JP2547737B2 - Internal reforming molten carbonate fuel cell - Google Patents
Internal reforming molten carbonate fuel cellInfo
- Publication number
- JP2547737B2 JP2547737B2 JP61171911A JP17191186A JP2547737B2 JP 2547737 B2 JP2547737 B2 JP 2547737B2 JP 61171911 A JP61171911 A JP 61171911A JP 17191186 A JP17191186 A JP 17191186A JP 2547737 B2 JP2547737 B2 JP 2547737B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- molten carbonate
- carbonate fuel
- catalyst
- internal reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、燃料極近傍で燃料の改質反応を行わせる内
部改質型溶融炭酸塩燃料電池に係り、該改質反応を長時
間安定に維持させることが可能な触媒の組成に関する。The present invention relates to an internal reforming molten carbonate fuel cell which causes a reforming reaction of a fuel in the vicinity of a fuel electrode. The present invention relates to a composition of a catalyst capable of keeping a reaction stable for a long time.
(従来の技術) 従来の溶融炭酸塩燃料電池の一構成例を第3図に示
す。すなわち、単セル1は、導電性の多孔質電極である
カソード3と同アノード2との間に、炭酸塩とその保持
材からなる電解質層4を挾んで構成される。そして、こ
の単セル1はカソート及びアノードにそれぞれ反応ガス
を供給するための溝を設けた導電性のセパレータ5を介
して複数積層される。(Prior Art) A configuration example of a conventional molten carbonate fuel cell is shown in FIG. That is, the unit cell 1 is formed by sandwiching an electrolyte layer 4 made of carbonate and its supporting material between a cathode 3 and an anode 2 which are conductive porous electrodes. Then, a plurality of the unit cells 1 are laminated with a conductive separator 5 provided with grooves for supplying the reaction gas to the castor and the anode, respectively.
このような電池を、運転温度である650℃まで昇温す
ると、電解質4の炭酸塩が溶融して炭酸イオン(C
O3 2-)となり、さらにアノードにH2、カソードにO2とCO
2を供給し、外部負荷回路を閉じることにより、アノー
ド、カソードではそれぞれ下記のような反応が連続的に
進行し、発電が継続して行われる。When such a battery is heated to the operating temperature of 650 ° C., the carbonate salt of the electrolyte 4 melts and the carbonate ion (C
O 3 2− ), H 2 is added to the anode, and O 2 and CO are added to the cathode.
By supplying 2 and closing the external load circuit, the following reactions proceed continuously at the anode and cathode, respectively, and power generation continues.
(アノード)H2+CO3 2-→H2O+CO2+2e- (1) 実用的には、カソードには、空気と、炭酸ガスの混合
ガスが供給され、またアノードには、天然ガス、アルコ
ール等の改質ガスや石炭ガス等が供給される。そこで、
アノードに連続的にガスを供給させるために、一般に溶
融炭酸塩燃料電池発電システムにおいては、前記の天然
ガス等の燃料を水素に富んだガスに改質させるための燃
料改質過程が必要となる。 (Anode) H 2 + CO 3 2- → H 2 O + CO 2 + 2e - (1) Practically, the cathode is supplied with a mixed gas of air and carbon dioxide gas, and the anode is supplied with a reformed gas such as natural gas or alcohol, or coal gas. Therefore,
In order to continuously supply the gas to the anode, a molten carbonate fuel cell power generation system generally requires a fuel reforming process for reforming the fuel such as the natural gas into a hydrogen-rich gas. .
例として、メタンを燃料とする溶融炭酸塩燃料電池発
電システムを考えてみると、従来はこの過程を行うた
め、燃料電池本体のアノード側ガス供給路前段に、700
〜800℃、数気圧の圧力下で、燃料のメタンと水蒸気を
混合させ、例えば、Al2O3の表面にNiを分散させたペレ
ット状の触媒上で、下記の反応を進行させる、水蒸気改
質器が設けられていた。As an example, consider a molten carbonate fuel cell power generation system that uses methane as a fuel. Conventionally, this process is performed.
Mixing methane and steam of fuel at a pressure of up to 800 ° C and several atmospheres, for example, on a pellet-shaped catalyst in which Ni is dispersed on the surface of Al 2 O 3 , the following reaction is allowed to proceed. A pawn was provided.
CH4+H2O→CO+3H2 (3) この際、上記反応を吸熱反応であるため、燃料の一部
を燃焼させたり発電時の燃料電池本体の発熱の一部をこ
の改質器まで移送する等の手段が必要であった。これに
対し、電池内部のアノード近傍で上記反応を進行させ
る、内部改質型の溶融炭酸塩燃料電池は、電池外部に大
型の改質器を設ける必要がなく、システム全体がコンパ
クトになることもさることながら、以下の2つの理由に
より、外部に改質器を有する従来の溶融炭酸塩燃料電池
よりも高い発電効率が可能である。CH 4 + H 2 O → CO + 3H 2 (3) At this time, since the above reaction is an endothermic reaction, a part of the fuel is burnt or a part of the heat generated by the fuel cell body during power generation is transferred to this reformer. Etc. were necessary. On the other hand, an internal reforming type molten carbonate fuel cell that causes the above reaction to proceed in the vicinity of the anode inside the cell does not require a large reformer outside the cell, and the entire system can be compact. Needless to say, higher power generation efficiency than that of the conventional molten carbonate fuel cell having an external reformer is possible for the following two reasons.
その第一は、燃料電池は、発電中、内部抵抗によるジ
ュール発熱を主体とする大量の発熱を生じるが、この発
熱源であるセルの近傍で、(3)式の吸熱反応が行われ
るため、熱的に損失が少ないという点である。これはま
た同時に、発電中に積層電池を冷却するための冷却系に
必要なコスト、エネルギーを低減できるという効果を持
っている。Firstly, the fuel cell generates a large amount of heat mainly due to Joule heat generation due to internal resistance during power generation, but since the endothermic reaction of the formula (3) is performed near the cell which is the heat source, The point is that there is little thermal loss. At the same time, this also has the effect of reducing the cost and energy required for the cooling system for cooling the laminated battery during power generation.
第二は、(1)式のアノード反応と、(3)式の改質
反応が同じ空間で同時に進行することにより、相互の物
質交換が行われ、燃料の利用率の向上、及びセル電圧の
向上が可能なことである。すなわち、(3)式におい
て、反応物であるH2Oは(1)式における生成物であ
り、また(3)式の生成物であるH2は(1)式における
反応物である。このため、(3)式の反応は右側に進行
し、結果として、650℃というCH4の改質反応条件として
は比較的低い温度下でありながら、平衡組成から求まる
よりも高い、100%近いCH4→H2の転化率が得られる。一
方、従来の溶融炭酸塩燃料電池においては、アノードの
流路方向に沿って、反応により、H2の分圧が低下し、H2
Oの分圧が上昇するため、起電力が流路上流から下流に
かけて低下する分布となっていた。これに対し、前述の
内部改質型溶融燃料電池においては、流路中で(3)式
の反応が行われるため、この流路方向への起電力の低下
が少なくなり、その結果全体的な起電力が高くなる。Second, the anode reaction of the formula (1) and the reforming reaction of the formula (3) simultaneously proceed in the same space, so that mutual substance exchange is performed, the fuel utilization rate is improved, and the cell voltage is increased. It is possible to improve. That is, in equation (3), which is a reaction product H 2 O is a product in (1), also (3) H 2, the product of formula is the reaction product of (1). Therefore, the reaction of the formula (3) proceeds to the right, and as a result, it is close to 100%, which is higher than that obtained from the equilibrium composition, even though the temperature is 650 ° C, which is a relatively low temperature for the CH 4 reforming reaction condition. The conversion rate of CH 4 → H 2 is obtained. On the other hand, in the conventional molten carbonate fuel cell, along the anode in the flow direction, the reaction by the partial pressure of H 2 is lowered, H 2
Since the partial pressure of O increases, the electromotive force had a distribution that decreased from upstream to downstream of the flow path. On the other hand, in the above-mentioned internal reforming type molten fuel cell, the reaction of the formula (3) is carried out in the flow path, so that the decrease of the electromotive force in the flow path direction is reduced, and as a result, the overall Higher electromotive force.
(発明が解決しようとする問題点) これら二点の長所を有するためには、前述のように、
アノード近傍に改質用触媒を設ける必要があるが、650
℃の電池運転条件下では、溶融した炭酸塩が多孔体であ
るアノードを通って蒸発及び流出しており、従って該改
質分触媒もこの雰囲気にさらされることになる。特に、
触媒表面は、(3)式の反応が吸熱反応であるため、雰
囲気よりも低温になっており、従って炭酸塩が凝縮し、
触媒表面を覆ったり、触媒の担持体と反応してこれを脆
化させたりすることにより、触媒の表面積が減少し、従
って活性が低下し、改質反応を維持できなくなるという
問題点があった。第4図は、Al2O3を担持体とする触媒
を用いた、単セルによる連続発電実験時の、セル電圧及
びCH4→H2の転化率の時間変化を示したものである。(Problems to be Solved by the Invention) In order to have the advantages of these two points, as described above,
It is necessary to install a reforming catalyst near the anode.
Under the battery operating condition of 0 ° C., the molten carbonate is vaporized and discharged through the porous anode, so that the reforming catalyst is also exposed to this atmosphere. In particular,
Since the reaction of the formula (3) is an endothermic reaction, the temperature of the catalyst surface is lower than that of the atmosphere, so that the carbonate is condensed,
By covering the surface of the catalyst or reacting with the carrier of the catalyst to make it brittle, the surface area of the catalyst is reduced, and therefore the activity is lowered, and the reforming reaction cannot be maintained. . FIG. 4 shows changes with time in cell voltage and conversion rate of CH 4 → H 2 during continuous power generation experiment using a single cell using a catalyst having Al 2 O 3 as a carrier.
この発明は、構造的な方法により上記の問題点を解決
し、内部改質型溶融炭酸塩燃料電池の特性を長時間安定
に維持することが可能な内部改質型溶融炭酸塩燃料電池
を提供するためのものである。The present invention provides an internal reforming molten carbonate fuel cell capable of solving the above problems by a structural method and maintaining the characteristics of the internal reforming molten carbonate fuel cell stably for a long time. It is for doing.
(問題点を解決するための手段) 本発明は、B4C,HfN,ZrO2のうち少なくとも一種類の成
分を例えば、平均孔径10〜1000ÅのNi多孔質体に化学蒸
着(CVD)法により付与させ、厚さ10μm〜50μm程度
の箔とし、これを、アノードと改質触媒の間において形
成されるものである。(Means for Solving Problems) The present invention is to provide at least one component of B 4 C, HfN, and ZrO 2 by , for example, a chemical vapor deposition (CVD) method on a Ni porous body having an average pore size of 10 to 1000Å. The foil is applied to form a foil having a thickness of about 10 μm to 50 μm, which is formed between the anode and the reforming catalyst.
(作用) B4C,HfN,ZrO2は、いずれも電解質である溶融炭酸塩を
はじく性質を有しており、従って、アノードから蒸発し
た電解質蒸気は、表面がこれらの成分で覆われた箔の微
細な孔を通過しにくくなり、触媒の電解質蒸気により濡
れが低減される。一方、触媒上で生成したH2,Co又、電
極反応により生成するH2Oはこの孔を自由に通過するこ
とができ、従って、性能には何ら影響を及ぼさない。(Action) B 4 C, HfN, and ZrO 2 all have the property of repelling molten carbonate, which is the electrolyte, so the electrolyte vapor evaporated from the anode is a foil whose surface is covered with these components. It becomes difficult to pass through the minute pores of the catalyst, and the wetting is reduced by the electrolyte vapor of the catalyst. On the other hand, H 2 and Co produced on the catalyst and H 2 O produced by the electrode reaction can freely pass through this hole, and therefore have no effect on the performance.
(実 施 例) 以下実施例を用いて本発明を詳細に説明する。(Examples) The present invention will be described in detail below with reference to examples.
第1図は、実施例の構成を示したもので、アノード13
と触媒12の間に箔15が設けられている。箔15は、厚さ30
μm、平均孔径200ÅのNi多孔質体に、HfNをCVDにより
付与させたものである。このような構成で5セル積層
し、実験を行なった。FIG. 1 shows the configuration of the embodiment, in which the anode 13
A foil 15 is provided between and the catalyst 12. Foil 15 has a thickness of 30
H f N is applied by CVD to a Ni porous body having a diameter of 200 μm and an average pore size of 200 Å. An experiment was conducted by stacking 5 cells with such a configuration.
供給したガスは加湿されたCH4で、S/C比は2.0であ
る。連続発電実験を行った際のセル電圧及びCH2→H2の
転化率の時間変化を第2図に示す。なお、4000時間まで
の特性であるが図から明らかなとおり、この間の触媒の
劣化は殆んでみられない。The supplied gas is humidified CH 4 , and the S / C ratio is 2.0. Figure 2 shows the changes over time in the cell voltage and the conversion rate of CH 2 → H 2 when a continuous power generation experiment was performed. It should be noted that although the characteristics are up to 4000 hours, as is clear from the figure, there is almost no deterioration of the catalyst during this period.
本発明により、高効率でコンパクトな内部改質型溶融
炭酸塩燃料電池を長時間安定な特性で発電させることが
可能となった。また、本発明の方法は、極めて薄い箔を
用いるため、従来の形状の内部改質型溶融酸塩燃料電池
にも大幅な形状の変更を行うこともなく適用が可能であ
る。According to the present invention, a highly efficient and compact internal reforming molten carbonate fuel cell can be generated with stable characteristics for a long time. Further, since the method of the present invention uses an extremely thin foil, it can be applied to an internal reforming type molten salt fuel cell having a conventional shape without making a significant change in shape.
第1図は本発明に係る一実施例を示す斜視図、第2図は
本発明に係る単セルの特性図、第3図は従来例を示す斜
視図、第4図は従来の単セルの特性を示す図である。 12……触媒、13……アノード、15……箔FIG. 1 is a perspective view showing an embodiment according to the present invention, FIG. 2 is a characteristic view of a single cell according to the present invention, FIG. 3 is a perspective view showing a conventional example, and FIG. 4 is a conventional single cell. It is a figure which shows a characteristic. 12 …… Catalyst, 13 …… Anode, 15 …… Foil
Claims (3)
ノード側のガス流路内に設けられた触媒により改質し、
改質されたガスを電極反応に供することにより発電を行
う内部改質型溶融炭酸塩燃料電池において、Niの多孔質
体にB4C,HfN,ZrO2のうち少なくとも一種類の成分を付与
することにより形成される、電解質である溶融炭酸塩は
はじくが、該触媒上で生成された物質もしくは電極反応
により生成された物質は透過する微細な孔を有する箔
を、該触媒と該アノードの間に設けたことを特徴とする
内部改質型溶融炭酸塩燃料電池。1. A hydrocarbon, alcohol, coal gas or the like is reformed by a catalyst provided in a gas passage on the anode side,
In an internal reforming molten carbonate fuel cell that generates power by subjecting the reformed gas to an electrode reaction, at least one component of B 4 C, HfN, and ZrO 2 is added to a porous Ni body. The molten carbonate, which is the electrolyte formed by the repelling, is repelled, but a foil having fine pores through which the substance formed on the catalyst or the substance formed by the electrode reaction is permeated, is formed between the catalyst and the anode. An internal reforming type molten carbonate fuel cell, characterized in that
うち少なくとも一種類の成分を化学蒸着により付与する
ことを特徴とする請求項1記載の内部改質型溶融炭酸塩
燃料電池。2. The internally modified type foil according to claim 1, wherein the foil is formed by applying at least one component selected from B 4 C, HfN and ZrO 2 to a Ni porous body by chemical vapor deposition. Molten carbonate fuel cell.
10〜1000Åの多孔質体であることを特徴とする請求項1
記載の内部改質型溶融炭酸塩燃料電池。3. The foil has a thickness of 10 μm to 50 μm and an average pore diameter.
A porous body having a size of 10 to 1000Å.
The internal reforming molten carbonate fuel cell described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61171911A JP2547737B2 (en) | 1986-07-23 | 1986-07-23 | Internal reforming molten carbonate fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61171911A JP2547737B2 (en) | 1986-07-23 | 1986-07-23 | Internal reforming molten carbonate fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6329458A JPS6329458A (en) | 1988-02-08 |
JP2547737B2 true JP2547737B2 (en) | 1996-10-23 |
Family
ID=15932112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61171911A Expired - Fee Related JP2547737B2 (en) | 1986-07-23 | 1986-07-23 | Internal reforming molten carbonate fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2547737B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101296819B1 (en) * | 2011-10-28 | 2013-08-14 | 한국전력공사 | Coal gas molten fuel cell system |
CN109799322A (en) * | 2019-03-12 | 2019-05-24 | 中国华能集团清洁能源技术研究院有限公司 | A kind of multifunctional coal gasification experiment test device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100339795B1 (en) * | 2000-01-25 | 2002-06-07 | 박호군 | Direct Internal Reforming Molten Carbonate Fuel Cell with Membrane for Intercepting Carbonate Vapor |
CN102299360B (en) * | 2010-06-23 | 2014-10-22 | 中国科学院大连化学物理研究所 | Methane direct internal reforming molten carbonate fuel cell (DIR-MCFC) structure and battery pack |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60140665A (en) * | 1983-12-27 | 1985-07-25 | Toshiba Corp | Electrode of fused carbonate fuel cell |
JPS6124170A (en) * | 1984-07-13 | 1986-02-01 | Mitsubishi Electric Corp | Fused carbonate type fuel cell |
JPS6151770A (en) * | 1984-08-21 | 1986-03-14 | Toshiba Corp | Molten carbonate fuel cell |
JPS61118970A (en) * | 1984-11-13 | 1986-06-06 | Matsushita Electric Ind Co Ltd | Molten salt fuel cell |
-
1986
- 1986-07-23 JP JP61171911A patent/JP2547737B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101296819B1 (en) * | 2011-10-28 | 2013-08-14 | 한국전력공사 | Coal gas molten fuel cell system |
CN109799322A (en) * | 2019-03-12 | 2019-05-24 | 中国华能集团清洁能源技术研究院有限公司 | A kind of multifunctional coal gasification experiment test device |
Also Published As
Publication number | Publication date |
---|---|
JPS6329458A (en) | 1988-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2002219941B2 (en) | Multipurpose reversible electrochemical system | |
US5100743A (en) | Internal reforming type molten carbonate fuel cell | |
JP4879460B2 (en) | Solid oxide fuel cell | |
KR100768960B1 (en) | Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment | |
US4454207A (en) | Steam reforming of fuel to hydrogen in fuel cells | |
AU2002219941A1 (en) | Multipurpose reversible electrochemical system | |
JPH06310158A (en) | Internally reformed fuel cell device and fuel cell power generating system | |
JPH09245802A (en) | Electrode for polymer solid electrolyte type fuel cell | |
Fan et al. | Barium‐doped Sr2Fe1. 5Mo0. 5O6‐δ perovskite anode materials for protonic ceramic fuel cells for ethane conversion | |
JP2547737B2 (en) | Internal reforming molten carbonate fuel cell | |
US7122269B1 (en) | Hydronium-oxyanion energy cell | |
JPH03283266A (en) | Solid electrolyte fuel cell of inside reformed type | |
JP2009087809A (en) | Fuel cell | |
JPS63310574A (en) | Internal reforming type fuel cell | |
Cheng et al. | Anode-supported solid oxide fuel cell with electrophoretic deposition-derived electrolyte operated under single-chamber conditions and a methane–air mixture | |
JPH06349504A (en) | Solid electrolyte type fuel cell | |
Tapan et al. | Investigation of methanol oxidation electrokinetics on Pt using the asymmetric electrode | |
JPH0757758A (en) | Fuel cell system | |
JPS6247968A (en) | Molten carbonate fuel cell capable of internal reformation | |
JP4075435B2 (en) | Chemical reactor and fuel cell system | |
JPH07240214A (en) | Base body tube for inner reform for solid electrolyte fuel cell | |
JPH05275101A (en) | Solid polyelectrolytic type fuel cell system | |
JP2734716B2 (en) | Internal reforming fuel cell | |
CA2021041A1 (en) | Electrode for use in a gas fuel cell which contains a set of electrodes | |
JPH08138683A (en) | Manufacture of electrode for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |