[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024131366A - Zinc melting method and zinc melting device - Google Patents

Zinc melting method and zinc melting device Download PDF

Info

Publication number
JP2024131366A
JP2024131366A JP2023041582A JP2023041582A JP2024131366A JP 2024131366 A JP2024131366 A JP 2024131366A JP 2023041582 A JP2023041582 A JP 2023041582A JP 2023041582 A JP2023041582 A JP 2023041582A JP 2024131366 A JP2024131366 A JP 2024131366A
Authority
JP
Japan
Prior art keywords
zinc
plating bath
dissolution
metal
accelerating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023041582A
Other languages
Japanese (ja)
Inventor
伸治 石▲崎▼
清彦 渡部
慎也 赤松
直樹 近藤
康明 高木
智也 内田
広基 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Industry Co Ltd
Hamanakodenso Co Ltd
Original Assignee
Yuken Industry Co Ltd
Hamanakodenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuken Industry Co Ltd, Hamanakodenso Co Ltd filed Critical Yuken Industry Co Ltd
Priority to JP2023041582A priority Critical patent/JP2024131366A/en
Priority to PCT/JP2024/000814 priority patent/WO2024190061A1/en
Publication of JP2024131366A publication Critical patent/JP2024131366A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

【課題】不働態を形成させずに、亜鉛を亜鉛めっき浴に溶解させることを課題とする。【解決手段】電気的に接続された亜鉛溶解促進部材20と亜鉛金属22とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬して、亜鉛めっき浴に浸漬された亜鉛溶解促進部材20と亜鉛金属22との間に向かって亜鉛めっき浴を流しながら、亜鉛を亜鉛めっき浴に溶解させる。これにより、亜鉛溶解促進部材を用いて亜鉛を亜鉛めっき浴に溶解させる際に不働態を形成させずに、亜鉛を亜鉛めっき浴に溶解させることができる。【選択図】図7[Problem] The problem is to dissolve zinc in a zinc plating bath without forming a passive state. [Solution] An electrically connected zinc dissolution accelerating member 20 and zinc metal 22 are immersed in a zinc plating bath while being separated by a distance of 5 mm or more, and zinc is dissolved in the zinc plating bath while the zinc plating bath is flowed toward the gap between the zinc dissolution accelerating member 20 and the zinc metal 22 immersed in the zinc plating bath. In this way, when zinc is dissolved in the zinc plating bath using the zinc dissolution accelerating member, zinc can be dissolved in the zinc plating bath without forming a passive state. [Selected Figure] Figure 7

Description

本発明は、亜鉛めっき浴に亜鉛を溶解させる亜鉛溶解方法等に関する。 The present invention relates to a zinc dissolution method for dissolving zinc in a zinc plating bath.

アルカリ性亜鉛めっき浴に亜鉛イオンを供給する方法として、一般的に、強アルカリ性のめっき液中に金属亜鉛を浸漬して化学的に溶解させる方法がある。しかしながら、このような方法では、亜鉛の溶解速度は低く、めっき浴中に必要な亜鉛イオン濃度を維持することは困難である。このため、実際の工場等では、亜鉛金属より貴な金属である鉄、ニッケル等を含む金属と金属亜鉛とを電気的に接触させた状態で、亜鉛めっき浴に浸漬させることで、金属と金属亜鉛との電位差を利用して、亜鉛を亜鉛めっき浴に溶解させる方法が採用されている。下記特許文献には、金属と金属亜鉛との電位差を利用して、亜鉛を亜鉛めっき浴に溶解させる方法の一例が記載されている。 A typical method for supplying zinc ions to an alkaline zinc plating bath is to immerse metallic zinc in a strongly alkaline plating solution and chemically dissolve it. However, with this method, the dissolution rate of zinc is low, and it is difficult to maintain the necessary zinc ion concentration in the plating bath. For this reason, in actual factories, a method is adopted in which metallic zinc is immersed in a zinc plating bath while being electrically contacted with metals including iron, nickel, etc., which are more noble than zinc metal, and the potential difference between the metal and metallic zinc is used to dissolve zinc in the zinc plating bath. The following patent document describes an example of a method for dissolving zinc in a zinc plating bath using the potential difference between the metal and metallic zinc.

特開2004-68153号公報JP 2004-68153 A

金属と金属亜鉛との電位差を利用して亜鉛を亜鉛めっき浴に溶解させる方法を採用した場合であっても、高濃度高電流の高速めっきラインでは、亜鉛イオンの供給が追い付かないため、更に多くの亜鉛イオンの供給が望まれている。そこで、亜鉛の溶解を促進する亜鉛溶解促進部材を用いて亜鉛を亜鉛めっき浴に溶解させて亜鉛イオンを供給することが考えられる。ただし、亜鉛溶解促進部材を用いて亜鉛を亜鉛めっき浴に溶解させる際に、亜鉛の表面に不働態が形成されると、不働態により亜鉛の溶解が阻害されるため、亜鉛イオンを適切に供給することができない。このため、本発明は、亜鉛溶解促進部材を用いて亜鉛を亜鉛めっき浴に溶解させる際に不働態を形成させずに、亜鉛を亜鉛めっき浴に溶解させることを課題とする。 Even when a method of dissolving zinc in a zinc plating bath using the potential difference between metal and metallic zinc is adopted, the supply of zinc ions cannot keep up with high-concentration, high-current, high-speed plating lines, so a supply of even more zinc ions is desired. Therefore, it is conceivable to supply zinc ions by dissolving zinc in a zinc plating bath using a zinc dissolution promotion member that promotes the dissolution of zinc. However, if a passivation state is formed on the surface of the zinc when dissolving zinc in a zinc plating bath using a zinc dissolution promotion member, the passivation state inhibits the dissolution of zinc, and zinc ions cannot be supplied appropriately. For this reason, the object of the present invention is to dissolve zinc in a zinc plating bath without forming a passivation state when dissolving zinc in a zinc plating bath using a zinc dissolution promotion member.

上記課題を解決するために、本発明の亜鉛溶解方法は、電気的に接続された亜鉛溶解促進部材と亜鉛とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬して、亜鉛めっき浴に浸漬された前記亜鉛溶解促進部材と前記亜鉛との間に向かって亜鉛めっき浴を流しながら、前記亜鉛を亜鉛めっき浴に溶解させることを特徴とする。 In order to solve the above problems, the zinc dissolution method of the present invention is characterized in that an electrically connected zinc dissolution promotion member and zinc are immersed in a zinc plating bath while being separated by 5 mm or more, and the zinc is dissolved in the zinc plating bath while the zinc plating bath is flowed toward the gap between the zinc dissolution promotion member and the zinc immersed in the zinc plating bath.

上記課題を解決するために、本発明の亜鉛溶解装置は、電気的に接続された亜鉛溶解促進部材と亜鉛とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬して、亜鉛めっき浴に浸漬された前記亜鉛溶解促進部材と前記亜鉛との間に向かって亜鉛めっき浴を流しながら、前記亜鉛を亜鉛めっき浴に溶解させることを特徴とする。 In order to solve the above problem, the zinc dissolving device of the present invention is characterized in that an electrically connected zinc dissolution accelerating member and zinc are immersed in a zinc plating bath while being separated by a distance of 5 mm or more, and the zinc is dissolved in the zinc plating bath while the zinc plating bath is flowed toward the gap between the zinc dissolution accelerating member and the zinc immersed in the zinc plating bath.

本発明の亜鉛溶解方法及び亜鉛溶解装置では、電気的に接続された亜鉛溶解促進部材と亜鉛とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬して、亜鉛めっき浴に浸漬された亜鉛溶解促進部材と亜鉛との間に向かって亜鉛めっき浴を流しながら、亜鉛を亜鉛めっき浴に溶解させる。これにより、亜鉛溶解促進部材を用いて亜鉛を亜鉛めっき浴に溶解させる際に不働態を形成させずに、亜鉛を亜鉛めっき浴に溶解させることができる。 In the zinc dissolution method and zinc dissolution apparatus of the present invention, the zinc dissolution accelerating member and zinc, which are electrically connected, are immersed in a zinc plating bath with a distance of 5 mm or more between them, and the zinc is dissolved in the zinc plating bath while the zinc plating bath is flowed toward the gap between the zinc dissolution accelerating member and the zinc immersed in the zinc plating bath. This allows the zinc to be dissolved in the zinc plating bath without forming a passive state when the zinc is dissolved in the zinc plating bath using the zinc dissolution accelerating member.

亜鉛溶解促進部材形成時の酸性電気めっき浴の組成を示す図である。FIG. 2 is a diagram showing the composition of an acidic electroplating bath used in forming a zinc dissolution promoting member. 下地ニッケル皮膜形成時の酸性電気めっき浴の組成を示す図である。FIG. 2 is a diagram showing the composition of an acidic electroplating bath used in forming an underlying nickel film. 実施例1~13の亜鉛めっき浴の組成,亜鉛溶解条件,溶解結果を示す図である。FIG. 1 is a diagram showing the composition of the zinc plating bath, zinc dissolution conditions, and dissolution results of Examples 1 to 13. 実施例14~27の亜鉛めっき浴の組成,亜鉛溶解条件,溶解結果を示す図である。FIG. 2 is a diagram showing the composition of the zinc plating bath, zinc dissolution conditions, and dissolution results of Examples 14 to 27. 比較例1~9の亜鉛めっき浴の組成,亜鉛溶解条件,溶解結果を示す図である。FIG. 2 is a diagram showing the composition of the zinc plating bath, the zinc dissolution conditions, and the dissolution results of Comparative Examples 1 to 9. 比較例10~22の亜鉛めっき浴の組成,亜鉛溶解条件,溶解結果を示す図である。FIG. 2 is a diagram showing the composition of the zinc plating bath, the zinc dissolution conditions, and the dissolution results of Comparative Examples 10 to 22. 亜鉛溶解促進部材と亜鉛金属との間に下方から亜鉛めっき浴を流しながら亜鉛を溶解させる亜鉛溶解装置を示す図である。FIG. 1 is a diagram showing a zinc dissolving device in which zinc is dissolved by flowing a zinc plating bath from below between a zinc dissolution promoting member and zinc metal. 亜鉛溶解促進部材と亜鉛金属との間に側方から亜鉛めっき浴を流しながら亜鉛を溶解させる亜鉛溶解装置を示す図である。FIG. 1 is a diagram showing a zinc dissolving device in which zinc is dissolved by flowing a zinc plating bath from the side between a zinc dissolution promoting member and zinc metal.

本発明に記載の「亜鉛溶解促進部材」は、亜鉛の溶解を促進可能な部材であればよく、例えば、ピリジン系化合物により形成される。ピリジン系化合物は、ピリジン環を有する化合物であり、具体的には、例えば、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2-プロピルピリジン、3-プロピルピリジン、4-プロピルピリジン、2,6-ジメチルピリジン、2,4-ジメチルピリジン、3,4-ジメチルピリジン、3,5-ジメチルピリジン、2,4,6-トリメチルピリジン、2,3,5-トリメチルピリジン、2-メチル-5-エチルピリジン、3,5-ジエチルピリジン、2-シアノピリジン、3-シアノピリジン、4-シアノピリジン、2-ピコリンアミド、3-ピコリンアミド、4-ピコリンアミド、ピリジン-2-カルボン酸、ピリジン-3-カルボン酸、ピリジン-4-カルボン酸、1-メチルピリジニウム-2-カルボン酸塩酸塩、1-メチルピリジニウム-3-カルボン酸塩酸塩、1-メチルピリジニウム-4-カルボン酸塩酸塩、2-ピリジンカルボキシアルデヒド、3-ピリジンカルボキシアルデヒド、4-ピリジンカルボキシアルデヒド、2-アミノピリジン、3-アミノピリジン、4-アミノピリジン、1-メチルピリジニウムクロリド、1-エチルピリジニウムクロリド、1-プロピルピリジニウムクロリド、1-ブチルピリジニウムクロリド、1-ペンチルピリジニウムクロリド、1-ヘキシルピリジニウムクロリド、1-ヘプチルピリジニウムクロリド、1-オクチルピリジニウムクロリド、1-ノニルピリジニウムクロリド、1-デシルピリジニウムクロリド、1-ウンデシルピリジニウムクロリド、1-ドデシルピリジニウムクロリド、1-ベンジルピリジニウムクロリド、1-ベンジルピリジニウム-3-カルボキシラート、1-ベンジル-3-カルボキシレートピリジニウム塩化ナトリウム、2-ベンジルピリジン、3-ベンジルピリジン、4-ベンジルピリジン、2-ヒドロキシピリジン、3-ヒドロキシピリジン、4-ヒドロキシピリジン、2-アセチルピリジン、3-アセチルピリジン、4-アセチルピリジン、2-フェニルピリジン、3-フェニルピリジン、4-フェニルピリジン、5,6,7,8-テトラヒドロキノリン 、2-メチルピラジン、5-メチルピラジンなどが挙げられる。 The "zinc dissolution promoting member" described in the present invention may be any member capable of promoting the dissolution of zinc, and may be formed, for example, from a pyridine-based compound. Pyridine-based compounds are compounds having a pyridine ring, and specific examples thereof include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2-propylpyridine, 3-propylpyridine, 4-propylpyridine, 2,6-dimethylpyridine, 2,4-dimethylpyridine, 3,4-dimethylpyridine, 3,5-dimethylpyridine, 2,4,6-trimethylpyridine, 2,3,5-trimethylpyridine, 2-methyl-5-ethylpyridine, and the like. Lysine, 3,5-diethylpyridine, 2-cyanopyridine, 3-cyanopyridine, 4-cyanopyridine, 2-picolinamide, 3-picolinamide, 4-picolinamide, pyridine-2-carboxylic acid, pyridine-3-carboxylic acid, pyridine-4-carboxylic acid, 1-methylpyridinium-2-carboxylate hydrochloride, 1-methylpyridinium-3-carboxylate hydrochloride, 1-methylpyridinium-4-carboxylate hydrochloride, 2-pyridinecarboxaldehyde, 3-pyridinecarboxaldehyde, 4-pyridinecarboxylate Aldehydes, 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 1-methylpyridinium chloride, 1-ethylpyridinium chloride, 1-propylpyridinium chloride, 1-butylpyridinium chloride, 1-pentylpyridinium chloride, 1-hexylpyridinium chloride, 1-heptylpyridinium chloride, 1-octylpyridinium chloride, 1-nonylpyridinium chloride, 1-decylpyridinium chloride, 1-undecylpyridinium chloride, 1-dodecylpyridinium chloride Examples of pyridinium chloride include 1-benzylpyridinium chloride, 1-benzylpyridinium-3-carboxylate, 1-benzyl-3-carboxylate pyridinium sodium chloride, 2-benzylpyridine, 3-benzylpyridine, 4-benzylpyridine, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, 2-acetylpyridine, 3-acetylpyridine, 4-acetylpyridine, 2-phenylpyridine, 3-phenylpyridine, 4-phenylpyridine, 5,6,7,8-tetrahydroquinoline, 2-methylpyrazine, and 5-methylpyrazine.

上記ピリジン系化合物を含む電気めっき浴でのピリジン系化合物の濃度は、0.18~938ミリmol/Lであることが好ましく、特に、0.88~368ミリmol/Lであることが好ましい。 The concentration of the pyridine-based compound in the electroplating bath containing the pyridine-based compound is preferably 0.18 to 938 mmol/L, and more preferably 0.88 to 368 mmol/L.

上記ピリジン系化合物を含む電気めっき浴の浴温は、5~90℃であることが好ましく、特に、25~45℃であることが好ましい。 The bath temperature of the electroplating bath containing the pyridine compound is preferably 5 to 90°C, and more preferably 25 to 45°C.

上記ピリジン系化合物を含む電気めっき浴には、導電性および緩衝性を与える化合物として、無機酸、有機酸、それらのアルカリ塩類、有機錯化剤などと、それらのアルカリ塩類、さらに、有機アミン、有機ポリアミンなどが含まれてもよい。 The electroplating bath containing the pyridine-based compound may contain compounds that provide electrical conductivity and buffering properties, such as inorganic acids, organic acids, their alkali salts, organic complexing agents, and their alkali salts, as well as organic amines and organic polyamines.

上記ピリジン系化合物を含む電気めっき浴には、さらに、皮膜安定剤、皮膜密着性強化剤として、フェノール水酸基を有する化合物、フェノール酸塩など低分子化合物や、それらを骨格に持つ高分子化合物、タンニン、タンニン酸、カテキンなどポリフェノールといわれる高分子化合物などが含まれてもよい。 The electroplating bath containing the pyridine-based compound may further contain, as a film stabilizer or film adhesion enhancer, low molecular weight compounds such as compounds having a phenolic hydroxyl group and phenolic acid salts, polymeric compounds having these in their skeletons, and polymeric compounds known as polyphenols such as tannin, tannic acid, and catechin.

上記ピリジン系化合物を含む電気めっき浴では、陰極電解方式を採用することが好ましい。これにより、耐久性の高い皮膜を形成することが可能となる。なお、陰極電解時の電流密度は、0.2~60A/dmであることが好ましく、特に、1~10A/dmであることが好ましい。これにより、比較的低い電流密度で皮膜を形成することが可能となる。 In the electroplating bath containing the pyridine-based compound, it is preferable to adopt a cathodic electrolysis method. This makes it possible to form a coating with high durability. The current density during cathodic electrolysis is preferably 0.2 to 60 A/ dm2 , and more preferably 1 to 10 A/ dm2 . This makes it possible to form a coating at a relatively low current density.

なお、上記ピリジン系化合物を含む電気めっき浴では、陰極電解方式ではなく、陽極電解と陰極電解とを交互に繰り返す電解方式、所謂、PR電解方式を採用することも可能である。PR電解方式を採用する際には、陰極電解時の電流密度を0.2~60A/dmとし、陽極電解時の電流密度を0~30A/dmとすることが好ましく、特に、陰極電解時の電流密度を1~10A/dmとし、陽極電解時の電流密度を0~10A/dmとすることが好ましい。また、陰極電解時間を0.1~10秒とし、陽極電解時間を0.1~10秒とすることが好ましく、陰極電解時間と陽極電解時間との比率は、陰極電解時間:陽極電解時間=1:0.1~1:1とすることが好ましい。 In addition, in the electroplating bath containing the pyridine-based compound, it is also possible to adopt an electrolysis method in which anodic electrolysis and cathodic electrolysis are alternately repeated, that is, a so-called PR electrolysis method, instead of a cathodic electrolysis method. When adopting the PR electrolysis method, it is preferable that the current density during cathodic electrolysis is 0.2 to 60 A/dm2 and the current density during anodic electrolysis is 0 to 30 A/ dm2 , and it is particularly preferable that the current density during cathodic electrolysis is 1 to 10 A/ dm2 and the current density during anodic electrolysis is 0 to 10 A/ dm2 . It is also preferable that the cathodic electrolysis time is 0.1 to 10 seconds and the anodic electrolysis time is 0.1 to 10 seconds, and the ratio of the cathodic electrolysis time to the anodic electrolysis time is preferably cathodic electrolysis time:anodic electrolysis time=1:0.1 to 1:1.

また、上記ピリジン系化合物を含む電気めっき浴によって皮膜を形成する前に、下地ニッケルめっきを施すことが好ましい。これにより、上記ピリジン系化合物を含む電気めっき浴による皮膜を適切に形成するとともに、密着性を高くすることが可能となる。なお、下地ニッケルめっき処理時の陰極電流密度は、0.2~60A/dmであることが好ましく、特に、0.5~10A/dmであることが好ましい。また、浴温は、5~90℃であることが好ましく、特に、25~45℃であることが好ましい。 In addition, it is preferable to perform an undercoat nickel plating before forming a coating using the electroplating bath containing the pyridine-based compound. This allows the coating to be appropriately formed using the electroplating bath containing the pyridine-based compound and to have high adhesion. The cathode current density during undercoat nickel plating is preferably 0.2 to 60 A/ dm2 , and more preferably 0.5 to 10 A/ dm2 . The bath temperature is preferably 5 to 90°C, and more preferably 25 to 45°C.

上記ピリジン系化合物を含む電気めっき浴を用いて形成される皮膜には、添加する金属イオン等を調整することで、Ni,Cu,Co,Mn,Fe,In,Ir,Pt,Sn,Pd,Ag,Ru,Rhなどの単金属または、それら2元素以上の合金などを含むことが可能である。さらに、皮膜には、Mo,W,Zr,Si,Ce,V,Al,Ni,Cu,Co,Mn,Fe,In,Sn,Pd,Ag,Ru,Rhなどの金属酸化物、硫化物などの微粒子、カーボンナノチューブ,カーボンナノファイバー,カーボンブラックのような炭素体、アルカリ金属化合物,アルカリ土類金属化合物などを含むことが可能である。 The film formed using the electroplating bath containing the pyridine-based compound can contain single metals such as Ni, Cu, Co, Mn, Fe, In, Ir, Pt, Sn, Pd, Ag, Ru, and Rh, or alloys of two or more of these elements, by adjusting the metal ions added. Furthermore, the film can contain metal oxides such as Mo, W, Zr, Si, Ce, V, Al, Ni, Cu, Co, Mn, Fe, In, Sn, Pd, Ag, Ru, and Rh, fine particles such as sulfides, carbon bodies such as carbon nanotubes, carbon nanofibers, and carbon black, alkali metal compounds, and alkaline earth metal compounds.

上述したように、亜鉛溶解促進部材は、例えば、上記ピリジン系化合物を含む電気めっき浴を用いて、基材の表面にめっき皮膜が形成されることで製造される。そして、この亜鉛溶解促進部材と亜鉛金属とを電気的に接触させて亜鉛めっき浴中に離隔させた状態で浸漬して、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流しながら亜鉛金属を溶解することで、高速で亜鉛イオンをめっき浴に供給することが可能となる。 As described above, the zinc dissolution accelerating member is manufactured by forming a plating film on the surface of a substrate using, for example, an electroplating bath containing the pyridine-based compound. The zinc dissolution accelerating member and zinc metal are then immersed in a zinc plating bath while being electrically in contact with each other and separated from each other, and the zinc metal is dissolved while the zinc plating bath is flowed between the zinc dissolution accelerating member and the zinc metal, thereby making it possible to supply zinc ions to the plating bath at high speed.

亜鉛溶解促進部材と亜鉛金属との電気的な接触は、亜鉛めっき浴の外部において亜鉛溶解促進部材と亜鉛金属とを直接的に接触させてもよい。また、亜鉛溶解促進部材と亜鉛金属とを、導電線等により接続することで、間接的に接触させてもよい。なお、亜鉛溶解促進部材と亜鉛金属とを間接的に接触させる場合には、可変抵抗器を介して接触させてもよい。これにより、亜鉛溶解促進部材と亜鉛金属との間を流れる電流を調整することが可能となり、亜鉛めっき浴中に供給される亜鉛イオンの量を調整することが可能となる。また、亜鉛溶解促進部材と亜鉛金属とを間接的に接触させる場合に、導電線等にスイッチを配設することで、スイッチの操作により亜鉛溶解の開始及び停止を容易に行うことが可能となる。 The electrical contact between the zinc dissolution accelerating member and the zinc metal may be made by directly contacting the zinc dissolution accelerating member and the zinc metal outside the zinc plating bath. Alternatively, the zinc dissolution accelerating member and the zinc metal may be indirectly contacted by connecting them with a conductive wire or the like. When the zinc dissolution accelerating member and the zinc metal are indirectly contacted, they may be contacted via a variable resistor. This makes it possible to adjust the current flowing between the zinc dissolution accelerating member and the zinc metal, and to adjust the amount of zinc ions supplied to the zinc plating bath. When the zinc dissolution accelerating member and the zinc metal are in indirectly contacted, a switch may be provided on the conductive wire or the like, so that zinc dissolution can be easily started and stopped by operating the switch.

なお、亜鉛めっき浴中の亜鉛の濃度は、1~100g/Lであることが好ましく、特に、8~40g/Lであることが好ましい。また、亜鉛めっき浴中の水酸化ナトリウムの濃度は、30~250g/Lであることが好ましく、特に、80~170g/Lであることが好ましい。また、炭酸ナトリウムは稼働に伴い亜鉛めっき液に蓄積するものだが、蓄積した炭酸ナトリウムの濃度は、0~150g/Lになる場合がある。炭酸ナトリウムの蓄積により稼働に支障が生じる場合は冷却等により除去することが好ましい。また、亜鉛めっき浴には、光沢剤などの種々の添加物を含むことも可能である。 The zinc concentration in the zinc plating bath is preferably 1 to 100 g/L, and more preferably 8 to 40 g/L. The sodium hydroxide concentration in the zinc plating bath is preferably 30 to 250 g/L, and more preferably 80 to 170 g/L. Sodium carbonate accumulates in the zinc plating solution as the system operates, and the concentration of the accumulated sodium carbonate may reach 0 to 150 g/L. If the accumulation of sodium carbonate causes problems with operation, it is preferable to remove it by cooling or other methods. The zinc plating bath can also contain various additives, such as brighteners.

また、亜鉛溶解促進部材と亜鉛金属とを亜鉛めっき浴中に離隔させた状態で浸漬する場合に、亜鉛溶解促進部材と亜鉛金属とを5mm以上離隔させる必要があり、亜鉛溶解促進部材と亜鉛金属との離隔距離が5mm未満である場合に亜鉛めっき浴中で亜鉛を溶解させると、亜鉛金属の表面に不働態が形成される。また、亜鉛溶解促進部材と亜鉛金属とを亜鉛めっき浴中で接触させた状態で亜鉛めっき浴に亜鉛を溶解させても、亜鉛金属の表面に不働態が形成される。このように、亜鉛金属の表面に不働態が形成されると、亜鉛の溶解速度が低下するため、亜鉛溶解促進部材と亜鉛金属とを5mm以上離隔させて亜鉛を溶解させる必要がある。ただし、亜鉛溶解促進部材と亜鉛金属とが離れすぎると、亜鉛の溶解速度が低下するため、亜鉛溶解促進部材と亜鉛金属との離隔距離は、100mm以下であることが好ましい。つまり、亜鉛溶解促進部材と亜鉛金属との離隔距離は、5mm以上且つ100mm以下であることが好ましい。さらに言えば、亜鉛溶解促進部材と亜鉛金属との離隔距離は、10mm以上且つ70mm以下であることが好ましい。 In addition, when the zinc dissolution accelerating member and the zinc metal are immersed in a zinc plating bath while being separated from each other, it is necessary to separate the zinc dissolution accelerating member and the zinc metal by 5 mm or more. If the separation distance between the zinc dissolution accelerating member and the zinc metal is less than 5 mm, a passivation state is formed on the surface of the zinc metal when zinc is dissolved in the zinc plating bath. In addition, even if the zinc dissolution accelerating member and the zinc metal are in contact with each other in the zinc plating bath and zinc is dissolved in the zinc plating bath, a passivation state is formed on the surface of the zinc metal. In this way, when a passivation state is formed on the surface of the zinc metal, the dissolution rate of zinc decreases, so it is necessary to separate the zinc dissolution accelerating member and the zinc metal by 5 mm or more to dissolve the zinc. However, if the zinc dissolution accelerating member and the zinc metal are too far apart, the dissolution rate of zinc decreases, so the separation distance between the zinc dissolution accelerating member and the zinc metal is preferably 100 mm or less. In other words, it is preferable that the separation distance between the zinc dissolution accelerating member and the zinc metal is 5 mm or more and 100 mm or less. Furthermore, it is preferable that the distance between the zinc dissolution promoting member and the zinc metal be 10 mm or more and 70 mm or less.

また、亜鉛溶解促進部材と亜鉛金属との間に流される亜鉛めっき浴の流速は、0.1m/分以上であることが好ましく、さらに言えば、0.25m/分以上であることが好ましい。また、亜鉛溶解促進部材と亜鉛金属との間に流される亜鉛めっき浴の流速は、1m/分以上であっても、効果を発揮するが、亜鉛めっき浴の流速の上限は、めっき槽からめっき浴が溢れ出ない速度であればよい。 The flow rate of the zinc plating bath between the zinc dissolution accelerating member and the zinc metal is preferably 0.1 m/min or more, and more preferably 0.25 m/min or more. The flow rate of the zinc plating bath between the zinc dissolution accelerating member and the zinc metal is also effective if it is 1 m/min or more, but the upper limit of the flow rate of the zinc plating bath should be a speed at which the plating bath does not overflow from the plating tank.

また、亜鉛溶解促進部材と亜鉛金属との各々の形状として、種々の形状を採用することができるが、板形状,ブロック形状であることが好ましい。亜鉛溶解促進部材と亜鉛金属との各々の形状が板形状,ブロック形状であれば、亜鉛溶解促進部材と亜鉛金属とを離隔した状態で対向して適切に配設することが可能となり、亜鉛溶解促進部材と亜鉛金属とを平行に配設することができる。なお、亜鉛溶解促進部材と亜鉛金属とを平行に配設することが好ましいが、亜鉛溶解促進部材と亜鉛金属との一方が他方に対して傾斜していてもよい。 The zinc dissolution accelerating member and the zinc metal may each have a variety of shapes, but a plate or block shape is preferred. If the zinc dissolution accelerating member and the zinc metal each have a plate or block shape, the zinc dissolution accelerating member and the zinc metal can be appropriately arranged facing each other with a distance between them, and the zinc dissolution accelerating member and the zinc metal can be arranged in parallel. It is preferred to arrange the zinc dissolution accelerating member and the zinc metal in parallel, but one of the zinc dissolution accelerating member and the zinc metal may be inclined relative to the other.

亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴が流される際に、亜鉛めっき浴は、亜鉛溶解促進部材と亜鉛金属との下方から流されてもよく、上方から流されてもよく、側方から流されてもよい。さらに言えば、亜鉛めっき浴は、亜鉛溶解促進部材と亜鉛金属との斜め下方,斜め上方等、種々の方向から流されてもよい。 When the zinc plating bath is flowed between the zinc dissolution accelerating member and the zinc metal, the zinc plating bath may be flowed from below the zinc dissolution accelerating member and the zinc metal, from above, or from the side. Furthermore, the zinc plating bath may be flowed from various directions, such as diagonally below or diagonally above the zinc dissolution accelerating member and the zinc metal.

以下に実施例を示し、本発明をさらに具体的に説明する。ただし、本発明は、この実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。 The present invention will be described in more detail below with reference to the following examples. However, the present invention is not limited to these examples, and can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art.

図1に示す配合の各原料から、亜鉛溶解促進部材を製造するための酸性電気めっき浴を調整した。なお、各原料の詳細は、下記の通りある。
塩化ニッケル・6水和物:富士フィルム和光純薬株式会社製
35%塩酸:東亜合成株式会社製
ピリジン系化合物:1-ベンジル-3-カルボキシレートピリジニウム塩化ナトリウム
An acidic electroplating bath for producing a zinc dissolution accelerating member was prepared from the raw materials having the composition shown in Figure 1. The details of each raw material are as follows.
Nickel chloride hexahydrate: Fujifilm Wako Pure Chemical Industries, Ltd. 35% hydrochloric acid: Toagosei Co., Ltd. Pyridine compound: 1-benzyl-3-carboxylate pyridinium sodium chloride

また、酸性電気めっき浴による電気めっき皮膜の形成前には、皮膜の密着性を高めるべく、基材に下地ニッケルめっきが行われる。なお、基材として、板形状(50×100×0.8mm:1dm)のSPCC-SD材(株式会社エンジニアリングテストサービス製)が用いられる。 Before forming the electroplating film using an acidic electroplating bath, the substrate is subjected to a nickel undercoat plating in order to improve the adhesion of the film. The substrate used is a plate-shaped (50×100×0.8 mm: 1 dm 2 ) SPCC-SD material (manufactured by Engineering Test Service Co., Ltd.).

下地ニッケル用のめっき浴は、図2に示すめっき浴組成の各原料により調整される。また、図2での各原料の詳細も、上記の通りである。 The plating bath for the nickel base is prepared using the ingredients in the plating bath composition shown in Figure 2. The details of each ingredient in Figure 2 are also as described above.

また、下地ニッケルのめっき条件は、下記の通りである。
陰極電流密度:1A/dm
浴温:35℃
液pH:0.1未満
陽極:Ni材または不溶性陽極
液循環:スターラー撹拌(回転数:500rpm)(撹拌子サイズ:φ8×30mm)
処理時間:70分
The plating conditions for the nickel base are as follows:
Cathode current density: 1A/ dm2
Bath temperature: 35°C
Liquid pH: less than 0.1 Anode: Ni material or insoluble anode Liquid circulation: Stirrer stirring (rotation speed: 500 rpm) (stirrer size: φ8 x 30 mm)
Processing time: 70 minutes

上記条件で下地ニッケルめっきが行われると、基材の表面に5μmの膜厚のニッケル皮膜(以下、「下地ニッケル皮膜」と記載する。)が形成される。そして、下地ニッケル皮膜が形成された基材に、上述した酸性電気めっき浴を用いて、陰極電解方式の電気めっきが実行される。この際の電気めっきの条件は、下記の通りである。
陰極電流密度:4A/dm2
浴温:35℃
液pH:0.1未満
陽極:Ni材または不溶性陽極
液循環:スターラー撹拌(回転数:500rpm)(撹拌子サイズ:φ8×30mm)
処理時間:105分
When the undercoat nickel plating is performed under the above conditions, a nickel coating having a thickness of 5 μm (hereinafter referred to as the "undercoat nickel coating") is formed on the surface of the substrate. Then, cathodic electroplating is performed on the substrate on which the undercoat nickel coating has been formed, using the above-mentioned acid electroplating bath. The electroplating conditions are as follows:
Cathode current density: 4A/dm2
Bath temperature: 35°C
Liquid pH: less than 0.1 Anode: Ni material or insoluble anode Liquid circulation: Stirrer stirring (rotation speed: 500 rpm) (stirrer size: φ8 x 30 mm)
Processing time: 105 minutes

上記条件で電気めっきが行われることで、下地ニッケル皮膜が形成された基材に、ニッケル皮膜(以下、「亜鉛溶解促進皮膜」と記載する)が形成される。つまり、基材の表面に、下地ニッケル皮膜が形成され、その下地ニッケル皮膜の表面に、亜鉛溶解促進皮膜が形成される。なお、亜鉛溶解促進皮膜の膜厚は5μmである。 By carrying out electroplating under the above conditions, a nickel film (hereinafter referred to as a "zinc dissolution promoting film") is formed on the substrate on which the underlying nickel film has been formed. In other words, an underlying nickel film is formed on the surface of the substrate, and a zinc dissolution promoting film is formed on the surface of the underlying nickel film. The thickness of the zinc dissolution promoting film is 5 μm.

また、亜鉛溶解促進皮膜の組成を、走査電子顕微鏡(JSM-IT300:日本電子株式会社製)及び、エネルギー分散形X線分析装置(EX-37001:日本電子株式会製)によって測定した。以下に、その組成を示す。
亜鉛溶解促進皮膜の組成
Ni:93.04wt%
C:3.36wt%
O:3.61wt%
The composition of the zinc dissolution accelerating film was measured using a scanning electron microscope (JSM-IT300, manufactured by JEOL Ltd.) and an energy dispersive X-ray analyzer (EX-37001, manufactured by JEOL Ltd.). The composition is shown below.
Composition of zinc dissolution promoting film Ni: 93.04 wt%
C: 3.36 wt%
O: 3.61 wt%

そして、電気的に接触させた亜鉛溶解促進部材と亜鉛金属とを、実施例1~27(図3,4参照)及び比較例1~22(図5,6参照)の亜鉛めっき浴中に離隔させた状態で浸漬して、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流しながら亜鉛金属を溶解させた。詳しくは、図7及び図8に示す亜鉛溶解装置10では、めっき槽12の内部に亜鉛めっき浴が投入されている。めっき槽12のサイズは、180×110×L310mmである。そして、めっき槽12のAの位置において亜鉛溶解促進部材20と亜鉛金属22とがABの方向で対向するように離隔した状態で亜鉛めっき浴に浸漬されている。なお、図では、亜鉛溶解促進部材20と亜鉛金属22とを保持する保持具は省略されている。また、A,B,C、Dは、めっき槽12の上方からの視点における4個の角部を示す位置である。また、図7及び図8での上面は、亜鉛溶解装置10を上方からの視点で示す図面であり、槽正面は、めっき槽12のA及びDの位置を正面とする図面であり、槽測面は、めっき槽12のD及びCの位置を側面とする図面である。 The zinc dissolution accelerating member and zinc metal, which are electrically in contact with each other, are immersed in the zinc plating bath of Examples 1 to 27 (see Figs. 3 and 4) and Comparative Examples 1 to 22 (see Figs. 5 and 6) in a spaced state, and the zinc metal is dissolved while the zinc plating bath is flowed between the zinc dissolution accelerating member and the zinc metal. In detail, in the zinc dissolution device 10 shown in Figs. 7 and 8, a zinc plating bath is poured into the plating tank 12. The size of the plating tank 12 is 180 x 110 x L 310 mm. Then, at position A of the plating tank 12, the zinc dissolution accelerating member 20 and the zinc metal 22 are immersed in the zinc plating bath in a spaced state so as to face each other in the direction AB. Note that the holder that holds the zinc dissolution accelerating member 20 and the zinc metal 22 is omitted in the figure. Also, A, B, C, and D are positions indicating the four corners of the plating tank 12 as viewed from above. Additionally, the top view in Figures 7 and 8 shows the zinc melting apparatus 10 from an above perspective, the tank front view shows positions A and D of the plating tank 12 as the front view, and the tank side view shows positions D and C of the plating tank 12 as the side view.

また、亜鉛溶解促進部材20と亜鉛金属22とは上下方向での3/4程度が亜鉛めっき浴に浸漬されており、亜鉛溶解促進部材20と亜鉛金属22との上端部は亜鉛めっき浴の上面から上方に延びだしている。そして、亜鉛めっき浴の上面から上方に延びだしている亜鉛溶解促進部材20と亜鉛金属22とが銅製の導線24により接続されている。これにより、亜鉛溶解促進部材20と亜鉛金属22とが電気的に接続される。 Also, about 3/4 of the zinc dissolution accelerating member 20 and the zinc metal 22 are immersed in the zinc plating bath in the vertical direction, and the upper ends of the zinc dissolution accelerating member 20 and the zinc metal 22 extend upward from the upper surface of the zinc plating bath. The zinc dissolution accelerating member 20 and the zinc metal 22, which extend upward from the upper surface of the zinc plating bath, are connected by a copper conductor 24. This electrically connects the zinc dissolution accelerating member 20 and the zinc metal 22.

また、図7の亜鉛溶解装置10では、めっき槽12のAの位置に塩ビ性のパイプ30が上下方向に延びる姿勢で配設されており、パイプ30の上端から亜鉛性めっき液が噴出される。これにより、亜鉛溶解促進部材20と亜鉛金属22との間に下方から亜鉛めっき浴が流れ込む。なお、パイプ30の上端と亜鉛溶解促進部材20及び亜鉛金属22の下端との間の距離は30mmである。また、パイプ30の直径は16mmである。 In the zinc dissolution device 10 of FIG. 7, a PVC pipe 30 is disposed at position A in the plating tank 12 in a vertically extending position, and zinc plating solution is sprayed from the upper end of the pipe 30. This causes the zinc plating bath to flow from below between the zinc dissolution accelerating member 20 and the zinc metal 22. The distance between the upper end of the pipe 30 and the lower ends of the zinc dissolution accelerating member 20 and the zinc metal 22 is 30 mm. The diameter of the pipe 30 is 16 mm.

また、図8の亜鉛溶解装置10では、めっき槽12のDの位置において概してL字型の塩ビ性のパイプ32が、パイプ32の先端部をDの位置からAの位置を向けて配設されている。そして、パイプ32の先端から亜鉛性めっき液が噴出される。これにより、亜鉛溶解促進部材20と亜鉛金属22との間に側方から亜鉛めっき浴が流れ込む。なお、パイプ32の先端と亜鉛溶解促進部材20及び亜鉛金属22のパイプ32と対向する測端との間の距離は30mmである。また、パイプ32の直径は16mmである。 In the zinc dissolution device 10 of FIG. 8, a generally L-shaped PVC pipe 32 is disposed at position D in the plating tank 12, with the tip of the pipe 32 facing from position D to position A. A zinc plating solution is sprayed from the tip of the pipe 32. This causes the zinc plating bath to flow from the side between the zinc dissolution accelerating member 20 and the zinc metal 22. The distance between the tip of the pipe 32 and the ends of the zinc dissolution accelerating member 20 and the zinc metal 22 facing the pipe 32 is 30 mm. The diameter of the pipe 32 is 16 mm.

また、図7及び図8に示すように、めっき槽12のCの位置の底面には排出口36が形成されている。このため、パイプ30,32から噴出された亜鉛めっき浴が亜鉛溶解促進部材20と亜鉛金属22との間を通って、矢印の方向に流れる水流となり、排出口36に向かう。 Also, as shown in Figures 7 and 8, a discharge outlet 36 is formed on the bottom surface of the plating tank 12 at position C. Therefore, the zinc plating bath sprayed from the pipes 30, 32 passes between the zinc dissolution accelerating member 20 and the zinc metal 22, becomes a water current that flows in the direction of the arrow, and heads toward the discharge outlet 36.

上述した構造の亜鉛溶解装置10において、実施例1~27(図3,4参照)及び比較例1~22(図5,6参照)に示す組成の亜鉛めっき浴が投入されて、実施例1~27(図3,4参照)及び比較例1~22(図5,6参照)に示す条件で亜鉛が溶解される。なお、図3~図6での液温は、亜鉛溶解時の亜鉛めっき浴の温度であり、流速はパイプ30,32から噴出される亜鉛めっき液の流速である。また、離隔距離は、対向する亜鉛溶解促進部材20と亜鉛金属22との間の距離であり、面積比は、亜鉛めっきに浸漬されている亜鉛溶解促進部材20と亜鉛金属22との面積比であり、亜鉛溶解促進部材20の亜鉛めっき浴中の露出面積:亜鉛金属22の亜鉛めっき浴中の露出面積である。なお、亜鉛溶解促進部材20の亜鉛めっき浴中の露出面積および亜鉛金属22の亜鉛めっき浴中の露出面積は、マスキングテープ等により調整される。 In the zinc dissolution device 10 having the above-mentioned structure, a zinc plating bath having the composition shown in Examples 1 to 27 (see Figs. 3 and 4) and Comparative Examples 1 to 22 (see Figs. 5 and 6) is poured in, and zinc is dissolved under the conditions shown in Examples 1 to 27 (see Figs. 3 and 4) and Comparative Examples 1 to 22 (see Figs. 5 and 6). Note that the liquid temperature in Figs. 3 to 6 is the temperature of the zinc plating bath when zinc is dissolved, and the flow rate is the flow rate of the zinc plating solution sprayed from the pipes 30 and 32. The separation distance is the distance between the opposing zinc dissolution accelerating member 20 and the zinc metal 22, the area ratio is the area ratio between the zinc dissolution accelerating member 20 and the zinc metal 22 immersed in the zinc plating, and the exposed area of the zinc dissolution accelerating member 20 in the zinc plating bath: the exposed area of the zinc metal 22 in the zinc plating bath. Note that the exposed areas of the zinc dissolution accelerating member 20 in the zinc plating bath and the exposed areas of the zinc metal 22 in the zinc plating bath are adjusted by masking tape or the like.

また、実施例1~5,7~17,22~27及び比較例2~9の亜鉛めっき浴を用いた亜鉛の溶解処理は、図7の亜鉛溶解装置10を用いて行われ、実施例6,18~21及び比較例10~17の亜鉛めっき浴を用いた亜鉛の溶解処理は、図8の亜鉛溶解装置10を用いて行われる。ただし、比較例1の亜鉛めっき浴では、亜鉛溶解促進部材20と亜鉛金属22との離隔距離が0であり、亜鉛溶解促進部材20と亜鉛金属22とが接触した状態で亜鉛めっき浴に浸漬されている。このため、比較例1の亜鉛めっき浴では、亜鉛溶解促進部材20と亜鉛金属22との間に亜鉛めっきを流すことができないため、パイプ30,32から亜鉛めっき液は噴出されない。 In addition, the zinc dissolution treatment using the zinc plating baths of Examples 1 to 5, 7 to 17, 22 to 27 and Comparative Examples 2 to 9 is performed using the zinc dissolution device 10 of FIG. 7, and the zinc dissolution treatment using the zinc plating baths of Examples 6, 18 to 21 and Comparative Examples 10 to 17 is performed using the zinc dissolution device 10 of FIG. 8. However, in the zinc plating bath of Comparative Example 1, the separation distance between the zinc dissolution promotion member 20 and the zinc metal 22 is 0, and the zinc dissolution promotion member 20 and the zinc metal 22 are immersed in the zinc plating bath in a state of contact. Therefore, in the zinc plating bath of Comparative Example 1, zinc plating cannot be flowed between the zinc dissolution promotion member 20 and the zinc metal 22, so zinc plating solution is not sprayed from the pipes 30 and 32.

また、比較例18~20の亜鉛めっき浴では、図7の亜鉛溶解装置10と亜鉛溶解促進部材20及び亜鉛金属22の配設位置が異なる亜鉛溶解装置を用いて亜鉛の溶解処理が行われる。詳しくは、図7の亜鉛溶解装置10では亜鉛溶解促進部材20及び亜鉛金属22がAの位置に配設されているが、比較例18の亜鉛めっき浴で用いられる亜鉛溶解装置では、亜鉛溶解促進部材20及び亜鉛金属22がBの位置に配設されている。また、比較例19の亜鉛めっき浴で用いられる亜鉛溶解装置では、亜鉛溶解促進部材20及び亜鉛金属22がCの位置に配設されている。また、比較例20の亜鉛めっき浴で用いられる亜鉛溶解装置では、亜鉛溶解促進部材20及び亜鉛金属22がDの位置に配設されている。このため、比較例18~20の亜鉛めっき浴では、パイプ30から噴出される亜鉛めっき液は亜鉛溶解促進部材20と亜鉛金属22との間に噴出されない。 In the zinc plating baths of Comparative Examples 18 to 20, the zinc dissolution process is performed using a zinc dissolution device in which the zinc dissolution accelerating member 20 and the zinc metal 22 are disposed at different positions from the zinc dissolution device 10 in FIG. 7. In detail, the zinc dissolution device 10 in FIG. 7 has the zinc dissolution accelerating member 20 and the zinc metal 22 disposed at position A, whereas the zinc dissolution device used in the zinc plating bath of Comparative Example 18 has the zinc dissolution accelerating member 20 and the zinc metal 22 disposed at position B. In the zinc dissolution device used in the zinc plating bath of Comparative Example 19, the zinc dissolution accelerating member 20 and the zinc metal 22 are disposed at position C. In the zinc dissolution device used in the zinc plating bath of Comparative Example 20, the zinc dissolution accelerating member 20 and the zinc metal 22 are disposed at position D. Therefore, in the zinc plating baths of Comparative Examples 18 to 20, the zinc plating solution sprayed from the pipe 30 is not sprayed between the zinc dissolution accelerating member 20 and the zinc metal 22.

また、比較例21,22の亜鉛めっき浴では、図8の亜鉛溶解装置10と亜鉛溶解促進部材20及び亜鉛金属22の配設位置が異なる亜鉛溶解装置を用いて亜鉛の溶解処理が行われる。詳しくは、図8の亜鉛溶解装置10では亜鉛溶解促進部材20及び亜鉛金属22がAの位置に配設されているが、比較例21の亜鉛めっき浴で用いられる亜鉛溶解装置では、亜鉛溶解促進部材20及び亜鉛金属22がBの位置に配設されている。また、比較例22の亜鉛めっき浴で用いられる亜鉛溶解装置では、亜鉛溶解促進部材20及び亜鉛金属22がCの位置に配設されている。このため、比較例21,22の亜鉛めっき浴では、パイプ32から噴出される亜鉛めっき液は亜鉛溶解促進部材20と亜鉛金属22との間に噴出されない。 In the zinc plating baths of Comparative Examples 21 and 22, the zinc dissolution process is performed using a zinc dissolution device in which the zinc dissolution accelerating member 20 and zinc metal 22 are disposed at different positions from the zinc dissolution device 10 in FIG. 8. In detail, the zinc dissolution device 10 in FIG. 8 has the zinc dissolution accelerating member 20 and zinc metal 22 disposed at position A, whereas the zinc dissolution device used in the zinc plating bath of Comparative Example 21 has the zinc dissolution accelerating member 20 and zinc metal 22 disposed at position B. In the zinc dissolution device used in the zinc plating bath of Comparative Example 22, the zinc dissolution accelerating member 20 and zinc metal 22 are disposed at position C. Therefore, in the zinc plating baths of Comparative Examples 21 and 22, the zinc plating solution sprayed from the pipe 32 is not sprayed between the zinc dissolution accelerating member 20 and zinc metal 22.

上述した亜鉛溶解装置を用いて実施例1~27及び比較例1~22の亜鉛めっき浴で亜鉛を亜鉛めっき浴に溶解させた際の亜鉛溶解速度を測定した。詳しくは、亜鉛めっき浴に浸漬された亜鉛金属22の溶解量(g)を測定し、単位時間当たりの亜鉛の溶解量(亜鉛:1dm換算)、つまり、亜鉛溶解速度(g/dm・h)を演算した。その演算された亜鉛溶解速度(g/dm・h)を、溶解結果として実施例1~27及び比較例1~22に示す。なお、試験時間は2時間である。また、2時間の試験時間、つまり、亜鉛溶解促進部材20及び亜鉛金属22を亜鉛めっき浴に浸漬している時間の経過後に、亜鉛金属22に不働態が成形されているか否かを目視にて確認し、不働態の形成の有無を、溶解結果として実施例1~27及び比較例1~22に示す。 The zinc dissolution rate was measured when zinc was dissolved in the zinc plating bath of Examples 1 to 27 and Comparative Examples 1 to 22 using the above-mentioned zinc dissolution device. Specifically, the amount of dissolved zinc metal 22 immersed in the zinc plating bath (g) was measured, and the amount of dissolved zinc per unit time (zinc: converted to 1 dm2 ), that is, the zinc dissolution rate (g/ dm2 ·h) was calculated. The calculated zinc dissolution rate (g/ dm2 ·h) is shown as the dissolution result in Examples 1 to 27 and Comparative Examples 1 to 22. The test time was 2 hours. In addition, after the 2-hour test time, that is, the time during which the zinc dissolution promotion member 20 and the zinc metal 22 were immersed in the zinc plating bath, it was visually confirmed whether or not a passivation state was formed in the zinc metal 22, and the presence or absence of the formation of a passivation state is shown as the dissolution result in Examples 1 to 27 and Comparative Examples 1 to 22.

この溶解結果から、亜鉛溶解促進部材と亜鉛金属とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬させて、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流しながら、亜鉛を亜鉛めっき浴に溶解することで、不働態を形成させることなく亜鉛を溶解させることが可能となることが解る。詳しくは、実施例1~27の亜鉛めっき浴では、亜鉛溶解促進部材と亜鉛金属とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬させて、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流しながら、亜鉛の溶解処理が実行されており、不働態は形成されていない。一方、比較例1の亜鉛めっき浴では、亜鉛溶解促進部材と亜鉛金属との離隔距離が0,つまり、亜鉛溶解促進部材と亜鉛金属とを接触させた状態で亜鉛めっき浴に浸漬させて、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流すことなく、亜鉛の溶解処理が実行されており、不働態が形成されている。また、比較例2~17の亜鉛めっき浴では、亜鉛溶解促進部材と亜鉛金属とを5mm未満離隔させた状態で亜鉛めっき浴に浸漬させて、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流しながら、亜鉛の溶解処理が実行されており、不働態が形成されている。また、比較例18~22の亜鉛めっき浴では、亜鉛溶解促進部材と亜鉛金属とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬させて、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流すことなく、亜鉛の溶解処理が実行されており、不働態が形成されている。このように、亜鉛溶解促進部材と亜鉛金属とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬させて、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流しながら、亜鉛を亜鉛めっき浴に溶解することで、不働態を形成させることなく亜鉛を溶解させることが可能となる。 From this dissolution result, it can be seen that it is possible to dissolve zinc without forming a passive state by immersing the zinc dissolution accelerating member and zinc metal in a zinc plating bath with a distance of 5 mm or more between them, and dissolving zinc in the zinc plating bath while flowing the zinc plating bath between the zinc dissolution accelerating member and the zinc metal. In detail, in the zinc plating baths of Examples 1 to 27, the zinc dissolution accelerating member and zinc metal are immersed in a zinc plating bath with a distance of 5 mm or more between them, and the zinc dissolution treatment is performed while flowing the zinc plating bath between the zinc dissolution accelerating member and the zinc metal, and a passive state is not formed. On the other hand, in the zinc plating bath of Comparative Example 1, the distance between the zinc dissolution accelerating member and the zinc metal is 0, that is, the zinc dissolution accelerating member and the zinc metal are immersed in the zinc plating bath with the zinc dissolution accelerating member and the zinc metal in contact with each other, and the zinc dissolution treatment is performed without flowing the zinc plating bath between the zinc dissolution accelerating member and the zinc metal, and a passive state is formed. In the zinc plating baths of Comparative Examples 2 to 17, the zinc dissolution accelerating member and the zinc metal are immersed in the zinc plating bath with a distance of less than 5 mm between them, and the zinc dissolution treatment is performed while the zinc plating bath is flowing between the zinc dissolution accelerating member and the zinc metal, forming a passivation state. In the zinc plating baths of Comparative Examples 18 to 22, the zinc dissolution accelerating member and the zinc metal are immersed in the zinc plating bath with a distance of 5 mm or more between them, and the zinc dissolution treatment is performed without flowing the zinc plating bath between the zinc dissolution accelerating member and the zinc metal, forming a passivation state. In this way, the zinc dissolution accelerating member and the zinc metal are immersed in the zinc plating bath with a distance of 5 mm or more between them, and the zinc is dissolved in the zinc plating bath while the zinc plating bath is flowing between the zinc dissolution accelerating member and the zinc metal, thereby making it possible to dissolve the zinc without forming a passivation state.

また、実施例17の亜鉛めっき浴では、亜鉛溶解促進部材と亜鉛金属とを70mm離隔させた状態で亜鉛めっき浴に浸漬させて、亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流しながら、亜鉛を亜鉛めっき浴に溶解することで、不働態を形成させることなく亜鉛が溶解される。このことから、亜鉛溶解促進部材と亜鉛金属との離隔距離は、5mm以上且つ100mm以下であれば、不働態を形成させることなく亜鉛を溶解させることができると想定される。 In addition, in the zinc plating bath of Example 17, the zinc dissolution accelerating member and the zinc metal are immersed in the zinc plating bath with a distance of 70 mm between them, and the zinc is dissolved in the zinc plating bath while the zinc plating bath is flowed between the zinc dissolution accelerating member and the zinc metal, thereby dissolving the zinc without forming a passive state. From this, it is assumed that if the distance between the zinc dissolution accelerating member and the zinc metal is 5 mm or more and 100 mm or less, the zinc can be dissolved without forming a passive state.

また、亜鉛溶解促進部材と亜鉛金属との間に流される亜鉛めっき浴の流速は、実施例1~27の亜鉛めっき浴において0.25~1m/分であり、不働態は形成されていない。このことから、0.1m/分以上の流速で亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴を流しながら亜鉛の溶解処理を行うことで、不働態を形成させることなく亜鉛を溶解させることができると想定される。 In addition, the flow rate of the zinc plating bath flowing between the zinc dissolution accelerating member and the zinc metal was 0.25 to 1 m/min in the zinc plating baths of Examples 1 to 27, and no passivation was formed. From this, it is assumed that by performing the zinc dissolution process while flowing a zinc plating bath between the zinc dissolution accelerating member and the zinc metal at a flow rate of 0.1 m/min or more, it is possible to dissolve the zinc without forming a passivation state.

また、亜鉛溶解促進部材と亜鉛金属との面積比は、実施例1~27の亜鉛めっき浴において1:1~1:3であり、不働態は形成されていない。このことから、亜鉛溶解促進部材と亜鉛金属との面積比を2:1~1:4にして亜鉛の溶解処理を行うことで、不働態を形成させることなく亜鉛を溶解させることができると想定される。 In addition, the area ratio of the zinc dissolution accelerating material to zinc metal was 1:1 to 1:3 in the zinc plating baths of Examples 1 to 27, and no passivation was formed. From this, it is assumed that by performing zinc dissolution treatment with an area ratio of the zinc dissolution accelerating material to zinc metal of 2:1 to 1:4, it is possible to dissolve zinc without forming a passivation.

また、実施例1~5,7~17,22~27の亜鉛めっき浴では、亜鉛溶解促進部材と亜鉛金属との間に下方から亜鉛めっき浴が流されており、実施例6,18~21の亜鉛めっき浴では、亜鉛溶解促進部材と亜鉛金属との間に側方から亜鉛めっき浴が流されている。そして、いずれの実施例の亜鉛めっき浴においても、不働態が形成されることなく亜鉛めっき浴に亜鉛が供給されている。このため、亜鉛溶解促進部材と亜鉛金属との間への亜鉛めっき浴の流入方向は限定されず、いずれの方向から亜鉛溶解促進部材と亜鉛金属との間に亜鉛めっき浴が流されてもよい。 In addition, in the zinc plating baths of Examples 1 to 5, 7 to 17, and 22 to 27, the zinc plating bath is flowed from below between the zinc dissolution accelerating member and the zinc metal, and in the zinc plating baths of Examples 6 and 18 to 21, the zinc plating bath is flowed from the side between the zinc dissolution accelerating member and the zinc metal. In the zinc plating baths of all Examples, zinc is supplied to the zinc plating bath without forming a passive state. For this reason, the direction in which the zinc plating bath flows between the zinc dissolution accelerating member and the zinc metal is not limited, and the zinc plating bath may flow between the zinc dissolution accelerating member and the zinc metal from any direction.

なお、工場等における亜鉛めっき浴での亜鉛の溶解は、一般的に、数日間以上連続して行われる。このため、比較例の亜鉛めっき浴のように2時間の亜鉛の溶解処理において不働態が発生していては、工場等において亜鉛めっき浴に継続して適切に亜鉛を供給することはできない。このことから、実施例の亜鉛めっき浴での溶解速度が比較例の亜鉛めっき浴での溶解速度より遅くても問題なく、実施例の亜鉛めっき浴において不働態が形成されずに、2時間以上継続して適切に亜鉛が供給されることが重要である。つまり、実施例に記載された溶解速度は、亜鉛が2時間以上継続して供給されることを示していればよく、比較例の亜鉛めっき浴での溶解速度より遅くても問題ない。 Note that zinc dissolution in a zinc plating bath in a factory or the like is generally carried out continuously for several days or more. For this reason, if passivity occurs during the two-hour zinc dissolution treatment as in the zinc plating bath of the comparative example, zinc cannot be supplied to the zinc plating bath in a factory or the like in a continuous and appropriate manner. For this reason, it does not matter if the dissolution rate in the zinc plating bath of the example is slower than the dissolution rate in the zinc plating bath of the comparative example, and it is important that passivity is not formed in the zinc plating bath of the example and that zinc is supplied appropriately for two hours or more continuously. In other words, the dissolution rate described in the example only needs to indicate that zinc is supplied continuously for two hours or more, and it does not matter if it is slower than the dissolution rate in the zinc plating bath of the comparative example.

10:亜鉛溶解装置 20:亜鉛溶解促進部材 22:亜鉛金属 10: Zinc melting device 20: Zinc melting promoter 22: Zinc metal

Claims (5)

電気的に接続された亜鉛溶解促進部材と亜鉛とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬して、亜鉛めっき浴に浸漬された前記亜鉛溶解促進部材と前記亜鉛との間に向かって亜鉛めっき浴を流しながら、前記亜鉛を亜鉛めっき浴に溶解させることを特徴とする亜鉛溶解方法。 A zinc dissolution method characterized by immersing an electrically connected zinc dissolution accelerating member and zinc in a zinc plating bath while separating them by 5 mm or more, and dissolving the zinc in the zinc plating bath while flowing the zinc plating bath toward the gap between the zinc dissolution accelerating member and the zinc immersed in the zinc plating bath. 前記亜鉛溶解促進部材と前記亜鉛との間に向かって流される亜鉛めっき浴の流速が、0.1m/分以上であることを特徴とする請求項1に記載の亜鉛溶解方法。 The zinc dissolution method according to claim 1, characterized in that the flow rate of the zinc plating bath flowing toward the gap between the zinc dissolution promoting member and the zinc is 0.1 m/min or more. 亜鉛めっき浴に浸漬された前記亜鉛溶解促進部材と前記亜鉛との間の距離が、5mm以上且つ100mm以下であることを特徴とする請求項1に記載の亜鉛溶解方法。 The zinc dissolution method according to claim 1, characterized in that the distance between the zinc dissolution promoting member immersed in the zinc plating bath and the zinc is 5 mm or more and 100 mm or less. 前記亜鉛溶解促進部材が、
金属表面を有する被処理物と、
ピリジン系化合物を含有する酸性電気めっき浴により前記金属表面に形成された電気めっき皮膜と
を備えることを特徴とする請求項1ないし請求項3のいずれか1項に記載の亜鉛溶解方法。
The zinc dissolution promoting member is
A workpiece having a metal surface;
and an electroplating film formed on the metal surface using an acidic electroplating bath containing a pyridine-based compound.
電気的に接続された亜鉛溶解促進部材と亜鉛とを5mm以上離隔させた状態で亜鉛めっき浴に浸漬して、亜鉛めっき浴に浸漬された前記亜鉛溶解促進部材と前記亜鉛との間に向かって亜鉛めっき浴を流しながら、前記亜鉛を亜鉛めっき浴に溶解させることを特徴とする亜鉛溶解装置。 A zinc dissolving device characterized in that an electrically connected zinc dissolution accelerating member and zinc are immersed in a zinc plating bath while being spaced 5 mm or more apart from the zinc, and the zinc is dissolved in the zinc plating bath while the zinc plating bath is flowed toward the gap between the zinc dissolution accelerating member and the zinc immersed in the zinc plating bath.
JP2023041582A 2023-03-16 2023-03-16 Zinc melting method and zinc melting device Pending JP2024131366A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023041582A JP2024131366A (en) 2023-03-16 2023-03-16 Zinc melting method and zinc melting device
PCT/JP2024/000814 WO2024190061A1 (en) 2023-03-16 2024-01-15 Zinc dissolution method, and zinc dissolution apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023041582A JP2024131366A (en) 2023-03-16 2023-03-16 Zinc melting method and zinc melting device

Publications (1)

Publication Number Publication Date
JP2024131366A true JP2024131366A (en) 2024-09-30

Family

ID=92754614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023041582A Pending JP2024131366A (en) 2023-03-16 2023-03-16 Zinc melting method and zinc melting device

Country Status (2)

Country Link
JP (1) JP2024131366A (en)
WO (1) WO2024190061A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586792B2 (en) * 1975-07-09 1983-02-07 ウエムラコウギヨウ カブシキガイシヤ Aenion no Metsukiyokuhenokiyoukiyuhouhou
JPS57149498A (en) * 1981-03-12 1982-09-16 Deitsupusoole Kk Method of supplying zinc ion to zinc plating alkaline bath
JPS57171699A (en) * 1981-04-17 1982-10-22 Hitachi Ltd Metallic ion replenishing method of plating liquid
JPS58121375U (en) * 1982-02-10 1983-08-18 上村工業株式会社 electroplating device
JPH06116800A (en) * 1992-10-08 1994-04-26 Sumitomo Metal Ind Ltd Method for supplying zinc ion to zinc alloy electroplating bath
DE10013339C1 (en) * 2000-03-17 2001-06-13 Atotech Deutschland Gmbh Process for regulating the concentration of metal ions in an electrolyte liquid comprises feeding part of the liquid through an auxiliary cell consisting of an insoluble auxiliary anode and an auxiliary cathode
JP7150327B2 (en) * 2018-11-30 2022-10-11 ユケン工業株式会社 Zinc dissolution promoting member, manufacturing method, and zinc dissolving method

Also Published As

Publication number Publication date
WO2024190061A1 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
TWI485292B (en) Anti-displacement hard gold compositions
JP5938426B2 (en) Electroplating cell and metal film manufacturing method
EP3485069B1 (en) Composition for cobalt plating comprising additive for void-free submicron feature filling
KR102482321B1 (en) Palladium plating solution and palladium coating obtained using same
WO2006053062A2 (en) Tin alloy electroplating system
US4486274A (en) Palladium plating prodedure
EP2663670A2 (en) Improvements in coating technology
WO2024190061A1 (en) Zinc dissolution method, and zinc dissolution apparatus
JP6214355B2 (en) Electrolytic gold plating solution and gold film obtained using the same
JP7150327B2 (en) Zinc dissolution promoting member, manufacturing method, and zinc dissolving method
JP4362568B2 (en) Tin - copper alloy electroplating solution
EP2802687A1 (en) Improvements in coating technology
US9435046B2 (en) High speed method for plating palladium and palladium alloys
JP2018009227A (en) Electrolytic palladium silver alloy plated film and electrolytic plating liquid for forming the same
JP5583896B2 (en) High-speed plating method of palladium and palladium alloy
CN102918937A (en) Printed circuit board and method for producing printed circuit board
EP3312308A1 (en) Nickel plating solution
JP2023113347A (en) Hydrogen generation method, hydrogen generation promoting member and production method
EP0059452A2 (en) Palladium and palladium alloys electroplating procedure
JP2014214378A (en) METHOD FOR RECOVERING COPPER FROM Sn PLATING STRIPPING WASTE LIQUID
JP3711141B1 (en) Method for forming Sn-Ag-Cu ternary alloy thin film
TW201333275A (en) Selective hard gold deposition
Jović et al. Characterization of electrodeposited Co+ Ni alloys by application of the ALSV technique Professor Aleksandar Despic to commemorate his 70th birthday
JP3225288B2 (en) Silver electrolytic stripper
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy