JP2024129165A - Stainless steel with excellent cold forgeability, corrosion resistance and non-magnetic properties - Google Patents
Stainless steel with excellent cold forgeability, corrosion resistance and non-magnetic properties Download PDFInfo
- Publication number
- JP2024129165A JP2024129165A JP2024111006A JP2024111006A JP2024129165A JP 2024129165 A JP2024129165 A JP 2024129165A JP 2024111006 A JP2024111006 A JP 2024111006A JP 2024111006 A JP2024111006 A JP 2024111006A JP 2024129165 A JP2024129165 A JP 2024129165A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- corrosion resistance
- magnetic properties
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 51
- 239000010935 stainless steel Substances 0.000 title claims abstract description 47
- 230000007797 corrosion Effects 0.000 title abstract description 61
- 238000005260 corrosion Methods 0.000 title abstract description 61
- 229910000831 Steel Inorganic materials 0.000 claims description 50
- 239000010959 steel Substances 0.000 claims description 50
- 238000005482 strain hardening Methods 0.000 claims description 29
- 230000035699 permeability Effects 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 41
- 238000005096 rolling process Methods 0.000 description 27
- 230000006835 compression Effects 0.000 description 16
- 238000007906 compression Methods 0.000 description 16
- 229910000734 martensite Inorganic materials 0.000 description 13
- 239000002244 precipitate Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000002161 passivation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000010273 cold forging Methods 0.000 description 2
- 238000012669 compression test Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- -1 C: 0.15-0.80% Substances 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
【課題】冷間鍛造性及び、耐食性と非磁性に優れるステンレス鋼を提供する。【解決手段】質量%で、C:0.0010~0.15%、Si:0.01~2.00%、Mn:0.01~10.00%、Ni:8.00~30.00%、Cr:9.0~21.0%、Mo:0.01~3.00%、Cu:0.01~5.00%、N:0.0010~0.10%、B:0.0001~0.05%を含有するステンレス鋼であって、(a)式で示されるA値が-100以下であり、B粒界占有率が1%以上であるステンレス鋼。A値=551-462(C+N)-9.2Si―8.1Mn―29(Ni+Cu)-13.7Cr―18.5Mo (a)【選択図】なしThe present invention provides a stainless steel that is excellent in cold forgeability, corrosion resistance, and non-magnetic properties. The stainless steel contains, by mass%, 0.0010-0.15% C, 0.01-2.00% Si, 0.01-10.00% Mn, 8.00-30.00% Ni, 9.0-21.0% Cr, 0.01-3.00% Mo, 0.01-5.00% Cu, 0.0010-0.10% N, and 0.0001-0.05% B, and has an A value represented by formula (a) of -100 or less and a B grain boundary occupancy rate of 1% or more. A value = 551-462 (C + N) - 9.2Si - 8.1Mn - 29 (Ni + Cu) - 13.7Cr - 18.5Mo (a) [Selection diagram] None
Description
本発明は、ステンレス鋼であって、特に、耐食性と冷間鍛造性に優れる非磁性ステンレス鋼に関するものである。 The present invention relates to stainless steel, and in particular to non-magnetic stainless steel that has excellent corrosion resistance and cold forgeability.
非特許文献1には、オーステナイトステンレス鋼のオーステナイト安定度の評価指標として、Md30が提示されている。Md30とは、オーステナイト単相の試料に0.30の引張真ひずみを与えたときに組織が50%マルテンサイト相に変態する温度(℃)である。この値が高温であるほど材料が不安定であることを示す。非特許文献1では、成分組成の関数としてMd30の式を提示している。 Non-Patent Document 1 presents Md30 as an evaluation index for the austenite stability of austenitic stainless steel. Md30 is the temperature (°C) at which the structure transforms to 50% martensite phase when a tensile true strain of 0.30 is applied to a single-phase austenite sample. The higher this value, the more unstable the material is. Non-Patent Document 1 presents the formula for Md30 as a function of the component composition.
従来、非磁性部位に用いられるステンレス鋼としては、SUS316、SUS316L等のオーステナイト系ステンレス鋼が一般的である。これに対して、特許文献1、2では、C:0.15~0.80%、Ni:8.0~20.0%、Cr:8.0~18.0%、Mo:0.05~0.50%、V:0.50~3.00%、Al:0.001~1.000%を含む所定の成分を有する鋼であって、非特許文献1に記載の上記Md30式を変形した(3)式の値を-100以下とし、50nm以下のV(C、N)析出物が、3.5×10-2μm2中に50個以上、分散して存在することを特徴とする安価で優れた耐水素脆性、機械的性質および耐食性を兼備した高硬度非磁性鋼が開示されている。 Conventionally, austenitic stainless steels such as SUS316 and SUS316L are generally used as stainless steels for nonmagnetic parts. In contrast, Patent Documents 1 and 2 disclose a low-cost, high-hardness nonmagnetic steel that has excellent hydrogen embrittlement resistance, mechanical properties, and corrosion resistance, and is characterized in that the steel has a predetermined composition including C: 0.15-0.80%, Ni: 8.0-20.0%, Cr: 8.0-18.0%, Mo: 0.05-0.50%, V: 0.50-3.00%, and Al: 0.001-1.000%, and that the value of formula (3) obtained by modifying the above Md30 formula described in Non-Patent Document 1 is set to -100 or less, and 50 or more V(C,N) precipitates of 50 nm or less are dispersed and present in an area of 3.5×10 −2 μm 2.
特許文献3には、傾斜圧延が開示されている。傾斜圧延は、3個のワークロールを被圧延材を中心にして同方向に捩って傾斜したロール軸に配置している。各ワークロールが被圧延材の周囲を自転しながら公転する。これにより、被圧延材は前進しながらスパイラル状に圧延される。 Patent Document 3 discloses tilt rolling. In tilt rolling, three work rolls are arranged on a roll axis that is twisted and tilted in the same direction around the material to be rolled. Each work roll revolves around the material to be rolled while rotating on its own axis. As a result, the material to be rolled is rolled in a spiral shape while moving forward.
SUS316、SUS316L、あるいは特許文献1、2に記載のオーステナイト系ステンレス鋼を用いることにより、機械的強度に優れる非磁性鋼が実現している。ところが、これら従来から知られていた鋼においては、耐食性と冷間鍛造性と冷間加工後の非磁性を同時に満足することが難しいことがわかった。特に、従来技術では、高Cに起因し鋭敏化などを生じ耐食性が劣化する。また、冷間鍛造前の材料強度が高いため、工具寿命が短く、太径棒鋼での鍛造荷重が増える。そのため、これら要因に起因し冷間鍛造性が悪化することが判明した。更に、冷間鍛造のような高ひずみでの加工では、従来の鋼において材料の加工限界(割れ)が生じてしまうことも判明した。 By using SUS316, SUS316L, or the austenitic stainless steels described in Patent Documents 1 and 2, non-magnetic steels with excellent mechanical strength have been realized. However, it has been found that it is difficult for these conventionally known steels to simultaneously satisfy corrosion resistance, cold forgeability, and non-magnetic properties after cold working. In particular, in conventional technology, sensitization occurs due to high C, which deteriorates corrosion resistance. In addition, because the material strength before cold forging is high, tool life is short and the forging load for large-diameter steel bars increases. It has been found that these factors cause the cold forgeability to deteriorate. Furthermore, it has been found that processing at high strain such as cold forging causes material processing limits (cracks) in conventional steels.
本発明は、耐食性を高め、引張強さを下げ冷間鍛造性を高め、更に冷間加工後の非磁性特性を高めることのできる、ステンレス鋼を提供することを第3の目的とする。 The third objective of the present invention is to provide a stainless steel that can improve corrosion resistance, reduce tensile strength, improve cold forgeability, and further improve non-magnetic properties after cold working.
原出願に係る発明において、第1の目的に対応する第1発明、第2の目的に対応する第2発明、第3の目的に対応する第3発明の3つの発明に至った。原出願の分割出願たる本願に係る発明において、以下の第3発明を規定する。
即ち、本発明の要旨とするところは以下のとおりである。
In the invention of the original application, three inventions were created: a first invention corresponding to the first object, a second invention corresponding to the second object, and a third invention corresponding to the third object. In the invention of the present application, which is a divisional application of the original application, the following third invention is defined.
That is, the gist of the present invention is as follows.
[14]<第3発明>
化学組成が、質量%で、
C:0.0010~0.15%、Si:0.01~2.00%、Mn:0.01~10.00%、Ni:8.00~30.00%、Cr:9.0~21.0%、Mo:0.01~3.00%、Cu:0.01~5.00%、N:0.0010~0.10%、B:0.0001~0.05%、
Al:0~2.0%、Ti:0~2.00%、Nb:0~2.00%、Sn:0~2.5%、V:0~2.0%、W:0~3.0%、Ga:0~0.05%、Co:0~2.5%、Sb:0~2.5%、Ta:0~2.5%、Ca:0~0.05%、Mg:0~0.012%、Zr:0~0.012%、REM:0~0.05%、Pb:0~0.30%、Se:0~0.80%、Te:0~0.30%、Bi:0~0.50%、S:0~0.50%、P:0~0.30%を含有し、残部:Feおよび不純物であり、
下記式(a)で示されるA値が-100以下であり、
B粒界占有率が1%以上であるステンレス鋼。
A値=551-462(C+N)-9.2Si―8.1Mn―29(Ni+Cu)-13.7Cr―18.5Mo (a)
但し、式(a)中の元素記号は、当該元素の鋼中における含有量(質量%)を意味する。また、式(a)中の元素の含有量が0%である場合は、該当記号箇所には「0」を代入して算出する。
[14] <Third Invention>
The chemical composition, in mass%, is
C: 0.0010-0.15%, Si: 0.01-2.00%, Mn: 0.01-10.00%, Ni: 8.00-30.00%, Cr: 9.0-21.0%, Mo: 0.01-3.00%, Cu: 0.01-5.00%, N: 0.0010-0.10%, B: 0.000 1-0.05%,
containing Al: 0-2.0%, Ti: 0-2.00%, Nb: 0-2.00%, Sn: 0-2.5%, V: 0-2.0%, W: 0-3.0%, Ga: 0-0.05%, Co: 0-2.5%, Sb: 0-2.5%, Ta: 0-2.5%, Ca: 0-0.05%, Mg: 0-0.012%, Zr: 0-0.012%, REM: 0-0.05%, Pb: 0-0.30%, Se: 0-0.80%, Te: 0-0.30%, Bi: 0-0.50%, S: 0-0.50%, P: 0-0.30%, and the balance being Fe and impurities;
The A value represented by the following formula (a) is −100 or less,
Stainless steel with a grain boundary occupancy rate of 1% or more.
A value=551-462(C+N)-9.2Si-8.1Mn-29(Ni+Cu)-13.7Cr-18.5Mo (a)
In the formula (a), the symbol of an element means the content (mass%) of the element in the steel. When the content of an element in the formula (a) is 0%, "0" is substituted for the corresponding symbol in the calculation.
[15]前記化学組成が、質量%でさらに、
A群として、Al:0.001~2.0%、Ti:0.01~2.00%、Nb:0.01~2.00%、Sn:0.0001~2.5%、V:0.001~2.0%、W:0.05~3.0%、Ga:0.0004~0.05%、Co:0.05~2.5%、Sb:0.01~2.5%、およびTa:0.01~2.5%、から選択される一種以上、
B群として、Ca:0.0002~0.05%、Mg:0.0002~0.012%、Zr:0.0002~0.012%、およびREM:0.0002~0.05%、から選択される一種以上、
C群として、Pb:0.0001~0.30%、Se:0.0001~0.80%、Te:0.0001~0.30%、Bi:0.0001~0.50%、S:0.0001~0.50%、P:0.0001~0.30%、から選択される一種以上、
のA群~C群の1群以上を含有する、[14]に記載のステンレス鋼。
[15] The chemical composition further comprises, in mass%,
Group A includes one or more selected from Al: 0.001 to 2.0%, Ti: 0.01 to 2.00%, Nb: 0.01 to 2.00%, Sn: 0.0001 to 2.5%, V: 0.001 to 2.0%, W: 0.05 to 3.0%, Ga: 0.0004 to 0.05%, Co: 0.05 to 2.5%, Sb: 0.01 to 2.5%, and Ta: 0.01 to 2.5%;
As group B, one or more selected from Ca: 0.0002 to 0.05%, Mg: 0.0002 to 0.012%, Zr: 0.0002 to 0.012%, and REM: 0.0002 to 0.05%;
Group C: one or more selected from Pb: 0.0001 to 0.30%, Se: 0.0001 to 0.80%, Te: 0.0001 to 0.30%, Bi: 0.0001 to 0.50%, S: 0.0001 to 0.50%, and P: 0.0001 to 0.30%;
The stainless steel according to [14], containing one or more of groups A to C.
[16] 孔食電位が0.05V以上である、[14]又は[15]に記載のステンレス鋼。
[17]引張強さが700MPa以下である、[14]~[16]のいずれか1項に記載のステンレス鋼。
[18]限界圧縮率が60%以上である、[14]~[17]のいずれか1つに記載のステンレス鋼。
[19]冷間加工後の比透磁率が1.10以下である、[14]~[18]のいずれか1つに記載のステンレス鋼。
[16] The stainless steel according to [14] or [15], having a pitting potential of 0.05 V or more.
[17] The stainless steel according to any one of [14] to [16], having a tensile strength of 700 MPa or less.
[18] The stainless steel according to any one of [14] to [17], having a limit compression rate of 60% or more.
[19] The stainless steel according to any one of [14] to [18], having a relative magnetic permeability of 1.10 or less after cold working.
第3発明のステンレス鋼は、所定の成分を含有し、B粒界占有率が1%以上であることにより、耐食性と冷間鍛造性と冷間加工後の非磁性特性を満足することが可能になる。 The stainless steel of the third invention contains specified components and has a B grain boundary occupancy rate of 1% or more, which makes it possible to satisfy corrosion resistance, cold forgeability, and non-magnetic properties after cold working.
本発明のステンレス鋼は、棒形状、板形状のいずれであっても適用することができる。中でも、棒状鋼材として使用するときに特に好適に用いることができる。棒状鋼材とは、「棒鋼」、「線材」、「鋼線」、「異形線」、「異形棒鋼」などを含む。本発明のステンレス鋼は、オーステナイト系ステンレス鋼である。 The stainless steel of the present invention can be applied in either a bar shape or a plate shape. In particular, it is suitable for use as bar-shaped steel material. Bar-shaped steel material includes "steel bar," "wire rod," "steel wire," "deformed wire," "deformed steel bar," and the like. The stainless steel of the present invention is an austenitic stainless steel.
第3発明は、前述のように、耐食性と冷間鍛造性と冷間加工後の非磁性特性を満足することのできる、ステンレス鋼、特に棒状鋼材の提供を目的とする。 The third invention aims to provide stainless steel, particularly bar-shaped steel, that can satisfy the requirements for corrosion resistance, cold forgeability, and non-magnetic properties after cold working, as described above.
冷間鍛造性については、φ8×12mmの試験片を用い、端面拘束圧縮試験(加工温度:RT(室温)、ひずみ速度:10/s)を行ったときに、圧縮加工後の試験片側面に割れの生じない最大圧縮率を限界圧縮率と定義し、限界圧縮率が60%以上となることを目標とする。 Regarding cold forgeability, a φ8 x 12 mm test piece is used, and an end-constrained compression test (processing temperature: RT (room temperature), strain rate: 10/s) is performed. The maximum compression ratio at which no cracks appear on the side of the test piece after compression processing is defined as the limit compression ratio, and the target limit compression ratio is 60% or more.
耐食性については、φ20×30mmの試験片のL断面中心部(20幅×30長×1mm厚)を評価面として用い、評価面を含め、不働態化処理は15%硝酸の30分浸漬の条件にて実施した。その後、評価面についてJISG 0577(3.5%NaCl,30℃,N=3の平均、V vs Ag/AgCl,飽和KCl)に従った孔食電位試験を行い、孔食電位を測定した。孔食電位が0.05V以上となることを第3発明の目標とする。なお、実施例において、比較材の不働態化処理なしでは、研磨まま直後に孔食電位の測定を行った。 For corrosion resistance, the center of the L-section of a φ20 x 30 mm test piece (20 width x 30 length x 1 mm thickness) was used as the evaluation surface, and passivation treatment was performed on the evaluation surface, including the evaluation surface, by immersing it in 15% nitric acid for 30 minutes. After that, a pitting potential test was performed on the evaluation surface according to JIS G 0577 (3.5% NaCl, 30°C, average of N = 3, V vs Ag/AgCl, saturated KCl) to measure the pitting potential. The goal of the third invention is to achieve a pitting potential of 0.05 V or more. In the examples, the pitting potential of the comparative material without passivation treatment was measured immediately after polishing.
冷間加工後の非磁性特性については、まず、溶体化熱処理として1100℃×30分(水冷)の熱処理を行った上で、冷間加工率(断面減少率)が80%の冷間加工を行った試料を準備し、1000[Oe]における比透磁率を測定する。比透磁率が1.10以下の実現を、第3発明の目標とする。 Regarding the non-magnetic properties after cold working, first, a solution heat treatment is performed at 1100°C for 30 minutes (water cooling), and then a cold working sample with a cold working rate (reduction of area) of 80% is prepared, and the relative permeability at 1000 [Oe] is measured. The goal of the third invention is to achieve a relative permeability of 1.10 or less.
以下、第3発明の詳細について説明する。 The details of the third invention are explained below.
<第3発明>
《第3発明のステンレス鋼のB粒界占有率》
本発明者らは、ステンレス鋼、特に棒状鋼材において、耐食性と冷間鍛造性、冷間加工後の非磁性特性を満足する手段として、鋼材のB粒界占有率を制御することを着想した。B粒界占有率(%)とは、全結晶粒界(A)に対し有限B量の存在する結晶粒界(B)が占める割合(B/A×100)である。B粒界占有率が大きいと、粒界Cr系析出物によるCr欠乏領域に対し不働態化を促進し耐食性が向上し、粒界での塑性変形が容易となり冷間鍛造性が向上し、粒界での局所変形が抑制され磁性相の加工誘起α’マルテンサイトの生成を抑制し非磁性を保つことを着想した。
<Third Invention>
<<B grain boundary occupancy rate of the stainless steel according to the third invention>>
The present inventors came up with the idea of controlling the B grain boundary occupancy rate of a steel material as a means for satisfying the corrosion resistance, cold forgeability, and non-magnetic properties after cold working in stainless steel, particularly in bar-shaped steel material. The B grain boundary occupancy rate (%) is the ratio (B/A×100) of the grain boundaries (B) where a finite amount of B exists to the total grain boundaries (A). It was conceived that a large B grain boundary occupancy rate promotes passivation of Cr-deficient regions due to grain boundary Cr-based precipitates, improving corrosion resistance, facilitating plastic deformation at the grain boundaries, improving cold forgeability, and suppressing local deformation at the grain boundaries, thereby suppressing the generation of processing-induced α' martensite in the magnetic phase and maintaining non-magnetic properties.
B粒界占有率の評価はEPMA解析で測定した。鋼材のL断面(棒状鋼材であればその中心線を含む断面)において、任意視野領域における結晶粒界の総長さ(A)を測定し、次いで同視野においてB濃度の面分析を行い、粒内母相に比べ高B濃度となる粒界をB粒界占有と定義し、B粒界占有の長さ(B)を算出し、上記式よりB粒界占有率を算出した。 The B grain boundary occupancy rate was evaluated using EPMA analysis. The total length (A) of the grain boundaries in an arbitrary field of view was measured in the L section of the steel (a section including the center line in the case of a bar-shaped steel), and then an area analysis of the B concentration was performed in the same field of view. Grain boundaries with a higher B concentration than the parent phase within the grains were defined as B grain boundary occupancy, the length of the B grain boundary occupancy (B) was calculated, and the B grain boundary occupancy rate was calculated using the above formula.
そして、鋼材のB粒界占有率が1%以上であれば、上記目標とする、耐食性と冷間鍛造性と冷間加工後の非磁性特性を満足できることが判明した。B粒界占有率が平均で5%以上であればより好ましく、15%以上は更に好ましく、20%以上が更に好ましい。 It was also found that if the B grain boundary occupancy rate of the steel is 1% or more, the above-mentioned target corrosion resistance, cold forgeability, and non-magnetic properties after cold working can be satisfied. It is more preferable for the B grain boundary occupancy rate to be 5% or more on average, even more preferable for it to be 15% or more, and even more preferable for it to be 20% or more.
《第3発明のステンレス鋼の成分組成》
次に、第3発明のステンレス鋼の成分組成について説明する。成分組成において、%は質量%を意味する。
<<Composition of the Stainless Steel of the Third Invention>>
Next, the composition of the stainless steel according to the third invention will be described. In the composition, % means mass %.
(C:0.0010~0.15%)
Cは加工誘起マルテンサイトの形成を抑制し、非磁性特性を高めるため、0.0010%以上とする。過剰にCを添加すると、B粒界占有率を下げ、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、C含有量の上限値を0.15%とし、好ましくは0.12%以下であり、更に好ましくは0.05%以下とし、更に好ましくは0.02%以下とする。C上限を0.15%未満とすると好ましい。
(C: 0.0010-0.15%)
C suppresses the formation of processing-induced martensite and enhances non-magnetic properties, so the content is set to 0.0010% or more. Excessive addition of C reduces the B grain boundary occupancy rate and reduces corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the C content is set to 0.15%, preferably 0.12% or less, more preferably 0.05% or less, and even more preferably 0.02% or less. The upper limit of C is preferably set to less than 0.15%.
(Si:0.01~2.00%)
Siは脱酸元素として添加し、0.01%以上とする。過剰にSiを添加すると、B粒界占有率を下げ、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Si含有量の上限値を2.0%とし、好ましくは1.2%以下であり、更に好ましくは0.6%以下とし、更に好ましくは0.5%以下とする。
(Si: 0.01-2.00%)
Silicon is added as a deoxidizing element, and is set to 0.01% or more. Excessive addition of silicon reduces the B grain boundary occupancy rate, and deteriorates corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the silicon content is The upper limit of the amount is set to 2.0%, preferably 1.2% or less, more preferably 0.6% or less, and even more preferably 0.5% or less.
(Mn:0.01~10.00%)
Mnは加工誘起マルテンサイトの形成を抑制し、非磁性特性を高めるため、0.01%以上とする。過剰にMnを添加すると、B粒界占有率を下げ、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Mn含有量の上限値を10.0%とし、好ましくは2.5%以下であり、更に好ましくは1.5%以下とし、更に好ましくは1.0%以下とする。
(Mn: 0.01-10.00%)
Mn suppresses the formation of processing-induced martensite and enhances non-magnetic properties, so the content is set to 0.01% or more. Excessive addition of Mn reduces the B grain boundary occupancy rate and reduces the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Mn content is set to 10.0%, preferably 2.5% or less, more preferably 1.5% or less, and even more preferably 1.0% or less. do.
(Ni:8.00~30.00%)
Niは加工誘起マルテンサイトの形成を抑制し、非磁性特性を高める。また、冷間鍛造性を高めるため、Ni含有量を8.00%以上とする。好ましくは10.00%以上であり、更に好ましくは13.00%以上であり、更に好ましくは15.00%以上である。過剰にNiを添加すると、B粒界占有率を下げ、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Ni含有量の上限値を30.00%とし、好ましくは25.00%以下とする。
(Ni: 8.00-30.00%)
Ni suppresses the formation of processing-induced martensite and enhances non-magnetic properties. In addition, in order to enhance cold forgeability, the Ni content is set to 8.00% or more. Preferably, it is 10.00% or more. The content is more preferably 13.00% or more, and even more preferably 15.00% or more. Excessive addition of Ni reduces the B grain boundary occupancy rate, and deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Ni content is set to 30.00%, and preferably to 25.00% or less.
(Cr:9.0~21.0%)
Crは加工誘起マルテンサイトの形成を抑制し、非磁性特性を高める。また、耐食性を高めるため、Cr含有量を9.0%以上とする。好ましくは10.5%以上である。過剰にCrを添加すると、B粒界占有率を下げ、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Cr含有量の上限値を21.0%とし、好ましくは19.5%以下であり、更に好ましくは15.0%以下である。
(Cr:9.0~21.0%)
Cr suppresses the formation of processing-induced martensite and improves non-magnetic properties. In order to improve corrosion resistance, the Cr content is set to 9.0% or more, preferably 10.5% or more. Excessive Cr content is not recommended. Addition of Cr reduces the B grain boundary occupancy rate, and deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Cr content is set to 21.0%, and preferably 19.5% or less. , and more preferably 15.0% or less.
(Mo:0.01~3.00%)
Moは加工誘起マルテンサイトの形成を抑制し、非磁性特性を高める。また、耐食性を高めることに加え、冷間鍛造性を高めるため、Mo含有量を0.01%以上とする。過剰にMoを添加すると、B粒界占有率を下げ、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Mo含有量の上限値を3.0%とし、好ましくは2.8%以下であり、更に好ましくは2.5%以下であり、更に好ましくは1.0%以下である。
(Mo: 0.01-3.00%)
Mo suppresses the formation of processing-induced martensite and enhances non-magnetic properties. In addition, Mo content is set to 0.01% or more in order to enhance the corrosion resistance and cold forgeability. Addition of Mo reduces the B grain boundary occupancy rate and deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Mo content is set to 3.0%, and preferably 2.8% or less. , more preferably 2.5% or less, and even more preferably 1.0% or less.
(Cu:0.01~5.00%)
Cuは加工誘起マルテンサイトの形成を抑制し、非磁性特性を高める。また、冷間鍛造性を高めるため、Cu含有量を0.01%以上とする。好ましくは1.00%以上であり、更に好ましくは2.00%以上である。過剰にCuを添加すると、B粒界占有率を下げ、耐食性と冷間鍛造性、非磁性特性が劣化し、また、熱間脆性を引き起こす。そのため、Cu含有量の上限値を5.00%とし、好ましくは3.50%以下とする。
(Cu: 0.01-5.00%)
Cu suppresses the formation of processing-induced martensite and enhances non-magnetic properties. In addition, in order to enhance cold forgeability, the Cu content is set to 0.01% or more. Preferably, it is 1.00% or more. The content of Cu is more preferably 2.00% or more. Excessive Cu addition reduces the B grain boundary occupancy rate, deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties, and also causes hot brittleness. The upper limit of the Cu content is set to 5.00%, and preferably to 3.50%.
(N:0.0010~0.10%)
Nは加工誘起マルテンサイトの形成を抑制し、非磁性特性を高めるため、0.0010%以上とする。過剰にNを添加すると、B粒界占有率を下げ、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、N含有量の上限値を0.10%とし、好ましくは0.08%以下であり、更に好ましくは0.05%以下とし、更に好ましくは0.03%以下とする。
(N: 0.0010-0.10%)
N suppresses the formation of processing-induced martensite and enhances non-magnetic properties, so the content is set to 0.0010% or more. Excessive addition of N reduces the B grain boundary occupancy rate and reduces corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the N content is set to 0.10%, preferably 0.08% or less, more preferably 0.05% or less, and even more preferably 0.03% or less. do.
(B:0.0001~0.05%)
BはB粒界占有率を高める主元素であり、耐食性と冷間鍛造性、非磁性特性を高めるため、0.0001%以上とする。好ましくは0.0005%以上である。過剰にBを添加すると、粗大B系析出物などが形成し、逆に耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、B含有量の上限値を0.05%とし、好ましくは0.02%以下であり、更に好ましくは0.015%以下とする。
(B: 0.0001-0.05%)
B is a main element that increases the B grain boundary occupancy rate, and in order to improve corrosion resistance, cold forgeability, and non-magnetic properties, the content is set to 0.0001% or more, preferably 0.0005% or more. When B is added, coarse B-based precipitates are formed, which in turn deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the B content is set at 0.05%, and preferably 0.02%. The content is preferably 0.015% or less, and more preferably 0.015% or less.
第3発明のステンレス鋼は、上記成分を含有し、残部はFe及び不純物である。さらに、下記成分から選択される一種以上を含有することとしても良い。 The stainless steel of the third invention contains the above components, with the remainder being Fe and impurities. It may further contain one or more components selected from the following components:
(Al:0~2.0%)
AlはB粒界占有率を下げるNの固定のために添加してもよい。一方、過剰にAlを添加すると粗大Al系析出物などが形成し、耐食性と冷間鍛造性と非磁性特性が劣化する。そのため、Al含有量の上限値を2.0%とし、好ましくは1.0%以下であり、更に好ましくは0.5%以下、更に好ましくは0.05%以下とする。Alの好ましい下限は0.001%以上である。
(Al: 0-2.0%)
Al may be added to fix N, which reduces the B grain boundary occupancy rate. On the other hand, excessive addition of Al will form coarse Al-based precipitates, which will result in deterioration of corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Al content is set to 2.0%, preferably 1.0% or less, more preferably 0.5% or less, and even more preferably 0.05% or less. The preferred lower limit is 0.001%.
(Ti:0~2.00%)
TiはB粒界占有率を下げるC,Nの固定のために添加してもよい。一方、過剰にTiを添加すると粗大Ti系析出物などが形成し、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Ti含有量の上限値を2.00%とし、好ましくは1.0%以下であり、更に好ましくは0.7%以下とし、更に好ましくは0.5%以下である。Tiの好ましい下限は0.01%以上であり、更に好ましくは0.05%以上である。
(Ti: 0-2.00%)
Ti may be added to fix C and N, which lowers the B grain boundary occupancy rate. On the other hand, excessive addition of Ti forms coarse Ti-based precipitates, which deteriorates corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Ti content is set to 2.00%, preferably 1.0% or less, more preferably 0.7% or less, and even more preferably 0.5% or less. The lower limit of Ti is preferably 0.01% or more, and more preferably 0.05% or more.
(Nb:0~2.00%)
NbはB粒界占有率を下げるC,Nの固定のために添加してもよい。一方、過剰にNbを添加すると粗大Nb系析出物などが形成し、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Nb含有量の上限値を2.00%とし、好ましくは1.0%以下であり、更に好ましくは0.7%以下とし、更に好ましくは0.5以下である。Nbの好ましい下限は0.01%以上であり、更に好ましくは0.05%以上である。
(Nb: 0-2.00%)
Nb may be added to fix C and N, which lowers the B grain boundary occupancy rate. On the other hand, excessive addition of Nb results in the formation of coarse Nb-based precipitates, which deteriorates corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Nb content is set to 2.00%, preferably 1.0% or less, more preferably 0.7% or less, and further preferably 0.5% or less. The lower limit of Nb is preferably 0.01% or more, and more preferably 0.05% or more.
(Sn:0~2.5%)
Snは、耐食性を向上させるのに有効な元素であるため、含有させてもよい。しかしながら、Snを過剰に含有させると、その効果は飽和し、逆に耐食性と冷間鍛造性、非磁性特性が劣化するおそれがある。そのため、Snを含有させる場合の上限を2.5%とする。より好ましくは、1.0%以下であり、更に好ましくは0.2%以下である。前記効果を発現させるには、Sn量を0.0001%以上が好ましく、0.01%以上とすることが更に好ましい。より好ましくは、0.05%以上である。
(Sn: 0-2.5%)
Sn is an effective element for improving corrosion resistance, so it may be contained. However, if an excessive amount of Sn is contained, the effect is saturated and, conversely, the corrosion resistance, cold forgeability, and non-magnetic properties are deteriorated. Therefore, the upper limit of the Sn content is set to 2.5%, more preferably 1.0% or less, and even more preferably 0.2% or less. In order to realize this, the Sn content is preferably 0.0001% or more, more preferably 0.01% or more, and even more preferably 0.05% or more.
(V:0~2.0%)
VはB粒界占有率を下げるC,Nの固定のために添加してもよい。一方、過剰にVを添加すると粗大V系析出物などが形成し、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、V含有量の上限値を2.0%とし、好ましくは1.0%以下であり、更に好ましくは0.7%以下とし、更に好ましくは0.5以下である。Vの好ましい下限は0.001%である。
(V: 0-2.0%)
V may be added to fix C and N, which lowers the B grain boundary occupancy rate. On the other hand, excessive V addition will form coarse V-based precipitates, which will result in poor corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the V content is set to 2.0%, preferably 1.0% or less, more preferably 0.7% or less, and even more preferably 0.5% or less. The lower limit of V is preferably 0.001%.
(W:0~3.0%)
Wは、耐食性を向上させるのに有効な元素であるため、含有させてもよい。しかしながら、Wを過剰に含有させると、その効果は飽和し、逆に耐食性と冷間鍛造性、非磁性特性が劣化するおそれがある。そのため、Wを含有させる場合の上限を3.0%とする。より好ましくは、2.0%以下であり、更に好ましくは1.5%以下である。前記効果を発現させるには、W量を0.05%以上とすることが好ましい。より好ましくは、0.10%以上である。
(W: 0-3.0%)
W may be contained since it is an effective element for improving corrosion resistance. However, if W is contained in excess, the effect is saturated and, conversely, the corrosion resistance, cold forgeability, and non-magnetic properties are deteriorated. Therefore, the upper limit of the W content is set to 3.0%, more preferably 2.0% or less, and even more preferably 1.5% or less. In order to realize this, the W content is preferably 0.05% or more, and more preferably 0.10% or more.
(Ga:0~0.05%)
Gaは、耐食性を向上させるのに有効な元素であるため、含有させてもよい。しかしながら、Gaを過剰に含有させると、その効果は飽和し、逆に耐食性と冷間鍛造性、非磁性特性が劣化するおそれがある。そのため、Gaを含有させる場合の上限を、0.05%とする。前記効果を発現させるには、Ga量を0.0004%以上とすることが好ましい。
(Ga: 0-0.05%)
Ga is an effective element for improving corrosion resistance, so it may be contained. However, if Ga is contained in excess, the effect is saturated and, conversely, the corrosion resistance, cold forgeability, and non-magnetic properties are deteriorated. Therefore, the upper limit of Ga content is set to 0.05%. In order to obtain the above-mentioned effect, the Ga content is preferably set to 0.0004% or more.
(Co:0~2.5%)
Coは、耐食性を向上させる効果を有するため、含有させてもよい。しかしながら、Coを過剰に含有させると、その効果は飽和し、逆に耐食性と冷間鍛造性、非磁性特性が劣化するおそれがある。そのため、Coを含有させる場合の上限を2.5%とする。より好ましくは、1.0%以下であり、更に好ましくは0.8%以下である。前記効果を発現させるには、Co量を0.05%以上とすることが好ましく、0.10%以上含有させることがより好ましい。
(Co: 0-2.5%)
Co may be contained since it has the effect of improving corrosion resistance. However, if an excessive amount of Co is contained, the effect becomes saturated and there is a risk that the corrosion resistance, cold forgeability, and non-magnetic properties may be deteriorated. Therefore, the upper limit of Co content is set to 2.5%, more preferably 1.0% or less, and further preferably 0.8% or less. The Co content is preferably 0.05% or more, and more preferably 0.10% or more.
(Sb:0~2.5%)
Sbは、耐食性を向上させる効果を有するため、含有させてもよい。しかしながら、Sbを過剰に含有させると、その効果は飽和し、逆に耐食性と冷間鍛造性、非磁性特性が劣化するおそれがある。そのため、Sbを含有させる場合の上限を2.5%とする。より好ましくは、1.0%以下であり、更に好ましくは0.8%以下である。前記効果を発現させるには、Sb量を0.01%以上とすることが好ましく、0.05%以上含有させることがより好ましい。
(Sb: 0-2.5%)
Sb may be contained since it has the effect of improving corrosion resistance. However, if an excessive amount of Sb is contained, the effect becomes saturated and there is a risk that the corrosion resistance, cold forgeability, and non-magnetic properties may be deteriorated. Therefore, the upper limit of Sb content is set to 2.5%, more preferably 1.0% or less, and further preferably 0.8% or less. The Sb content is preferably 0.01% or more, and more preferably 0.05% or more.
(Ta:0~2.5%)
TaはB粒界占有率を下げるC,Nの固定のために添加してもよい。一方、過剰にTaを添加すると粗大Ta系析出物などが形成し、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Ta含有量の上限値を2.5%とし、好ましくは1.0%以下であり、更に好ましくは0.7%以下とし、更に好ましくは0.5%以下である。Taの好ましい下限は0.01%である。
(Ta: 0-2.5%)
Ta may be added to fix C and N, which lowers the B grain boundary occupancy rate. On the other hand, excessive Ta addition will form coarse Ta-based precipitates, which will result in poor corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Ta content is set to 2.5%, preferably 1.0% or less, more preferably 0.7% or less, and even more preferably 0.5% or less. The preferred lower limit of Ta is 0.01%.
(Ca:0~0.05%)
Caは脱酸のため必要に応じて含有させてよい。一方、過剰にCaを添加すると粗大Ca系介在物などが形成し、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Ca含有量の上限値を0.05%とし、好ましくは0.010%以下であり、更に好ましくは0.005%以下である。Caの好ましい下限は0.0002%である。
(Ca: 0-0.05%)
Ca may be added as necessary for deoxidization. On the other hand, excessive addition of Ca forms coarse Ca-based inclusions, which deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. The upper limit of the Ca content is 0.05%, preferably 0.010% or less, and more preferably 0.005% or less. The lower limit of Ca is preferably 0.0002%.
(Mg:0~0.012%)
Mgは脱酸のため必要に応じて含有させてよい。一方、過剰にMgを添加すると粗大Mg系介在物などが形成し、冷間鍛造性と耐水素脆化特性が劣化する。そのため、Mg含有量の上限値を0.012%とし、好ましくは0.010%以下であり、更に好ましくは0.005%以下である。Mgの好ましい下限は0.0002%である。
(Mg: 0-0.012%)
Mg may be added as necessary for deoxidization. On the other hand, excessive addition of Mg forms coarse Mg-based inclusions, which deteriorates cold forgeability and hydrogen embrittlement resistance. The upper limit of the Mg content is 0.012%, preferably 0.010% or less, and more preferably 0.005% or less. The lower limit of Mg is preferably 0.0002%.
(Zr:0~0.012%)
Zrは脱酸のため必要に応じて含有させてよい。一方、過剰にZrを添加すると粗大Zr系介在物などが形成し、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Zr含有量の上限値を0.012%とし、好ましくは0.010%以下であり、更に好ましくは0.005%以下である。Zrの好ましい下限は0.0002%である。
(Zr: 0-0.012%)
Zr may be added as necessary for deoxidization. On the other hand, excessive addition of Zr causes the formation of coarse Zr-based inclusions, which deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. The upper limit of the Zr content is 0.012%, preferably 0.010% or less, and more preferably 0.005% or less. The lower limit of Zr is preferably 0.0002%.
(REM:0~0.05%)
REMは脱酸のため必要に応じて含有させてよい。一方、過剰にREMを添加すると粗大REM系介在物などが形成し、耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、REM含有量の上限値を0.05%とし、好ましくは0.010%以下であり、更に好ましくは0.005%以下である。REMの好ましい下限は0.0002%である。
(REM: 0-0.05%)
REM may be added as necessary for deoxidization. However, excessive addition of REM will cause the formation of coarse REM inclusions, which will deteriorate the corrosion resistance, cold forgeability, and non-magnetic properties. The upper limit of the content is set to 0.05%, preferably 0.010% or less, and more preferably 0.005% or less. The preferable lower limit of REM is 0.0002%.
(Pb:0~0.30%)
Pbは切削性を高める元素であり必要に応じて含有させてよい。一方、過剰にPbを添加すると耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Pb含有量の上限値を0.30%とし、好ましくは0.10%以下であり、更に好ましくは0.05%以下である。Pbの好ましい下限は0.0001%である。
(Pb: 0-0.30%)
Pb is an element that enhances machinability and may be contained as necessary. On the other hand, excessive addition of Pb deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Pb content is set to 0. The Pb content is preferably 0.30%, more preferably 0.10% or less, and even more preferably 0.05% or less. The lower limit of Pb is preferably 0.0001%.
(Se:0~0.80%)
Seは切削性を高める元素であり必要に応じて含有させてよい。一方、過剰にSeを添加すると耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Se含有量の上限値を0.80%とし、好ましくは0.1%以下であり、更に好ましくは0.05%以下である。Seの好ましい下限は0.0001%である。
(Se: 0-0.80%)
Se is an element that enhances machinability and may be contained as necessary. On the other hand, excessive addition of Se deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Se content is set to 0. The content of Se is preferably 0.80%, more preferably 0.1% or less, and even more preferably 0.05% or less. The lower limit of Se is preferably 0.0001%.
(Te:0~0.30%)
Teは切削性を高める元素であり必要に応じて含有させてよい。一方、過剰にTeを添加すると耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Te含有量の上限値を0.30%とし、好ましくは0.1%以下であり、更に好ましくは0.05%以下である。Teの好ましい下限は0.0001%である。
(Te: 0-0.30%)
Te is an element that enhances machinability and may be contained as necessary. On the other hand, excessive addition of Te deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Te content is set to 0. The content of Te is preferably 0.30%, more preferably 0.1% or less, and even more preferably 0.05% or less. The lower limit of Te is preferably 0.0001%.
(Bi:0~0.50%)
Biは切削性を高める元素であり必要に応じて含有させてよい。一方、過剰にBiを添加すると耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、Bi含有量の上限値を0.50%とし、好ましくは0.1%以下であり、更に好ましくは0.05%以下である。Biの好ましい下限は0.0001%である。
(Bi: 0-0.50%)
Bi is an element that enhances machinability and may be contained as necessary. On the other hand, excessive addition of Bi deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the Bi content is set to 0. The Bi content is preferably 0.50%, more preferably 0.1% or less, and even more preferably 0.05% or less. The lower limit of Bi is preferably 0.0001%.
(S:0~0.50%)
Sは切削性を高める元素であり必要に応じて含有させてよい。一方、過剰にSを添加すると耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、S含有量の上限値を0.50%とし、好ましくは0.1%以下であり、更に好ましくは0.05%以下である。Sの好ましい下限は0.0001%である。なお、Sは製鋼原料から混入する不純物として、通常は鋼中に含有している。
(S: 0-0.50%)
S is an element that enhances machinability and may be contained as necessary. On the other hand, excessive addition of S deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the S content is set to 0. The content of S is set to 50%, preferably 0.1% or less, and more preferably 0.05% or less. The preferred lower limit of S is 0.0001%. S is an impurity that is mixed in from the steelmaking raw materials. It is usually contained in steel.
(P:0~0.30%)
Pは切削性を高める元素であり必要に応じて含有させてよい。一方、過剰にPを添加すると耐食性と冷間鍛造性、非磁性特性が劣化する。そのため、P含有量の上限値を0.30%とし、好ましくは0.1%以下であり、更に好ましくは0.05%以下である。Pの好ましい下限は0.0001%である。
(P: 0-0.30%)
P is an element that enhances machinability and may be contained as necessary. On the other hand, excessive addition of P deteriorates the corrosion resistance, cold forgeability, and non-magnetic properties. Therefore, the upper limit of the P content is set to 0. The P content is preferably 0.30%, more preferably 0.1% or less, and even more preferably 0.05% or less. The lower limit of P is preferably 0.0001%.
<第1~第3発明に共通>
《式(a)のA値》
非特許文献1に記載のMd30の式をベースとし、下記式(a)を導入した。
A値=551-462(C+N)-9.2Si―8.1Mn―29(Ni+Cu)-13.7Cr―18.5Mo (a)
式(a)中の元素記号は、当該元素の鋼中における含有量(質量%)を意味する。また、式(a)中の元素の含有量が0%である場合は、該当記号箇所には「0」を代入して算出する。上記式(a)は、非特許文献1に記載のMd30の式から、Nbの項を削除したものに相当する。Nbの項を削除した理由は、Nbの添加割合が小さく、Md30へのその寄与度が小さいためである。
第1~第3発明においては、上記式(a)で示されるA値が-100以下である。A値を-100以下とすることにより、加工誘起マルテンサイトの生成を抑制し、加工硬化を低減させることで、軟質化し、また割れ発生を抑制するので冷間鍛造性が向上する。さらに第1発明はミクロひずみの低減と耐水素脆化特性が向上するとの効果を得ることができる。第2発明は軟質化することで切削抵抗が低減し、切削性が向上する。耐水素脆化特性については、破壊起点の加工誘起マルテンサイトが低減するため、耐水素脆化特性が改善する。第3発明は非磁性特性が向上するとの効果を得ることができる。
<Common to the first to third inventions>
"A value of formula (a)"
Based on the formula for Md30 described in Non-Patent Document 1, the following formula (a) was introduced.
A value=551-462(C+N)-9.2Si-8.1Mn-29(Ni+Cu)-13.7Cr-18.5Mo (a)
The element symbol in formula (a) means the content (mass%) of the element in the steel. When the content of an element in formula (a) is 0%, the corresponding symbol is substituted with "0" for the calculation. The above formula (a) corresponds to the formula of Md30 described in Non-Patent Document 1 with the Nb term deleted. The reason for deleting the Nb term is that the addition rate of Nb is small and its contribution to Md30 is small.
In the first to third inventions, the A value shown in the above formula (a) is -100 or less. By making the A value -100 or less, the formation of processing-induced martensite is suppressed, and work hardening is reduced, resulting in softening and suppressing the occurrence of cracks, thereby improving cold forgeability. Furthermore, the first invention can obtain the effect of reducing microstrain and improving hydrogen embrittlement resistance. The second invention can obtain the effect of reducing cutting resistance and improving machinability by softening. As for hydrogen embrittlement resistance, processing-induced martensite at the fracture origin is reduced, improving hydrogen embrittlement resistance. The third invention can obtain the effect of improving non-magnetic properties.
《第1~第3発明の鋼材の品質》
本発明のステンレス鋼、特に棒状鋼材は、上記成分組成と、さらに第1発明は鋼材表層~D/4のミクロひずみを具備する結果として、第2発明はホウ化物としての析出B量、硫化物のアスペクト比を具備する結果として、第3発明は鋼材のB粒界占有率を具備する結果として、以下の品質を実現することができる。
<Quality of the steel materials according to the first to third inventions>
The stainless steel of the present invention, particularly the bar-shaped steel material, can achieve the following qualities as a result of having the above-mentioned component composition, and further as a result of the first invention having a microstrain of the steel material surface layer to D/4, as a result of the second invention having an amount of precipitated B as borides and an aspect ratio of sulfides, and as a result of the third invention having a B grain boundary occupancy rate of the steel material.
<第1~第3発明に共通>
引張強さが700MPa以下のステンレス鋼とすることができる。
<第1~第3発明に共通>
限界圧縮率が60%以上のステンレス鋼とすることができる。ここで、限界圧縮率の評価については、テストピースの形状、圧縮試験の内容、限界圧縮率の定義のいずれも、前述のとおりの方法を用いるものとする。
<Common to the first to third inventions>
It may be stainless steel having a tensile strength of 700 MPa or less.
<Common to the first to third inventions>
The stainless steel may have a limit compression ratio of 60% or more. Here, for the evaluation of the limit compression ratio, the shape of the test piece, the content of the compression test, and the definition of the limit compression ratio are all the same as those described above.
<第3発明>
孔食電位が0.05V以上のステンレス鋼とすることができる。
<Third Invention>
The material may be stainless steel having a pitting potential of 0.05V or more.
<第3発明>
冷間加工後の比透磁率が1.10以下であるステンレス鋼とすることができる。
ここで、上記冷間加工は、冷間加工率(減面率)が80%である。
<Third Invention>
The stainless steel may have a relative magnetic permeability of 1.10 or less after cold working.
Here, the cold working has a cold working rate (area reduction rate) of 80%.
《第3発明の鋼材の製造方法》
以下、第3発明の鋼材の製造方法について説明する。
<<Method of manufacturing steel material according to the third invention>>
The method for producing the steel material according to the third invention will now be described.
<第3発明>
第3発明のステンレス鋼、特に棒状鋼材を製造する上で、素材の加熱や熱間圧延(傾斜圧延やBD、棒状圧延など)、熱処理、酸洗などを施すことが好ましいが、特に、粗圧延入側温度と粗圧延スタンド間平均時間を制御し、不働態化処理を施すことが好適である。
<Third Invention>
In producing the stainless steel of the third invention, particularly a bar-shaped steel material, it is preferable to subject the material to heating, hot rolling (tilt rolling, BD, bar rolling, etc.), heat treatment, pickling, etc., but it is particularly preferable to control the rough rolling entry temperature and the average time between rough rolling stands and to perform a passivation treatment.
鋼材の粗圧延入側温度を1000~1400℃に特定した上で、圧延素材の粗圧延スタンド間平均時間を0.01~30秒の範囲内とする。粗圧延入側温度が1000~1300℃の範囲内、粗圧延スタンド間平均時間が0.03~10秒の範囲内であるとより好ましい。粗圧延入側温度について更に好ましくは1050~1300℃であり、更に好ましくは1100~1300℃である。粗圧延スタンド間平均時間について更に好ましくは0.05~5秒であり、更に好ましくは0.1~2秒である。粗圧延入側温度が1000℃未満であると、熱間圧延中に鋼材へのひずみが累積し、粒内にB系析出物が生成し、B粒界占有率が小さくなるため、耐食性と冷間鍛造性、非磁性特性が劣化する。粗圧延入側温度が1400℃を超えると粒界に存在しているBが粒内へ拡散し、圧延中に粒内B析出物として生成し、B粒界占有率が小さくなる。また、高温加熱によって鋼材の酸化による歩留まり低下が生じ、あるいは、通材中に鋼材がクリープ変形し圧延不良となる。また、粗圧延スタンド間平均時間が0.01秒未満であると、熱間圧延中に鋼材へのひずみが累積し、粒内にB系析出物が生成し、B粒界占有率が小さくなるため、耐食性と冷間鍛造性、非磁性特性が劣化する。粗圧延スタンド間平均時間が30秒を超えると、粒界に存在しているBが粒内へ拡散し、圧延中に粒内B析出物として生成し、B粒界占有率が小さくなる。また、高温加熱によって鋼材の酸化による歩留まり低下が生じ、あるいは、通材中に鋼材がクリープ変形し圧延不良となる。 The rough rolling entry temperature of the steel material is specified to be 1000 to 1400°C, and the rough rolling inter-stand average time of the rolling material is set to be within the range of 0.01 to 30 seconds. It is more preferable that the rough rolling entry temperature is within the range of 1000 to 1300°C and the rough rolling inter-stand average time is within the range of 0.03 to 10 seconds. The rough rolling entry temperature is more preferably 1050 to 1300°C, and even more preferably 1100 to 1300°C. The rough rolling inter-stand average time is more preferably 0.05 to 5 seconds, and even more preferably 0.1 to 2 seconds. If the rough rolling entry temperature is less than 1000°C, strain accumulates in the steel material during hot rolling, B-based precipitates are formed within the grains, and the B grain boundary occupancy rate decreases, resulting in deterioration of corrosion resistance, cold forgeability, and non-magnetic properties. If the rough rolling entry temperature exceeds 1400°C, the B present at the grain boundaries diffuses into the grains and forms as intragranular B precipitates during rolling, resulting in a small B grain boundary occupancy rate. In addition, high-temperature heating causes the steel material to oxidize, resulting in a decrease in yield, or the steel material creeps during passage, resulting in poor rolling. In addition, if the rough rolling stand-to-stand average time is less than 0.01 seconds, strain accumulates in the steel material during hot rolling, B-based precipitates form within the grains, resulting in a small B grain boundary occupancy rate, resulting in poor corrosion resistance, cold forgeability, and non-magnetic properties. If the rough rolling stand-to-stand average time exceeds 30 seconds, the B present at the grain boundaries diffuses into the grains and forms as intragranular B precipitates during rolling, resulting in a small B grain boundary occupancy rate. In addition, high-temperature heating causes the steel material to oxidize, resulting in a decrease in yield, or the steel material creeps during passage, resulting in poor rolling.
上記条件で制御された圧延材を熱処理し、表面スケールを除去した後に不働態化処理を施すと、粒界Cr系析出物によるCr欠乏領域に対し不働態化を促進し耐食性が向上する。また、上記条件の圧延-熱処理材では、粒界での塑性変形が容易となり冷間鍛造性が向上し、粒界での局所変形が抑制され磁性相の加工誘起α’マルテンサイトの生成を抑制し非磁性を保つ。ここで不働態化処理は素材を硝酸などの溶液へ浸漬する処理であり、単独処理および酸性工程の内の1処理であってもよい。これはステンレス鋼(特に棒状鋼材)への処理にて効果を示し、また、当該棒状鋼材に二次加工(引抜、鍛造、切削など)された製品への処理においても同様の効果を示す。 When the rolled material controlled under the above conditions is heat-treated and the surface scale is removed, the passivation of the Cr-deficient regions due to grain boundary Cr-based precipitates is promoted, improving corrosion resistance. In addition, in the rolled and heat-treated material under the above conditions, plastic deformation at the grain boundaries is facilitated, improving cold forgeability, and local deformation at the grain boundaries is suppressed, suppressing the formation of processing-induced α' martensite in the magnetic phase, thereby maintaining non-magnetic properties. Here, the passivation treatment is a process in which the material is immersed in a solution such as nitric acid, and may be a single treatment or one of the acidic processes. This is effective when treating stainless steel (especially bar-shaped steel), and also has the same effect when treating products that have been secondary processed (drawn, forged, cut, etc.) from the bar-shaped steel.
<第3発明>
(実施例3-1)
鋼の溶製の際には、ステンレス鋼の安価な溶製プロセスであるAOD溶製を想定し、100kgの真空溶解炉にて溶解し、直径180mmの鋳片に鋳造した。その後、下記の製造条件により直径20.0mmのステンレス棒状鋼材とし表1~表2に示す化学成分を有する棒状鋼材を製造した。表1~表5において、第3発明範囲から外れる項目、第3発明の好適な製造条件から外れる項目について、下線を付している。
<Third Invention>
(Example 3-1)
The steel was produced assuming AOD production, an inexpensive process for producing stainless steel, by melting the steel in a 100 kg vacuum melting furnace and casting it into a slab with a diameter of 180 mm. Then, stainless steel bars with a diameter of 20.0 mm and the chemical compositions shown in Tables 1 and 2 were produced under the following production conditions. In Tables 1 to 5, items outside the range of the third invention and items outside the preferred production conditions of the third invention are underlined.
鋳造した鋳片を加熱・傾斜圧延・インライン熱処理を行い、粗圧延入側温度を1130℃に調整し、粗圧延を行い、また、粗圧延のスタンド間平均時間は1.8sとし、その後、引き続き棒線圧延を行った後、溶体化処理として1100℃×30分(水冷)の熱処理を施し、酸洗し、直径20.0mmの棒状鋼材を作製した。この棒状鋼材(φ20mm)から、耐食性評価用にφ20×30mmをL断面採取し、端面拘束圧縮試験用にφ8×12mmの試験片を鋼材C断面のD(直径)/4部位置からL方向を12mm長とし採取した。 The cast slab was heated, tilt rolled, and inline heat treated, the rough rolling entry temperature was adjusted to 1130°C, and rough rolling was performed. The average stand time for rough rolling was 1.8 s. After that, bar wire rolling was performed, followed by heat treatment at 1100°C for 30 minutes (water cooling) as a solution treatment, and pickling to produce a bar-shaped steel material with a diameter of 20.0 mm. From this bar-shaped steel material (φ20 mm), a φ20 x 30 mm L cross section was taken for corrosion resistance evaluation, and a φ8 x 12 mm test piece was taken for end restraint compression testing, with a length of 12 mm in the L direction, from the D (diameter)/4 position of the steel material C cross section.
棒状鋼材のB粒界占有率測定方法については、溶体化処理された棒状鋼材(φ20mm)のL断面を用い、前述のとおりの方法を用いた。耐食性については、直径φ20×30mmの試験片を用い、前述のとおりの方法を用いた。引張強さについては、溶体化処理された棒状鋼材(φ20mm)を用い、通常の方法で評価を行った。冷間鍛造性に関し、限界圧縮率測定方法については、φ8×12mmの試験片を用い、前述のとおりの方法を用いた。冷間加工後の比透磁率の評価方法については、上記の溶体化熱処理された棒状鋼材を断面減少率80%で冷間伸線されたφ9mmの棒状鋼材を用い、前述のとおりの方法を用いた。 The method for measuring the B-grain boundary occupancy rate of the bar-shaped steel material was performed using the L-section of a solution-treated bar-shaped steel material (φ20 mm) and the method described above. For corrosion resistance, a test piece with a diameter of φ20 x 30 mm was used and the method described above was used. For tensile strength, a solution-treated bar-shaped steel material (φ20 mm) was used and evaluated by a normal method. For cold forgeability, a test piece with a diameter of φ8 x 12 mm was used and the method described above was used to measure the limit compression ratio. For evaluation of the relative magnetic permeability after cold working, a bar-shaped steel material with a diameter of φ9 mm was cold-drawn with an area reduction rate of 80% from the above solution-treated bar-shaped steel material and the method described above was used.
B粒界占有率は、15%以上をAA、5%以上15%未満をA、1%以上5%未満をB、1%未満をCとした。
耐食性については、0.20V以上をAA、0.10V以上0.20V未満をA、0.05V以上0.10V未満をB、0.05V未満をCとした。
引張強さについては、500MPa以下をAA、500MPa超620MPa以下をA、620MPa超700MPa以下をB、700MPa超をCとした。
限界圧縮率については、80%以上をAA、70%以上80%未満をA、60%以上70%未満をB、60%未満をCとした。
冷間加工後の比透磁率については、1.03以下をAA、1.03超1.05以下をA、1.05超1.10以下をB、1.10超をCとした。
評価結果を表3、表4に示す。
The B grain boundary occupancy rate was rated as AA when it was 15% or more, A when it was 5% or more and less than 15%, B when it was 1% or more and less than 5%, and C when it was less than 1%.
Regarding corrosion resistance, 0.20V or more was rated as AA, 0.10V or more and less than 0.20V was rated as A, 0.05V or more and less than 0.10V was rated as B, and less than 0.05V was rated as C.
The tensile strength was rated as AA for 500 MPa or less, A for more than 500 MPa and 620 MPa or less, B for more than 620 MPa and 700 MPa or less, and C for over 700 MPa.
The limiting compression ratio was rated as AA for 80% or more, A for 70% or more and less than 80%, B for 60% or more and less than 70%, and C for less than 60%.
With regard to the relative permeability after cold working, 1.03 or less was rated as AA, more than 1.03 and less than 1.05 was rated as A, more than 1.05 and less than 1.10 was rated as B, and more than 1.10 was rated as C.
The evaluation results are shown in Tables 3 and 4.
本発明例No.1~39に記載の棒状鋼材については、第3発明で規定する成分組成とB粒界占有率を有しており、耐食性、引張強さ、限界圧縮率、冷間加工後の比透磁率、のいずれも、AA、A、Bのいずれかであり、良好であった。 The bar-shaped steel materials described in invention examples No. 1 to 39 have the composition and B grain boundary occupancy rate specified in the third invention, and the corrosion resistance, tensile strength, limit compression ratio, and relative magnetic permeability after cold working were all either AA, A, or B, which were good.
一方、比較例No.40~54については、いずれかの成分が第3発明範囲を外れており、B粒界占有率が第3発明範囲から外れ、結果として、耐食性、引張強さ、限界圧縮率、冷間加工後の比透磁率、のいずれもCであった。 On the other hand, for Comparative Examples No. 40 to 54, any of the components was outside the range of the third invention, and the B grain boundary occupancy rate was outside the range of the third invention, and as a result, the corrosion resistance, tensile strength, limit compression ratio, and relative permeability after cold working were all C.
(実施例3-2)
成分組成として表1の鋼種Pを用い、粗圧延入側温度と粗圧延スタンド間平均時間、耐食性評価時の試験片の不働態化処理ありなし(なしの場合、研磨まま)を変化させた表4に示す条件とし、その他の製造条件は上記実施例3-1と同様として棒状鋼材を製造し、試験片を準備した。
(Example 3-2)
Steel type P in Table 1 was used as the component composition, and the conditions shown in Table 4 were changed by varying the rough rolling entry temperature, the average time between rough rolling stands, and whether or not the test pieces were passivated during corrosion resistance evaluation (if no passivation treatment was performed, the test pieces were as polished). The other manufacturing conditions were the same as those in Example 3-1 above, and bar-shaped steel materials were manufactured and test pieces were prepared.
表5に示すように、本発明例No.55~64は、製造方法が第3発明の好適条件にあり、第3発明で規定する成分組成とB粒界占有率を有しており、耐食性、引張強さ、限界圧縮率、冷間加工後の比透磁率、のいずれも、AA、A、Bのいずれかであり、良好であった。 As shown in Table 5, invention examples No. 55 to 64 were manufactured under the preferred conditions of the third invention, had the component composition and B grain boundary occupancy rate specified in the third invention, and were excellent in corrosion resistance, tensile strength, limit compression ratio, and relative permeability after cold working, all of which were either AA, A, or B.
一方、比較例No.65~68、70については、いずれかの製造条件が第3発明の好適範囲を外れており、B粒界占有率が第3発明範囲から外れ、結果として、耐食性、引張強さ、限界圧縮率、冷間加工後の比透磁率、のいずれもCであった。比較例No.69については、不働態化処理を実施しておらず、Cr欠乏領域での不働態化が促進されず、B粒界占有率が第3発明範囲から外れ、結果として、耐食性、引張強さ、限界圧縮率、冷間加工後の比透磁率、のいずれもCであった。 On the other hand, for Comparative Examples 65-68 and 70, one of the manufacturing conditions was outside the preferred range of the third invention, and the B grain boundary occupancy rate was outside the range of the third invention, resulting in a C for all of the corrosion resistance, tensile strength, limit compression ratio, and relative permeability after cold working. For Comparative Example 69, no passivation treatment was performed, and passivation in the Cr-deficient region was not promoted, resulting in a B grain boundary occupancy rate outside the range of the third invention, resulting in a C for all of the corrosion resistance, tensile strength, limit compression ratio, and relative permeability after cold working.
Claims (17)
C:0.0010~0.15%、
Si:0.01~2.00%、
Mn:0.01~10.00%、
Ni:8.00~30.00%、
Cr:9.0~21.0%、
Mo:0.01~3.00%、
Cu:0.01~5.00%、
N:0.0010~0.10%、
B:0.0001~0.05%、
Al:0~2.0%、
Ti:0~2.00%、
Nb:0~2.00%、
Sn:0~2.5%、
V:0~2.0%、
W:0~3.0%、
Ga:0~0.05%、
Co:0~2.5%、
Sb:0~2.5%、
Ta:0~2.5%、
Ca:0~0.05%、
Mg:0~0.012%、
Zr:0~0.012%、
REM:0~0.05%、
Pb:0~0.30%、
Se:0~0.80%、
Te:0~0.30%、
Bi:0~0.50%、
S:0~0.50%、
P:0~0.30%、
を含有し、残部:Feおよび不純物であり、
下記式(a)で示されるA値が-100以下であり、
B粒界占有率が1%以上であるステンレス鋼。
A値=551-462(C+N)-9.2Si―8.1Mn―29(Ni+Cu)-13.7Cr―18.5Mo (a)
但し、式(a)中の元素記号は、当該元素の鋼中における含有量(質量%)を意味する。また、式(a)中の元素の含有量が0%である場合は、該当記号箇所には「0」を代入して算出する。 The chemical composition, in mass%, is
C: 0.0010-0.15%,
Si: 0.01-2.00%,
Mn: 0.01 to 10.00%,
Ni: 8.00-30.00%,
Cr: 9.0-21.0%,
Mo: 0.01-3.00%,
Cu: 0.01 to 5.00%,
N: 0.0010-0.10%,
B: 0.0001-0.05%,
Al: 0-2.0%,
Ti: 0-2.00%,
Nb: 0 to 2.00%,
Sn: 0 to 2.5%,
V: 0 to 2.0%,
W: 0 to 3.0%,
Ga: 0 to 0.05%,
Co: 0 to 2.5%,
Sb: 0 to 2.5%,
Ta: 0 to 2.5%,
Ca: 0-0.05%,
Mg: 0 to 0.012%,
Zr: 0 to 0.012%,
REM: 0-0.05%,
Pb: 0 to 0.30%,
Se: 0-0.80%,
Te: 0 to 0.30%,
Bi: 0-0.50%,
S: 0-0.50%,
P: 0-0.30%,
and the balance being Fe and impurities;
The A value represented by the following formula (a) is −100 or less,
Stainless steel with a grain boundary occupancy rate of 1% or more.
A value=551-462(C+N)-9.2Si-8.1Mn-29(Ni+Cu)-13.7Cr-18.5Mo (a)
In the formula (a), the symbol of an element means the content (mass%) of the element in the steel. When the content of an element in the formula (a) is 0%, "0" is substituted for the corresponding symbol in the calculation.
A群として、
Al:0.001~2.0%、
Ti:0.01~2.00%、
Nb:0.01~2.00%、
Sn:0.0001~2.5%、
V:0.001~2.0%、
W:0.05~3.0%、
Ga:0.0004~0.05%、
Co:0.05~2.5%、
Sb:0.01~2.5%、および
Ta:0.01~2.5%、
から選択される一種以上、
B群として、
Ca:0.0002~0.05%、
Mg:0.0002~0.012%、
Zr:0.0002~0.012%、および
REM:0.0002~0.05%、
から選択される一種以上、
C群として、
Pb:0.0001~0.30%、
Se:0.0001~0.80%、
Te:0.0001~0.30%、
Bi:0.0001~0.50%、
S:0.0001~0.50%、および
P:0.0001~0.30%、
から選択される一種以上、
のA群~C群の一群以上を含有する、
請求項1に記載のステンレス鋼。 The chemical composition further comprises, in mass %,
As group A,
Al: 0.001-2.0%,
Ti: 0.01-2.00%,
Nb: 0.01-2.00%,
Sn: 0.0001-2.5%,
V: 0.001-2.0%,
W: 0.05-3.0%,
Ga: 0.0004-0.05%,
Co: 0.05-2.5%,
Sb: 0.01 to 2.5%, and Ta: 0.01 to 2.5%,
One or more selected from
As group B,
Ca: 0.0002-0.05%,
Mg: 0.0002-0.012%,
Zr: 0.0002-0.012%, and REM: 0.0002-0.05%,
One or more selected from
As group C,
Pb: 0.0001 to 0.30%,
Se: 0.0001 to 0.80%,
Te: 0.0001 to 0.30%,
Bi: 0.0001 to 0.50%,
S: 0.0001-0.50%, and P: 0.0001-0.30%,
One or more selected from
Contains one or more of groups A to C of
The stainless steel of claim 1.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021199300 | 2021-12-08 | ||
JP2021199300 | 2021-12-08 | ||
JP2022018970 | 2022-02-09 | ||
JP2022018970 | 2022-02-09 | ||
JP2023566088A JPWO2023105852A1 (en) | 2021-12-08 | 2022-08-03 | |
PCT/JP2022/029784 WO2023105852A1 (en) | 2021-12-08 | 2022-08-03 | Stainless steel having excellent cold forgeability, hydrogen embrittlement resistance properties or corrosion resistance and non-magnetism |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023566088A Division JPWO2023105852A1 (en) | 2021-12-08 | 2022-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024129165A true JP2024129165A (en) | 2024-09-26 |
Family
ID=86730064
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023566088A Pending JPWO2023105852A1 (en) | 2021-12-08 | 2022-08-03 | |
JP2024111005A Pending JP2024138419A (en) | 2021-12-08 | 2024-07-10 | Stainless steel with excellent cold forgeability and hydrogen embrittlement resistance |
JP2024111006A Pending JP2024129165A (en) | 2021-12-08 | 2024-07-10 | Stainless steel with excellent cold forgeability, corrosion resistance and non-magnetic properties |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023566088A Pending JPWO2023105852A1 (en) | 2021-12-08 | 2022-08-03 | |
JP2024111005A Pending JP2024138419A (en) | 2021-12-08 | 2024-07-10 | Stainless steel with excellent cold forgeability and hydrogen embrittlement resistance |
Country Status (2)
Country | Link |
---|---|
JP (3) | JPWO2023105852A1 (en) |
WO (1) | WO2023105852A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024123969A (en) * | 2023-03-02 | 2024-09-12 | 日鉄ステンレス株式会社 | Hot-rolled austenitic stainless steel and its manufacturing method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4018021B2 (en) * | 2003-04-10 | 2007-12-05 | 新日鐵住金ステンレス株式会社 | Nonmagnetic sulfur free-cutting stainless steel wire with excellent cold-drawing workability and corrosion resistance |
JP2008208430A (en) * | 2007-02-27 | 2008-09-11 | Nippon Steel & Sumikin Stainless Steel Corp | Soft austenitic stainless steel and manufacturing method therefor |
JP4949100B2 (en) * | 2007-03-27 | 2012-06-06 | 新日鐵住金ステンレス株式会社 | Austenitic stainless free-cutting steel with excellent cold forgeability and machinability |
JP2017160520A (en) * | 2016-03-11 | 2017-09-14 | 日新製鋼株式会社 | Austenitic stainless steel |
JP6772076B2 (en) * | 2017-01-05 | 2020-10-21 | 日鉄ステンレス株式会社 | Manufacturing method of non-magnetic austenitic stainless steel sheet and non-magnetic member |
-
2022
- 2022-08-03 WO PCT/JP2022/029784 patent/WO2023105852A1/en active Application Filing
- 2022-08-03 JP JP2023566088A patent/JPWO2023105852A1/ja active Pending
-
2024
- 2024-07-10 JP JP2024111005A patent/JP2024138419A/en active Pending
- 2024-07-10 JP JP2024111006A patent/JP2024129165A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JPWO2023105852A1 (en) | 2023-06-15 |
WO2023105852A1 (en) | 2023-06-15 |
JP2024138419A (en) | 2024-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2932943B2 (en) | High corrosion resistance and high strength steel for springs | |
JP6302722B2 (en) | High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics | |
JP6004653B2 (en) | Ferritic stainless steel wire, steel wire, and manufacturing method thereof | |
JPWO2015190422A1 (en) | High-strength duplex stainless steel wire, high-strength duplex stainless steel wire and its manufacturing method, and spring parts | |
JP6776136B2 (en) | Duplex stainless steel wire for heat-resistant bolts and heat-resistant bolt parts using the duplex stainless steel wire | |
JPWO2002048416A1 (en) | High silicon stainless steel | |
JP6126881B2 (en) | Stainless steel wire excellent in torsion workability and manufacturing method thereof, and stainless steel wire rod and manufacturing method thereof | |
JP6244701B2 (en) | High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same | |
JP5154122B2 (en) | High strength stainless steel and high strength stainless steel wire using the same | |
JP2017141502A (en) | Rolling bar wire for cold forging refined article | |
JP2024129165A (en) | Stainless steel with excellent cold forgeability, corrosion resistance and non-magnetic properties | |
JP6461672B2 (en) | Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering | |
JPWO2018061101A1 (en) | steel | |
JP2008156678A (en) | High-strength bolt excellent in delayed fracture resistance and corrosion resistance | |
JP3999457B2 (en) | Wire rod and steel bar excellent in cold workability and manufacturing method thereof | |
JP2841468B2 (en) | Bearing steel for cold working | |
JP7504672B2 (en) | Stainless steel wire, its manufacturing method, and spring parts | |
JPS6137953A (en) | Nonmagnetic steel wire rod and its manufacture | |
JP2019218584A (en) | bolt | |
CN118318056A (en) | Stainless steel excellent in cold forging property, hydrogen embrittlement resistance, corrosion resistance and non-magnetic property | |
JP7534595B2 (en) | Manufacturing method of wear-resistant steel | |
WO1987004731A1 (en) | Corrosion resistant stainless steel alloys having intermediate strength and good machinability | |
JP2013185204A (en) | Bar steel for case hardening excellent in cold workability | |
JPH09287056A (en) | Wire rod and bar steel excellent on cold forgeability and their production | |
JPH07150244A (en) | Production of ferritic stainless steel for cold working |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240710 |