた
場合黒鉛構造に由来する1580cm-1のラマンスペクトル以
外に黒鉛構造の不完全さに由来する1360cm-1のラマンス
ペクトルが観察され、本炭素材料は黒鉛に比べ、不完全
な結晶構造であることがわかる。黒鉛化の進行に伴なっ
て1360cm-1のピークは減少し、黒鉛特有の格子振動に起
因する1580cm-1のピークが増大する。本発明の目的を達
成するものはラマンスペクトルの1580cm-1のピーク強度
に対する1360cm-1のピーク強度比をみた場合0.4以上1.0
以下である。このように黒鉛に比べ面間隔が広く、又結
晶子の大きさが小さく、かつこれらが互いにある程度の
配向性を有する炭素体が電極材料として良好な特性を示
す。上記条件を満足する炭素体は粉末体や繊維体を焼成
することによっては得難いものである。すなわち炭素体
の面間隔,結晶子の大きさは本発明と同様な物性値は得
られるが、各結晶子間の配向性が不規則となるため、放
電容量が少なく充放電の長期繰返しには耐え難いものと
なる。
The layer spacing on the carbon plane was determined by the X-ray diffraction method. As a result, the spacing between good electrode materials is 3.37Å ~ 3.55.
It took the value of Å. Further, it does not show a sharp peak like graphite, but shows a rather wide diffraction peak. When the crystallite size is determined using the method of determining the crystallite size from the half width of the diffraction peak, the crystallite size in the C-axis direction from the diffraction peak of the (002) plane is 20Å to 1000Å (110 The diffraction peaks on the) plane hardly appear, and even if they do appear, they are very broad, so the crystallite size in the ab axis direction is considered to be very small. Further, the backscattered electron diffraction pattern of this carbon material also has a broad ring shape, which reflects that the crystallite is very fine. These rings correspond to (002), (004), (006) reflections of the graphite structure. On the other hand, as a result of examining these diffractive rings in more detail, it was found that each ring was not uniform but had an arcuate or broad spot, and thus the orientation of each crystallite was not random, and the (00l) plane of each crystallite was Were found to be aligned in a particular direction. When this is further quantified, the relative inclination in the c-axis direction between the crystallites is within a range of ± 75 degrees, and the carbon material of the present invention has an orientational arrangement mainly composed of the crystallites having the above orientation. It is characterized as having a carbon material. Further, the Raman spectrum of 1360 cm -1 derived from the imperfections of the graphite structure was observed in addition to the Raman spectrum of 1580 cm -1 derived when graphite structure viewed progress to graphitization by laser Raman spectroscopy, the carbon material It can be seen that has an incomplete crystal structure compared to graphite. With the progress of graphitization, the peak at 1360 cm -1 decreases and the peak at 1580 cm -1 due to the lattice vibration peculiar to graphite increases. Order to attain the object of the present invention when 0.4 or more viewed peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the Raman spectrum 1.0
It is the following. As described above, a carbon body having a larger interplanar spacing and a smaller crystallite size than graphite and having a certain degree of orientation with each other exhibits good characteristics as an electrode material. A carbon body that satisfies the above conditions is difficult to obtain by firing a powder body or a fibrous body. That is, the carbon spacing and the crystallite size have the same physical properties as those of the present invention, but the orientation between the crystallites is irregular, and therefore the discharge capacity is small and long-term repetition of charge and discharge is not possible. It becomes unbearable.

本発明の目的を達成し得る炭素体は以下の製造方法に
よって達成される。即ち本発明の炭素からなる材料は炭
化水素又は炭化水素化合物を出発原料としてこれを反応
系へ供給し、基板上へ熱分解による気相堆積法により形
成されるものである。炭化水素化合物としては炭化水素
の一部に酸素,窒素,硫黄またはハロゲンより選択され
た少なくとも1つ以上の元素を含む特性基を付加または
置換したものが用いられる。このような炭素材料をアル
カリ金属等がドーパント物質として含有された電池の電
極に用いた場合には、以下のような効果がある。
A carbon body that can achieve the object of the present invention is achieved by the following production method. That is, the material of the present invention made of carbon is formed by vapor-depositing a hydrocarbon or a hydrocarbon compound as a starting material by supplying this to a reaction system and then thermally decomposing it on a substrate. As the hydrocarbon compound, one obtained by adding or substituting a characteristic group containing at least one element selected from oxygen, nitrogen, sulfur or halogen to a part of hydrocarbon is used. When such a carbon material is used for a battery electrode containing an alkali metal or the like as a dopant substance, the following effects are obtained.

(1) 従来の製法により製造された黒鉛材料例えば有
機繊維の炭化により製造されたもの、高配向性熱分解黒
鉛,天然黒鉛に比べてドーパント物質のドープ,脱ドー
プが起こり易く、電気容量も大きい。
(1) Compared to graphite materials manufactured by conventional manufacturing methods, such as those manufactured by carbonizing organic fibers, highly oriented pyrolytic graphite, and natural graphite, doping with a dopant substance is more likely to occur, and the electrical capacity is large. .

(2) 基板上への薄膜等の直接形成が可能なため、内
部抵抗が小さく活物質の利用率が高い。
(2) Since a thin film or the like can be directly formed on the substrate, the internal resistance is small and the utilization rate of the active material is high.

(3) 電極の薄形化、任意の形状に作製が可能であ
る。
(3) The electrode can be made thin and can be manufactured in any shape.

なお、ドーパント物質としては上述のアルカリ金属の
他に、アルカリ土類金属、希土類金属又は遷移金属を用
いることができる。さらに、ドーパントはこれらに限ら
れず、ハロゲン、ハロゲン化合物又は酸素酸等を用いる
こともできる。これらのドーパントは製造工程途中でド
ープされる。
In addition to the above-mentioned alkali metals, alkaline earth metals, rare earth metals or transition metals can be used as the dopant substance. Furthermore, the dopant is not limited to these, and halogen, a halogen compound, oxyacid, or the like can be used. These dopants are doped during the manufacturing process.

<実施例1> 第1図は本発明の一実施例に用いられる炭素材料生成
装置のブロック構成図である。出発物質として使用され
る炭化水素及び一部に種々の特性基を含んだ炭化水素化
合物として例えば脂肪族炭化水素好ましくは不飽和炭化
水素,芳香族化合物,脂環式化合物がある。これらは10
00℃で熱分解される。具体的にはアセチレン,ジフェニ
ル,アセチレン,アクリロニトリル,1.2−ジブロモエチ
レン,2−ブチン,ベンゼン,トルエン,ピリジン,アニ
リン,フェノール,ジフェニル,アントラセン,ピレ
ン,ヘキサメチルベンゼン,スチレン,アリルベンゼ
ン,シクロヘキサン,ノルマルヘキサン,ピロール,チ
オフェン等があげられる。
<Example 1> FIG. 1 is a block diagram of a carbon material generator used in Example 1 of the present invention. Hydrocarbons used as starting materials and hydrocarbon compounds partially containing various characteristic groups include, for example, aliphatic hydrocarbons, preferably unsaturated hydrocarbons, aromatic compounds and alicyclic compounds. These are 10
It is pyrolyzed at 00 ℃. Specifically, acetylene, diphenyl, acetylene, acrylonitrile, 1.2-dibromoethylene, 2-butyne, benzene, toluene, pyridine, aniline, phenol, diphenyl, anthracene, pyrene, hexamethylbenzene, styrene, allylbenzene, cyclohexane, normal hexane. , Pyrrole, thiophene, etc.

使用した炭化水素化合物の種類によって、後述する反
応管への供給方法はバプラー法,蒸発法または昇華法を
用い毎時数ミリモル以下の供給量に制御される。供給量
を多くとるとスス状炭素堆積物が生成され、本発明の目
的は達成されない。炭素材料が堆積,生成される基板は
1000℃程度の反応温度で変質しないものである必要があ
る。
Depending on the kind of the hydrocarbon compound used, the supply method to the reaction tube, which will be described later, is controlled to be a few millimoles / hour or less by using a bubbler method, an evaporation method or a sublimation method. If the supply amount is large, soot-like carbon deposits are produced, and the object of the present invention is not achieved. The substrate on which the carbon material is deposited and produced is
It must be one that does not deteriorate at the reaction temperature of about 1000 ° C.

以下、製造工程に従って説明する。 Hereinafter, the manufacturing process will be described.

真空蒸留による精製操作を行なったベンゼンが収納さ
れたバブル容器1内にアルゴンガス制御系2よりアルゴ
ンガスを供給してベンゼンをバブルさせ、パイレックス
ガラス管3を介して石英反応管4へベンゼン分子を給送
する。この際バブル容器1内の液体ベンゼンの温度を一
定に保持してアルゴンガス流量をバルブ5で調節し、ベ
ンゼン分子の反応管4内への供給量を毎時数ミリモルに
制御する。一方希釈ライン6よりアルゴンガスを流し、
反応管4へ給送される直前のガラス管3内におけるアル
ゴンガス中のベンゼン分子数密度及び流速を最適化す
る。反応管4には基板の載置された試料台7が配設され
ており、反応管4の外周囲には加熱炉8が設けられてい
る。この加熱炉8によって反応管4内の堆積生成用基板
は約1000℃の温度に保持されている。ベンゼン分子が反
応管4内に給送されるとベンゼン分子は反応管4内で熱
分解し、基板上に炭素堆積物が生成される。反応管4内
へのガスは排気パイプ9を介して排気系10へ導入され、
反応管4から除去される。反応管4内に導入されたベン
ゼン分子は約1000℃の温度で加熱されて熱分解し、順次
基板上に成長形成される。この場合成長される炭素は金
属光沢を有した薄膜となり、従来のような製法により黒
鉛材料を形成する方法に比べ、低い温度で反応を進行さ
せるため、本発明の目的達成のために適した物性値をも
つ炭素材料が実現できる。また用いる出発物質,出発物
質の供給量,供給速度,反応温度を選定することによ
り、異方性等を任意に制御することができる利点を有す
る。この炭素体のCuKdを光源とするX線回折図を第2図
に示す。
Argon gas is supplied from an argon gas control system 2 into a bubble container 1 containing benzene which has been subjected to a purification operation by vacuum distillation to bubble benzene, and benzene molecules are transferred to a quartz reaction tube 4 through a Pyrex glass tube 3. To send. At this time, the temperature of the liquid benzene in the bubble container 1 is kept constant and the flow rate of the argon gas is adjusted by the valve 5 to control the supply amount of benzene molecules into the reaction tube 4 to several millimoles per hour. On the other hand, let argon gas flow from the dilution line 6,
The number density and the flow rate of benzene molecules in the argon gas in the glass tube 3 immediately before being fed to the reaction tube 4 are optimized. A sample stage 7 on which a substrate is placed is disposed in the reaction tube 4, and a heating furnace 8 is provided around the outer periphery of the reaction tube 4. By this heating furnace 8, the deposition generation substrate in the reaction tube 4 is maintained at a temperature of about 1000 ° C. When the benzene molecule is fed into the reaction tube 4, the benzene molecule is thermally decomposed in the reaction tube 4, and a carbon deposit is formed on the substrate. The gas into the reaction tube 4 is introduced into the exhaust system 10 via the exhaust pipe 9,
It is removed from the reaction tube 4. The benzene molecules introduced into the reaction tube 4 are heated at a temperature of about 1000 ° C. to be thermally decomposed and sequentially grown and formed on the substrate. In this case, the grown carbon becomes a thin film having a metallic luster, and the reaction proceeds at a lower temperature as compared with the conventional method of forming a graphite material by a manufacturing method, and thus physical properties suitable for achieving the object of the present invention are obtained. A carbon material having a value can be realized. Further, by selecting the starting material to be used, the supply amount of the starting material, the supply rate, and the reaction temperature, it is possible to arbitrarily control the anisotropy and the like. An X-ray diffraction diagram of this carbon body using CuKd as a light source is shown in FIG.

この回折ピークからブラッグの式 により求めた(002)面の平均面間隔は3.45Åであり、
ピークの半値幅βから次式 より求めたc軸方向の結晶子の大きさは27.2Åであっ
た。
Bragg equation from this diffraction peak The average interplanar spacing of the (002) plane obtained from was 3.45Å,
From the peak half-value width β The crystallite size in the c-axis direction obtained from the above was 27.2Å.

第3図はこの炭素体のアルゴンレーザを用いたラマン
スペクトルである。この図において1580cm-1のピーク強
度に対する1360cm-1のピーク強度をみた場合、0.8であ
った。また、反射高速電子線回折(RHEED)法で電子線
の回折写真を求めると、(002),(004),(006)反
射はブロードなスポットを示しており、各結晶子の配向
性はかなりよく、c軸方向の分布は±18度以内であるこ
とが判明した。
FIG. 3 is a Raman spectrum of this carbon body using an argon laser. When viewed peak intensity of 1360 cm -1 to the peak intensity of 1580 cm -1 in the figure, it was 0.8. In addition, when a diffraction photograph of an electron beam is obtained by the reflection high-energy electron diffraction (RHEED) method, the (002), (004), (006) reflections show broad spots, and the orientation of each crystallite is considerably large. It was often found that the distribution in the c-axis direction was within ± 18 degrees.

このように製作した炭素薄膜を集電用ネットが挾持
し、電極を作製した。これを試験極Aとする。試験極A
を第4図に示すような電解糟内に配設しリチウム金属を
対極、リチウムをドーパント物質として、リチウム元素
のドープ・脱ドープによる充放電試験を行なった。第4
図において12は本実施例に係る炭素体よりなる試験極A,
13は集電体,14は対極,15は参照極として用いたリチウ
ム,16は1モル過塩酸リチウムを溶解したプロピレンカ
ーボネートからなる電解液,17は電解槽である。第5図
は各種炭素材料にリチウムをドープ・脱ドープさせたと
きの25℃におけるリチウム参照極に対する電位変化図で
ある。第5図の曲線Aは本実施例による炭素材料の電位
変化曲線である。曲線Aにおいて、電位が零Vに近づく
方向がドープ(充電)、高電圧になる方向が脱ドープ
(放電)である。第6図は各種炭素材料をリチウム参照
電極に対し0Vから2.5Vの間で定電流により充放電させる
テストにおける放電容量の変化を示す。第6図の曲線A
は本実施例の特性曲線を示す。この結果より明らかな如
く、充放電の繰り返しによる容量劣化はほとんどなく繰
り返し特性は非常に良好である。
The carbon thin film thus produced was held by a current collecting net to prepare an electrode. This is designated as test pole A. Test pole A
Was placed in an electrolytic bath as shown in FIG. 4, and a charge / discharge test was performed by doping / dedoping lithium element using lithium metal as a counter electrode and lithium as a dopant material. Fourth
In the figure, 12 is a test electrode A made of a carbon body according to the present embodiment,
Reference numeral 13 is a current collector, 14 is a counter electrode, 15 is lithium used as a reference electrode, 16 is an electrolytic solution made of propylene carbonate in which 1 mol of lithium perhydrochloride is dissolved, and 17 is an electrolytic cell. FIG. 5 is a potential change diagram with respect to a lithium reference electrode at 25 ° C. when various carbon materials are doped and dedoped with lithium. Curve A in FIG. 5 is a potential change curve of the carbon material according to this example. In the curve A, the direction in which the potential approaches 0 V is dope (charge), and the direction in which the potential is high is dedope (discharge). FIG. 6 shows changes in discharge capacity in a test in which various carbon materials are charged and discharged with a constant current between 0 V and 2.5 V with respect to a lithium reference electrode. Curve A in FIG.
Shows the characteristic curve of this embodiment. As is clear from this result, there is almost no capacity deterioration due to repeated charging and discharging, and the repeating characteristics are very good.

以上このような電極材料を用いることによって充放電
可能な非水リチウム二次電池の負極を構成することがで
きる。
By using such an electrode material as described above, a negative electrode of a non-aqueous lithium secondary battery that can be charged and discharged can be formed.

<実施例2> 実施例1と同様な作製法でニッケル基板上へ炭素体を
堆積させた。この炭素体の諸特性を上記実施例1と同様
な方法で求めた。その結果(002)面の平均面間隔は第
7図に示す如く3.37Åであり、ラマンスペクトルによる
1580cm-1のピーク強度に対する1360cm-1のピーク強度比
は第8図に示す如く0.50であった。また、反射高速電子
線回折による各結晶子のc軸方向の分布は±60度以内で
あった。
<Example 2> A carbon body was deposited on a nickel substrate by the same manufacturing method as in Example 1. Various characteristics of this carbon body were determined by the same methods as in Example 1 above. As a result, the average interplanar spacing of the (002) plane was 3.37Å as shown in Fig. 7.
Peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 was 0.50 as shown in Figure 8. The distribution of each crystallite in the c-axis direction by reflection high-energy electron diffraction was within ± 60 degrees.

このように製作した炭素体からリード線を取り出して
電極として試験極Bとした。これを実施例1と同様な方
法でリチウムをドーパント物質とし、ドープ・脱ドープ
による充放電テストを行なった。第5図の曲線Bは本実
施例による炭素材料の電位変化曲線である。また第6図
の曲線Bは本実施例による炭素材料の繰り返しテストに
おける放電容量の変化を示す。この結果より明らかな如
く、放電容量、繰り返し特性とも非常に良好である。本
実施例で示した作製法を用いて得られた炭素体は平均層
間隔3.37Å〜3.55Åのものが得られ、レーザのラマンス
ペクトルにおける1580cm-1のピーク強度に対する1360cm
-1のピーク強度比が0.4以上1.0以下であった。又、反射
高速電子線回折から得られる各結晶子間のc軸方向の相
対的な傾きが±75゜以下であり好ましくは±60゜以下で
ある。
A lead wire was taken out from the carbon body manufactured as described above and used as a test electrode B as an electrode. Using this as a dopant material in the same manner as in Example 1, a charging / discharging test by doping / dedoping was performed. Curve B in FIG. 5 is a potential change curve of the carbon material according to this example. Curve B in FIG. 6 shows the change in discharge capacity in the repeated test of the carbon material according to this example. As is clear from this result, the discharge capacity and the repeating characteristics are very good. The carbon body obtained by using the production method shown in this example has an average layer spacing of 3.37Å to 3.55Å, and the peak intensity at 1580 cm -1 in the Raman spectrum of the laser is 1360 cm.
The peak intensity ratio of -1 was 0.4 or more and 1.0 or less. The relative inclination in the c-axis direction between the crystallites obtained by reflection high-energy electron diffraction is ± 75 ° or less, preferably ± 60 ° or less.

これらの物性値を満たすものは本実施例に述べた製作
法によってのみ達成することができ、より低温で得られ
るスス状炭素堆積物やより高温で得られる高配向黒鉛化
炭素体を用いたものは上述したような電極特性を示さな
い。但し、熱エネルギー以外の光CVD法,プラズマCVD法
によっても最適化することによって本発明の目的は達成
される。
Those satisfying these physical property values can be achieved only by the manufacturing method described in this example, and use soot-like carbon deposits obtained at lower temperatures and highly oriented graphitized carbon bodies obtained at higher temperatures. Does not exhibit the electrode characteristics as described above. However, the object of the present invention can be achieved by optimizing by a photo CVD method or a plasma CVD method other than thermal energy.

また、本実施例においては電解質に1モル過塩素酸リ
チウム、電解液にプロピレンカーボネートを用いて説明
したが、本発明はこれに限定されるものではなく、その
他の電解質としては六フッ化砒酸リチウム,ホウフッ化
リチウム,トリフルオロスルホン酸リチウム等があり、
また電解液としてはジメチルスルフオキシド,ガンマー
ブチルラクトン,スルフォランテトラヒドロフラン,2−
メチルテトラヒドロフラン,1.2−ジメトキシエタン,1.3
−ジオキソラン等の有機溶媒や水があげられ、これらを
単独もしくは混合して用いることができる。
Further, in this embodiment, 1 mol of lithium perchlorate was used as the electrolyte and propylene carbonate was used as the electrolytic solution, but the present invention is not limited to this, and lithium hexafluoroarsenate is used as the other electrolyte. , Lithium borofluoride, lithium trifluorosulfonate, etc.,
In addition, as the electrolyte, dimethyl sulfoxide, gamma-butyl lactone, sulfolane tetrahydrofuran, 2-
Methyltetrahydrofuran, 1.2-dimethoxyethane, 1.3
Examples include organic solvents such as dioxolane and water, and these may be used alone or in combination.

<比較例1> 実施例1と同様な方法で石英基板上に1200℃で炭素体
を堆積させた。これを基板より剥ぎ取り2800℃にて熱処
理し、高配向性黒鉛化炭素体を得た。第9図にこの炭素
体のX線回折データを示す。この炭素体の(002)面の
面間隔は3.36Åであった。又、ラマンスペクトルにおい
て1580cm-1のピーク強度に対する1360cm-1のピーク強度
比は0.1、この炭素体を実施例1と同様な方法で電極と
し試験極Cとした。試験極Cを第4図に示すような電解
槽内に配設し、実施例1と同様に充放電テストを行なっ
た。第5図の曲線cは本比較例による炭素材料の電位変
化曲線である。この結果より上記実施例1,2の電極に比
べ、放電容量もわずかで、電極材としては不適であっ
た。
Comparative Example 1 A carbon body was deposited on a quartz substrate at 1200 ° C. in the same manner as in Example 1. This was stripped from the substrate and heat-treated at 2800 ° C. to obtain a highly oriented graphitized carbon body. FIG. 9 shows the X-ray diffraction data of this carbon body. The spacing between (002) planes of this carbon body was 3.36Å. Further, the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the Raman spectrum of 0.1, was an electrode test electrode C in the carbon material the same manner as in Example 1. The test electrode C was placed in an electrolytic cell as shown in FIG. 4, and a charge / discharge test was conducted in the same manner as in Example 1. Curve c in FIG. 5 is a potential change curve of the carbon material according to this comparative example. As a result, the discharge capacity was smaller than that of the electrodes of Examples 1 and 2, and it was unsuitable as an electrode material.

<比較例2> 原油から揮発成分を除いた未精製の石油コークスを50
0℃で熱処理した。この炭素粉末体のX線回折図を第11
図に示す。この回折ピークより(002)面の平均面間隔
は3.45Åであった。また、ラマンスペクトルにおいて15
80cm-1のピーク強度に対する1360cm-1のピーク強度比は
0.8であった。この結果を第12図に示す。また反射高速
電子線回折によりこの炭素体をプレスして得た電極にお
ける回折パターンによれば回折パターンの各リングが均
一となり、配向性を持っていないことが判明した。この
炭素体を発泡状ニッケル基板に充填し、プレスしたもの
を電極とし、試験極Dとした。試験極Dを第4図に示す
ような電解槽内に配設し、実施例1と同様に充放電テス
トを行なった。第5図の曲線Dは本比較例による炭素材
料の電位曲線である。この結果より上記実施例1,2に比
べ放電容量は少ない。しかし初期充放電特性は比較例1
に比べ、良好であった。試験極Dを実施例1と同じ方法
にて、充放電の繰り返しテストを行なった。第6図の曲
線Dは本比較例による結果を示したものである。この結
果より電極において各結晶子の配向性が全くないものは
充放電の繰り返しにより容量の劣化が生じ、長期使用に
は耐え難いことが認められ、選択的配向性を有する炭素
材料を少量でも含んだ炭素材料が電極として適している
ことがわかる。
<Comparative Example 2> 50 unrefined petroleum coke obtained by removing volatile components from crude oil
Heat treated at 0 ° C. The X-ray diffraction pattern of this carbon powder is shown in Fig. 11.
Shown in the figure. From this diffraction peak, the average interplanar spacing of the (002) plane was 3.45Å. Also, in the Raman spectrum, 15
Peak intensity ratio of 1360 cm -1 to the peak intensity of 80 cm -1 is
It was 0.8. The results are shown in FIG. Further, according to the diffraction pattern of the electrode obtained by pressing this carbon body by reflection high-energy electron diffraction, it was found that each ring of the diffraction pattern was uniform and had no orientation. A foamed nickel substrate was filled with this carbon body and pressed to obtain an electrode, which was used as a test electrode D. The test electrode D was placed in an electrolytic cell as shown in FIG. 4, and a charge / discharge test was conducted in the same manner as in Example 1. Curve D in FIG. 5 is a potential curve of the carbon material according to this comparative example. From this result, the discharge capacity is smaller than that in Examples 1 and 2. However, the initial charge / discharge characteristics are shown in Comparative Example 1
Was better than. The test electrode D was subjected to a repeated charge / discharge test in the same manner as in Example 1. Curve D in FIG. 6 shows the result of this comparative example. From this result, it is confirmed that the electrode having no crystallite orientation at all causes deterioration in capacity due to repeated charge and discharge, and it is difficult to withstand long-term use.A small amount of carbon material having selective orientation was included. It can be seen that the carbon material is suitable as the electrode.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の説明に供する炭素材料生成
装置のブロック構成図である。 第2図及び第7図は本発明に係る炭素材料のX線回折図
である。 第3図及び第8図は本発明に係る炭素材料のラマンスペ
クトルを示す特性図である。 第4図は本発明に係る炭素材料の電極特性測定のための
装置の概略図である。 第5図は本発明に係る炭素材料及び既存の炭素材料の充
放電特性図である。 第6図は本発明に係る炭素材料及び既存の炭素材料の放
電容量のサイクル特性図である。 第9図及び第11図は既存の炭素材料のX線回折図であ
る。 第10図及び第12図は既存の炭素材料のラマンスペクトル
を示す特性図である。 1……バブル容器、2……アルゴンガス制御系、3……
パイレックスガラス管、4……反応管、5……バルブ、
6……希釈ライン、7……試料台、8……加熱炉、9…
…排気パイプ。
FIG. 1 is a block configuration diagram of a carbon material production apparatus used for explaining one embodiment of the present invention. 2 and 7 are X-ray diffraction patterns of the carbon material according to the present invention. 3 and 8 are characteristic diagrams showing Raman spectra of the carbon material according to the present invention. FIG. 4 is a schematic view of an apparatus for measuring electrode characteristics of a carbon material according to the present invention. FIG. 5 is a charge / discharge characteristic diagram of the carbon material according to the present invention and the existing carbon material. FIG. 6 is a cycle characteristic diagram of the discharge capacity of the carbon material according to the present invention and the existing carbon material. 9 and 11 are X-ray diffraction patterns of existing carbon materials. 10 and 12 are characteristic diagrams showing Raman spectra of existing carbon materials. 1 ... Bubble container, 2 ... Argon gas control system, 3 ...
Pyrex glass tube, 4 ... reaction tube, 5 ... valve,
6 ... Dilution line, 7 ... Sample stand, 8 ... Heating furnace, 9 ...
… Exhaust pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 友成 大阪市阿倍野区長池町22番22号 シャー プ株式会社内 (72)発明者 田島 善光 大阪市阿倍野区長池町22番22号 シャー プ株式会社内 (72)発明者 好本 芳和 大阪市阿倍野区長池町22番22号 シャー プ株式会社内 (72)発明者 中島 重夫 大阪市阿倍野区長池町22番22号 シャー プ株式会社内 (72)発明者 笠原 三千世 大阪市阿倍野区長池町22番22号 シャー プ株式会社内 (56)参考文献 特開 昭62−90863(JP,A) 特開 昭60−182670(JP,A) 特開 昭60−20466(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomonari Suzuki, 22-22 Nagaike-cho, Abeno-ku, Osaka (72) Yoshikazu Yoshimoto, 22-22 Nagaikecho, Nagano-cho, Abeno-ku, Osaka-shi, SHARP Co., Ltd. Sharp Co., Ltd., 22-22 Nagaike-cho, Abeno-ku, Osaka (56) Reference JP 62-90863 (JP, A) JP 60-182670 (JP, A) JP 60-20466 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素の六角網目が形成する層間にドーパン
ト物質がドープ、アンドープすることを利用した非水リ
チウム2次電池用負極において、 選択的配向性を有する炭素材料であって、 黒鉛に比べてドーパント物質のドープ、アンドープが起
こり易くかつ電気容量が大きくなるように、六角網目の
平均面間隔が3.37Åから3.55Åであり、かつアルゴンレ
ーザラマンスペクトルにおける1580cm-1のピーク強度に
対する1360cm-1のピーク強度比が0.4以上1.0以下で特定
(六角網目の平均面間隔が3.43Å以上であり、かつアル
ゴンレーザラマンスペクトルにおける1580cm-1のピーク
強度に対する1360cm-1のピーク強度比が0.6以上を除
く)される黒鉛の層構造に若干の乱層構造を有する炭素
材料を主成分とすることを特徴とする非水リチウム2次
電池用負極。
1. A negative electrode for a non-aqueous lithium secondary battery, which is prepared by doping and undoping a dopant material between layers formed by a hexagonal network of carbon, which is a carbon material having a selective orientation, which is superior to graphite. Te of dopant material doped so as undoped occurs easily and the electric capacity is increased, the average spacing of the hexagonal mesh is 3.55Å from 3.37 Å, and to the peak intensity of 1580 cm -1 in the argon laser Raman spectra of 1360 cm -1 identified by the peak intensity ratio of 0.4 to 1.0 (average spacing of the hexagonal mesh is not less than 3.43A, and the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon laser Raman spectrum excluding 0.6 or higher) is A negative electrode for a non-aqueous lithium secondary battery, comprising a carbon material having a layered structure of graphite having a slight disordered structure as a main component.
【請求項2】前記炭素材料の選択的配向性が、反射高速
電子線回折における(002)面の回折図形で各結晶子間
のC軸方向の相対的傾きが±75゜以下であることを特徴
とする特許請求の範囲第1項記載の非水リチウム2次電
池用負極。
2. The selective orientation of the carbon material is such that the relative inclination in the C-axis direction between crystallites in the diffraction pattern of the (002) plane in reflection high-energy electron diffraction is ± 75 ° or less. A negative electrode for a non-aqueous lithium secondary battery according to claim 1.
JP61173326A 1986-03-27 1986-07-22 Negative electrode for non-aqueous lithium secondary battery Expired - Fee Related JP2556840B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/030,886 US4863814A (en) 1986-03-27 1987-03-26 Electrode and a battery with the same
DE3750754T DE3750754T2 (en) 1986-03-27 1987-03-27 Electrode and battery provided with it.
EP87302651A EP0239410B1 (en) 1986-03-27 1987-03-27 An electrode and a battery with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-70205 1986-03-27
JP7020586 1986-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP01270596A Division JP3172669B2 (en) 1986-03-27 1996-01-29 Non-aqueous lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS6324555A JPS6324555A (en) 1988-02-01
JP2556840B2 true JP2556840B2 (en) 1996-11-27

Family

ID=13424786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173326A Expired - Fee Related JP2556840B2 (en) 1986-03-27 1986-07-22 Negative electrode for non-aqueous lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2556840B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304572A (en) * 1987-06-03 1988-12-12 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell
JPH0722018B2 (en) * 1988-03-04 1995-03-08 シャープ株式会社 Method of manufacturing graphite electrode
JP2718696B2 (en) * 1988-06-08 1998-02-25 シャープ株式会社 Electrode
JP2643035B2 (en) * 1991-06-17 1997-08-20 シャープ株式会社 Carbon negative electrode for non-aqueous secondary battery and method for producing the same
JP2707171B2 (en) * 1991-09-13 1998-01-28 シャープ株式会社 Method for producing carbon for battery active material
JP3276983B2 (en) * 1992-05-25 2002-04-22 新日本製鐵株式会社 Anode material for lithium secondary battery and method for producing the same
CA2130807A1 (en) * 1992-12-25 1994-06-26 Jun Tsukamoto Electrode and secondary battery using the same
JP2991884B2 (en) * 1993-02-16 1999-12-20 シャープ株式会社 Non-aqueous secondary battery
JP3204291B2 (en) * 1994-07-21 2001-09-04 シャープ株式会社 Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
TW396650B (en) * 1997-08-05 2000-07-01 Sony Corp Carbonaceous precursor, carbonaceous anode material, and nonaqueous rechargeable battery
WO1999060652A1 (en) 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same
JP6204004B2 (en) * 2011-08-31 2017-09-27 株式会社半導体エネルギー研究所 Manufacturing method of secondary battery
US9843070B2 (en) * 2014-02-28 2017-12-12 The Board Of Trustees Of The Leland Stanford Junior University Ultra-fast rechargeable metal-ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020466A (en) * 1983-07-15 1985-02-01 Morinobu Endo Active material for battery
JPS60182670A (en) * 1984-02-28 1985-09-18 Toray Ind Inc Rechangeable battery
JPS6290863A (en) * 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd Secondary cell

Also Published As

Publication number Publication date
JPS6324555A (en) 1988-02-01

Similar Documents

Publication Publication Date Title
JP3444786B2 (en) Lithium secondary battery
US4968527A (en) Method for the manufacture of pyrolytic graphite with high crystallinity and electrodes with the same for rechargeable batteries
US4863814A (en) Electrode and a battery with the same
JP2556840B2 (en) Negative electrode for non-aqueous lithium secondary battery
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JPH06243867A (en) Nonaqueous secondary battery
JP2018519648A (en) Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same
JPH0213423B2 (en)
EP1014462A2 (en) A method of producing a graphite material for use as a negative electrode of a non-aqueous secondary battery
WO2003077333A1 (en) Power storing element-use electrode, power storing element, power storing method
JPH0578909B2 (en)
EP0434402B1 (en) Process for preparing a carbon electrode
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
JP3172669B2 (en) Non-aqueous lithium secondary battery
JPH10199533A (en) Nonaqueous secondary battery and manufacture thereof
JP2556840C (en)
JP2656003B2 (en) Non-aqueous secondary battery
JPH07153446A (en) Electrode and manufacture thereof
US20030198588A1 (en) Vapor grown carbon fiber and method for producing the same
JP2785909B2 (en) Non-aqueous secondary battery
JP3399315B2 (en) Method for producing negative electrode for secondary battery, negative electrode for secondary battery, and secondary battery
JP3532115B2 (en) Non-aqueous secondary battery
KR101377366B1 (en) Negative electrode material for lithium rechargeable battery
JPS63124380A (en) Nonaqueous electrolyte secondary battery
JPH07118308B2 (en) Electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees