[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2548431B2 - Nickel-metal hydride battery conversion method - Google Patents

Nickel-metal hydride battery conversion method

Info

Publication number
JP2548431B2
JP2548431B2 JP2174737A JP17473790A JP2548431B2 JP 2548431 B2 JP2548431 B2 JP 2548431B2 JP 2174737 A JP2174737 A JP 2174737A JP 17473790 A JP17473790 A JP 17473790A JP 2548431 B2 JP2548431 B2 JP 2548431B2
Authority
JP
Japan
Prior art keywords
nickel
hydrogen storage
battery
conversion method
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2174737A
Other languages
Japanese (ja)
Other versions
JPH0465067A (en
Inventor
勉 岩城
良夫 森脇
明美 新谷
肇 世利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2174737A priority Critical patent/JP2548431B2/en
Publication of JPH0465067A publication Critical patent/JPH0465067A/en
Application granted granted Critical
Publication of JP2548431B2 publication Critical patent/JP2548431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素吸蔵合金を負極に用いたニッケル−水
素蓄電池の化成法に関する。
TECHNICAL FIELD The present invention relates to a chemical conversion method for a nickel-hydrogen storage battery using a hydrogen storage alloy for a negative electrode.

従来の技術 各種の電源として広く使われている蓄電池として鉛蓄
電池とアルカリ蓄電池がある。このうちアルカリ蓄電池
は高信頼性が期待でき、小形軽量化も可能などの理由で
小形は各種ポータブル機器用に、大形は産業用として使
われてきた。
2. Description of the Related Art Lead-acid batteries and alkaline batteries are widely used as various types of power sources. Among them, the alkaline storage battery can be expected to have high reliability and can be made compact and lightweight. For this reason, the compact type has been used for various portable devices and the large type has been used for industrial purposes.

このアルカリ蓄電池において正極としては、ほとんど
の場合ニッケル極である。ポケット式から焼結式に代わ
って特性が向上し、さらに密閉化が可能になるとともに
用途も広がった。
In most of the alkaline storage batteries, the positive electrode is a nickel electrode. The characteristics have been improved from the pocket type to the sintering type, and the sealing has been made possible and the use has expanded.

一方負極としては現在のところカドミウム極が主体で
あるが一層の高エネルギー密度を達成するために金属水
素化物つまり水素吸蔵合金極を使ったニッケル−水素蓄
電池が注目され製法などに多くの提案がされている。
On the other hand, cadmium electrodes are mainly used as the negative electrode at present, but nickel-hydrogen storage batteries using metal hydrides, that is, hydrogen storage alloy electrodes have attracted attention in order to achieve a higher energy density, and many proposals have been made for manufacturing methods. ing.

発明が解決しようとする課題 水素吸蔵合金極の製法としては合金粉末を焼結する方
式と発泡状、繊維状、パンチングメタルなどの多孔体に
充填や塗着する方式のペースト式がある。水素吸蔵合金
はカドミウム極などと同様に電子伝導性の点で比較的優
れているので非焼結式極の可能性は大きい。すなわち水
素吸蔵合金粉末を結着剤とともにペースト状としこれを
3次元あるいは2次元構造の多孔性導電板に充填あるい
は塗着している。しかし、いずれにしてもとくに充放電
サイクルの初期での放電特性の上で改良の余地がある。
とくに水素吸蔵合金としてZr−NiをベースとするAB2Lav
es相を含む合金では最終的には高容量になるが初期の活
性化が問題である。本発明はこのような問題を解決する
もので、初期から優れた特性を示すニッケル−水素蓄電
池の化成法を提供することを目的とする。
Problems to be Solved by the Invention There are two methods for producing a hydrogen storage alloy electrode: a method of sintering an alloy powder and a method of filling or applying a porous material such as foamed, fibrous, or punched metal. Since hydrogen storage alloys are relatively excellent in electron conductivity in the same manner as cadmium electrodes, the possibility of non-sintered electrodes is great. That is, the hydrogen-absorbing alloy powder is made into a paste together with a binder, and the paste is filled or applied to a porous conductive plate having a three-dimensional or two-dimensional structure. However, in any case, there is room for improvement particularly in the discharge characteristics at the beginning of the charge / discharge cycle.
AB 2 Lav based on Zr-Ni as a hydrogen storage alloy
In the alloy containing the es phase, the capacity eventually becomes high, but the initial activation is a problem. The present invention solves such a problem, and an object of the present invention is to provide a chemical conversion method for a nickel-hydrogen storage battery that exhibits excellent characteristics from the initial stage.

課題を解決するための手段 この課題を解決するため本発明のニッケル−水素蓄電
池の化成法は、ニッケル正極と水素吸蔵合金負極とセパ
レータを用いて電池を構成し電槽に挿入、電解液を注入
後にそのまままたは密閉形として0〜10℃の温度で充電
し、40〜60℃の温度で放電する化成を行う。負極に用い
る水素吸蔵合金としては、Zr−NiをベースとするAB2
ーバス(Laves)相を含む合金が好ましい。
Means for Solving the Problems In order to solve this problem, the method for chemical conversion of the nickel-hydrogen storage battery of the present invention is to construct a battery using a nickel positive electrode, a hydrogen storage alloy negative electrode and a separator, and insert the battery into a battery case, injecting an electrolytic solution. Later, as it is or as a closed type, it is charged at a temperature of 0 to 10 ° C and discharged at a temperature of 40 to 60 ° C to perform formation. The hydrogen storage alloy used for the negative electrode is preferably an alloy containing AB 2 Laves phase based on Zr-Ni.

作用 この構成により本発明のニッケル−水素蓄電池の化成
法は、水素吸蔵合金粉末とくにZr−NiをベースとするAB
2Laves相を含む合金は最終的には高容量になるが初期の
容量が少ない。そこで化成が他の電池系以上に重要であ
る。ところが一般の電池同様化成として単に暖充放電を
繰り返すのみでは容量の増加の度合は比較的小さく、本
来の容量に達する迄には多くの充放電サイクルを必要と
した。
With this configuration, the method for chemical conversion of the nickel-hydrogen storage battery of the present invention is based on the hydrogen storage alloy powder, especially Zr-Ni based AB
Alloys containing 2 Laves phases will eventually have high capacities but low initial capacities. Therefore, chemical conversion is more important than other battery systems. However, the capacity increase is comparatively small by simply repeating the warm charge and discharge as the formation of a general battery, and many charge and discharge cycles were required until the original capacity was reached.

それが上記のような特定の低温度で充電し、高温度で
放電する化成を行ない、しかも好ましくは負極容量の3
倍以上のような大容量を充電することで改良が図られた
ことから、まず合金が電極として機能するためには充電
での電極から水素が発生する状態を長く保つほど効果的
であることがわかった。しかも0〜10℃の低温ほど水素
吸蔵合金の充電効率は良好である。
It conducts formation by charging at a specific low temperature and discharging at a high temperature as described above, and more preferably 3 times the negative electrode capacity.
Since the improvement was achieved by charging a large capacity such as more than double, it is effective to keep the hydrogen generation state from the electrode during charging for a long time for the alloy to function as the electrode. all right. Moreover, the lower the temperature is from 0 to 10 ° C, the better the charging efficiency of the hydrogen storage alloy.

さらに他の電池同様に正極律則の電池構成にしていて
も、負極の容量が不十分な化成時に常温の放電を入れる
と負極律則になるので、これをできるだけ避けるために
放電では負極に有利な高温で行う。その結果負極律則に
ならず、従って化成時に合金にとって好ましくない酸化
などを受けにくくなり長寿命になる。
Even if the battery structure is based on the positive electrode law like other batteries, the negative electrode law will occur if a discharge at room temperature is applied during formation where the negative electrode capacity is insufficient. At very high temperatures. As a result, the negative electrode law is not established, and thus oxidation during oxidation is less likely to be unfavorable to the alloy, resulting in a longer life.

なお他の蓄電池の場合密閉形にして負極から水素を発
生させると触媒でも用いていないかぎり水素は吸収され
ないので電池内圧は上昇してしまう。ところが水素吸蔵
合金とくにZr−NiをベースとするAB2Laves相を含む合金
は水素を吸蔵する能力と水素と酸素とを水に戻す触媒能
を初期から持っているので電池内圧が上昇してガス漏れ
などが生ずることはない。
In the case of other storage batteries, if the battery is hermetically sealed and hydrogen is generated from the negative electrode, hydrogen is not absorbed unless it is also used as a catalyst, so the internal pressure of the battery rises. However, hydrogen storage alloys, especially those based on Zr-Ni and containing the AB 2 Laves phase, have the ability to store hydrogen and the catalytic ability to return hydrogen and oxygen to water from the beginning, so the internal pressure of the battery rises and gas No leakage will occur.

実 施 例 以下本発明の一実施例のニッケル−水素蓄電池の化成
法について説明する。水素吸蔵合金としてAB2Laves相合
金の一つであるZrMn0.6Cr0.2Ni1.2を粉砕した後カルボ
キシメチルセルロース溶液を加えて作ったペーストを多
孔度95%厚さ1.0mmの発泡状ニッケル板に充填し加圧し
て水素吸蔵合金電極を得た。減圧で乾燥後5%のフッ素
樹脂ディスパージョンを添加し補強した。この水素吸蔵
合金電極を幅33mm、長さ210mmに裁断し、リード板をス
ポット溶接により取り付けた。
Example Hereinafter, a method of forming a nickel-hydrogen storage battery according to an example of the present invention will be described. As a hydrogen storage alloy, ZrMn 0.6 Cr 0.2 Ni 1.2 , which is one of the AB 2 Laves phase alloys, was crushed and the paste made by adding carboxymethyl cellulose solution was filled in a foam nickel plate with porosity 95% and thickness 1.0 mm. A pressure was applied to obtain a hydrogen storage alloy electrode. After drying under reduced pressure, a 5% fluororesin dispersion was added to reinforce. This hydrogen storage alloy electrode was cut into a width of 33 mm and a length of 210 mm, and a lead plate was attached by spot welding.

相手極として公知の発泡状ニッケル極、それに親水処
理ポリプロピレン不織布セパレータを用いて密閉形ニッ
ケル−水素蓄電池を構成した。正極に対する負極の容量
を4Ah(140%)とした。その後比重1.25の苛性カリ水溶
液に25g/lの水酸化リチウムを溶解した電解液を注入し
た。電池はSubC形とした。公称容量は2.8Ahである。
A sealed nickel-hydrogen storage battery was constructed using a known foamed nickel electrode as a counter electrode and a hydrophilic non-woven polypropylene separator. The capacity of the negative electrode with respect to the positive electrode was set to 4 Ah (140%). After that, an electrolytic solution in which 25 g / l of lithium hydroxide was dissolved in a caustic potash aqueous solution having a specific gravity of 1.25 was injected. The battery was a Sub C type. The nominal capacity is 2.8Ah.

この電池10セルを用いて雰囲気温度10℃のもとで化成
として300mAの電流で15時間充電と50℃のもとで300mAで
端子電圧0.8Vまでの放電を2回繰り返した。この電池を
Aとする。
Using 10 cells of this battery, formation was performed at an ambient temperature of 10 ° C. for 15 hours at a current of 300 mA and discharge at 300 mA at 50 ° C. to a terminal voltage of 0.8 V was repeated twice. This battery is designated as A.

つぎに比較のために従来の化成法の一例として室温20
℃のもと300mAで15時間充電−同じく室温300mAで端子電
圧0.8Vまでの放電を2回の繰り返した電池を加えBとし
た。
Next, as an example of conventional chemical conversion method, room temperature 20
Charged at 300mA for 15 hours at ℃ -Battery which was discharged at terminal temperature of 0.8V up to 0.8V at room temperature of 300mA was added twice, and was designated as B.

化成後の放電電圧と容量を調べたところAは平均電圧
は1.24Vであり、放電容量は2.8〜2.9Ahであった。とこ
ろがBでは、Aと同じ特性を示すまでに8〜11サイクル
を必要とした。
When the discharge voltage and capacity after chemical formation were examined, the average voltage of A was 1.24 V and the discharge capacity was 2.8 to 2.9 Ah. However, in B, it took 8 to 11 cycles to show the same characteristics as in A.

つぎに両電池をそれぞれ10セル用い400mAで130%充電
−1Aで0.8Vまでの放電の充放電条件で寿命特性を比較し
た。その結果放電容量はAでは1000サイクルでも初期の
82〜85%を示しているのに対してBでは75〜78%であり
Aの性能が長期にわたって安定していた。
Next, using 10 cells of each battery, we compared the life characteristics under the charge and discharge conditions of 130% charge at 400 mA and discharge to 0.8 V at -1 A. As a result, the discharge capacity of A is 1000 cycles
The ratio of B was 75-78%, while the ratio of 82-85% was shown, and the performance of A was stable over a long period.

なお実施例では密閉形について述べたが、開放形でも
同じ効果がある。
Although the closed type is described in the embodiment, the open type has the same effect.

発明の効果 以上の実施例の説明で明らかなように本発明のニッケ
ル−水素蓄電池の化成法によれば、充放電の初期から優
れた特性を示し、これを長期にわたって維持できるとい
う効果を得ることができる。
EFFECTS OF THE INVENTION As is clear from the above description of the embodiments, according to the nickel-hydrogen storage battery chemical conversion method of the present invention, excellent characteristics can be obtained from the initial stage of charge and discharge, and the effect of being able to maintain this for a long period of time can be obtained. You can

フロントページの続き (72)発明者 世利 肇 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−267872(JP,A) 特開 平4−61756(JP,A) 特開 平4−62763(JP,A)Front page continuation (72) Inventor Hajime Hajime 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-2-267872 (JP, A) JP-A-4-61756 ( JP, A) JP-A-4-62763 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ニッケル正極と水素吸蔵合金負極とセパレ
ータを用いて電池を構成した後、0〜10℃の温度で充電
し、40〜60℃の温度で放電する化成を行うニッケル−水
素蓄電池の化成法。
1. A nickel-hydrogen storage battery which is formed by using a nickel positive electrode, a hydrogen storage alloy negative electrode and a separator, and is then charged at a temperature of 0 to 10 ° C. and discharged at a temperature of 40 to 60 ° C. Chemical conversion method.
【請求項2】水素吸蔵合金がZr−NiをベースとするAB2
ラーバス相を含む請求項1記載のニッケル−水素蓄電池
の化成法。
2. A hydrogen storage alloy of AB 2 based on Zr-Ni.
The method for forming a nickel-hydrogen storage battery according to claim 1, which comprises a Larvus phase.
JP2174737A 1990-07-02 1990-07-02 Nickel-metal hydride battery conversion method Expired - Lifetime JP2548431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174737A JP2548431B2 (en) 1990-07-02 1990-07-02 Nickel-metal hydride battery conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174737A JP2548431B2 (en) 1990-07-02 1990-07-02 Nickel-metal hydride battery conversion method

Publications (2)

Publication Number Publication Date
JPH0465067A JPH0465067A (en) 1992-03-02
JP2548431B2 true JP2548431B2 (en) 1996-10-30

Family

ID=15983791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174737A Expired - Lifetime JP2548431B2 (en) 1990-07-02 1990-07-02 Nickel-metal hydride battery conversion method

Country Status (1)

Country Link
JP (1) JP2548431B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2074159C (en) * 1992-07-17 1997-11-11 Jun Furukawa Method of manufacturing a sealed type nickel-hydrogen cell
EP0696825B1 (en) 1994-08-09 2004-02-04 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery
US6287724B2 (en) * 1997-11-03 2001-09-11 Eveready Battery Company, Inc. Nickel metal hydride cells designed for high rate/low temperature performance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594149B2 (en) * 1989-04-07 1997-03-26 三洋電機株式会社 Manufacturing method of metal-hydrogen alkaline storage battery
JP2944152B2 (en) * 1990-06-28 1999-08-30 三洋電機株式会社 Method for manufacturing nickel-hydrogen storage battery
JPH0462763A (en) * 1990-06-29 1992-02-27 Sanyo Electric Co Ltd Manufacture of metal hydride storage battery

Also Published As

Publication number Publication date
JPH0465067A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
JP3438142B2 (en) Medium / large capacity sealed metal oxide / hydrogen storage battery
JP2548431B2 (en) Nickel-metal hydride battery conversion method
JPS59181459A (en) Metal oxide hydrogen battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP3102002B2 (en) Hydrogen storage electrode and method for producing the same
JPH0447676A (en) Manufacture of sealed storage battery
JPH05151990A (en) Chemical formation method for sealed type nickel-hydrogen storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPS63131472A (en) Metal-hydrogen alkaline storage battery
JPH03241673A (en) Formation method for nickel-hydrogen storage battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH05275082A (en) Forming method for sealed nickel-hydrogen storage battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP2584075B2 (en) Manufacturing method of nickel-hydrogen storage battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP2022128641A (en) Method for manufacturing nickel hydrogen storage battery
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH04294069A (en) Sealed type ni-h storage battery