[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2024104577A - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
JP2024104577A
JP2024104577A JP2023008872A JP2023008872A JP2024104577A JP 2024104577 A JP2024104577 A JP 2024104577A JP 2023008872 A JP2023008872 A JP 2023008872A JP 2023008872 A JP2023008872 A JP 2023008872A JP 2024104577 A JP2024104577 A JP 2024104577A
Authority
JP
Japan
Prior art keywords
substrate
voltage
chuck plate
chuck
attracting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023008872A
Other languages
Japanese (ja)
Inventor
俊彦 中畑
Toshihiko Nakahata
真也 中村
Shinya Nakamura
英之 三浦
Hideyuki Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2023008872A priority Critical patent/JP2024104577A/en
Publication of JP2024104577A publication Critical patent/JP2024104577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Surface Heating Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate processing method that can heat a substrate to an even prescribed temperature by electrostatically attracting the substrate over the entire surface thereof without causing damage or misalignment of the substrate Sw in a relatively large size.
SOLUTION: A substrate Sw is installed on a surface of a chuck plate 52 heated to a prescribed temperature in a vacuum chamber, the voltage is applied to electrodes 53a-53d and the substrate is electrostatically attracted to the surface of the chuck plate. The voltage applied to the electrodes necessary for electrostatically attracting the substrate to the surface of the chuck plate over the entire surface thereof is the attraction voltage. When the temperature difference between the chuck plate and the substrate before the substrate is electrostatically attracted to the surface of the chuck plate exceeds a preset range, the attraction voltage is applied in a pulsed form for a predetermined time.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、基板処理方法及び基板処理装置に関し、より詳しくは、真空雰囲気の真空チャンバ内で所定温度に加熱されたチャックプレートの表面に被処理基板を設置し、電極に電圧を印加してチャックプレートの表面に被処理基板を静電吸着させたときに、被処理基板がその全面に亘って静電吸着されて可及的速やかに均等な温度に加熱されるようにした基板処理方法及び基板処理装置に関する。 The present invention relates to a substrate processing method and substrate processing apparatus, and more specifically, to a substrate processing method and substrate processing apparatus in which a substrate to be processed is placed on the surface of a chuck plate heated to a predetermined temperature in a vacuum chamber in a vacuum atmosphere, and when a voltage is applied to an electrode to electrostatically attract the substrate to the surface of the chuck plate, the substrate to be processed is electrostatically attracted over its entire surface and heated to a uniform temperature as quickly as possible.

半導体装置の製造工程には、シリコンウエハまたはシリコンカーバイトウエハなどの被処理基板(以下、「基板」という)の片面に対して成膜処理やドライエッチング処理といった各種の処理を施す工程があり、このような処理工程は、真空雰囲気が形成された真空処理装置の真空チャンバ内で実施される。真空チャンバ内には、通常、静電チャックを持つステージが設けられている。そして、静電チャックを構成するチャックプレートの表面に基板を設置した後、当該チャックプレートに組み付けた吸着用の電極に電圧を印加してチャックプレートの表面に静電吸着し、基板を位置決め保持した状態で各種の処理が施される。また、処理工程によっては、ステージにホットプレートなどの加熱手段を組み付け、基板をチャックプレートからの熱伝導で所定温度(例えば、300℃)に加熱制御しながら処理を施すことがある。 The manufacturing process of semiconductor devices includes a process of performing various processes such as film formation and dry etching on one side of a substrate to be processed (hereinafter referred to as "substrate") such as a silicon wafer or silicon carbide wafer, and such processes are performed in a vacuum chamber of a vacuum processing device in which a vacuum atmosphere is formed. A stage with an electrostatic chuck is usually provided in the vacuum chamber. Then, after placing the substrate on the surface of a chuck plate that constitutes the electrostatic chuck, a voltage is applied to an adhesion electrode attached to the chuck plate to electrostatically adhere the substrate to the surface of the chuck plate, and various processes are performed while the substrate is positioned and held. In some processing steps, a heating means such as a hot plate is attached to the stage, and the substrate is heated and controlled to a predetermined temperature (e.g., 300°C) by thermal conduction from the chuck plate while processing is performed.

ここで、チャックプレートの表面に設置したときの(処理前の)基板には反りや歪を生じているものがある。このことから、基板を静電吸着するときに電極に対する印加電圧を段階的に増加させつつ矩形パルス状に電圧を印加することで基板をその全面に亘って静電吸着させ、その上で基板を所定温度に加熱する基板処理方法が知られている(例えば、特許文献1参照)。このように基板を静電吸着させた後に基板を加熱するのでは、真空チャンバ内で処理を開始するまでの時間が長くなるという問題がある。そこで、予めチャックプレートを所定温度に加熱し、この加熱されたチャックプレートの表面に基板を設置して静電吸着させる際に、電極に対する印加電圧を段階的に増加させつつ矩形パルス状に電圧を印加するという上記従来例を適用することが考えられる。 Here, some substrates (before processing) may be warped or distorted when placed on the surface of the chuck plate. For this reason, a substrate processing method is known in which, when electrostatically adsorbing a substrate, the voltage applied to the electrodes is increased stepwise while a rectangular pulse voltage is applied to electrostatically adsorb the substrate over its entire surface, and the substrate is then heated to a predetermined temperature (see, for example, Patent Document 1). If the substrate is heated after being electrostatically adsorbed in this way, there is a problem that it takes a long time before processing can begin in the vacuum chamber. Therefore, it is conceivable to apply the above-mentioned conventional example in which the chuck plate is heated to a predetermined temperature in advance, and when the substrate is placed on the surface of the heated chuck plate and electrostatically adsorbed, the voltage applied to the electrodes is increased stepwise while a rectangular pulse voltage is applied.

このような手法では、基板サイズが小さい場合(例えば、8インチ)には、基板を静電吸着させながらその全面に亘って均等に加熱できる一方で、基板サイズが大きくなると(例えば、φ12インチ)、基板の破損や位置ずれを招く場合があることが判明した。そこで、本願の発明者らは、鋭意研究を重ね、次のことを知見するのに至った。即ち、吸着開始当初の吸着電圧が比較的低電圧である状態では、基板変形の影響を大きく受けて基板の大部分が静電吸着されず、単位時間あたりの基板の昇温速度が遅い。そして、吸着電圧を高くすると、静電吸着される基板の部分が増加して基板も昇温するが、このとき、チャックプレートの表面に基板を静電吸着させる前のチャックプレートと基板との温度差によっては、瞬時に基板面内に大きな温度むらが生じ、これに起因して基板の破損や当該基板がチャックプレート上で跳ねて位置ずれを起こす場合があることを知見するのに至った。 In this method, when the substrate size is small (e.g., 8 inches), the substrate can be electrostatically attracted and heated evenly over its entire surface, but when the substrate size is large (e.g., φ12 inches), it has been found that this may cause damage to the substrate or misalignment. The inventors of the present application have conducted extensive research and have discovered the following. That is, when the chucking voltage at the beginning of chucking is relatively low, most of the substrate is not electrostatically attracted due to the large influence of substrate deformation, and the substrate temperature rise rate per unit time is slow. When the chucking voltage is increased, the portion of the substrate that is electrostatically attracted increases and the substrate also rises in temperature, but at this time, depending on the temperature difference between the chuck plate and the substrate before the substrate is electrostatically attracted to the surface of the chuck plate, large temperature unevenness is instantly generated within the substrate surface, which may cause damage to the substrate or the substrate to bounce on the chuck plate and become misaligned.

特開2001-152335号公報JP 2001-152335 A

本発明は、以上の知見に基づいてなされたものであり、比較的基板サイズが大きい場合でも、被処理基板の破損や位置ずれを招くことなく、可及的速やかに被処理基板をその全面に亘って静電吸着させて均等な所定温度まで加熱できるようにした基板処理方法及び基板処理装置を提供することをその課題とするものである。 The present invention was made based on the above findings, and its objective is to provide a substrate processing method and substrate processing apparatus that can electrostatically adsorb a substrate to be processed over its entire surface as quickly as possible and heat it uniformly to a predetermined temperature without damaging or misaligning the substrate, even when the substrate size is relatively large.

上記課題を解決するために、本発明は、真空チャンバ内で所定温度に加熱されたチャックプレートの表面に被処理基板を設置し、電極に電圧を印加してチャックプレートの表面に被処理基板を静電吸着させる工程を含む基板処理方法において、チャックプレートの表面に被処理基板をその全面に亘って静電吸着させるのに必要な電極に印加する電圧を吸着電圧とし、チャックプレートの表面に被処理基板を静電吸着させる前のチャックプレートと被処理基板との温度差が予め設定される範囲を超えていると、吸着電圧を所定時間だけパルス状に印加する工程を更に含むことを特徴とする。 In order to solve the above problems, the present invention provides a substrate processing method including the steps of placing a substrate on the surface of a chuck plate heated to a predetermined temperature in a vacuum chamber and applying a voltage to an electrode to electrostatically attract the substrate to the surface of the chuck plate, the method further including the step of applying a pulsed attracting voltage for a predetermined period of time when the temperature difference between the chuck plate and the substrate before electrostatically attracting the substrate to the surface of the chuck plate exceeds a preset range.

本発明によれば、上記従来例のように電極に印加する電圧を段階的に増加させるのではなく、当初から吸着電圧、即ち、被処理基板がチャックプレートの表面にその全面に亘って静電気力で強制的に吸着できる電圧を電極に印加する。そして、チャックプレートと被処理基板との温度差が大きいときだけ(例えば、200℃以上の場合)、吸着開始当初、周波数及び1パルス内における吸着電圧の印加時間を適宜設定して吸着電圧をパルス状に印加する。これにより、比較的基板サイズが大きい場合でも、基板面内での大きな温度むらの発生を抑制しながら、可及的速やかに被処理基板をその全面に亘って静電吸着させて均等な所定温度まで加熱できることが確認された。 According to the present invention, instead of increasing the voltage applied to the electrode stepwise as in the above-mentioned conventional example, an adhesion voltage is applied to the electrode from the beginning, i.e., a voltage that allows the substrate to be forcibly attracted to the surface of the chuck plate by electrostatic force over its entire surface. Then, only when the temperature difference between the chuck plate and the substrate to be processed is large (for example, when the temperature difference is 200°C or higher), the adhesion voltage is applied in pulses at the beginning of adhesion by appropriately setting the frequency and the application time of the adhesion voltage within one pulse. It has been confirmed that this makes it possible to electrostatically attract the substrate to be processed over its entire surface as quickly as possible and heat it to a uniform predetermined temperature while suppressing the occurrence of large temperature unevenness within the substrate surface, even when the substrate size is relatively large.

本発明においては、前記チャックプレートに前記被処理基板を静電吸着させた後にその静電吸着を解除するときに、前記吸着電圧と同等の逆電圧を同等の周期及び印加時間でパルス状に印加する工程を更に含むことが好ましい。これにより、真空チャンバ内での処理工程の実施後にステージ上から処理済みの被処理基板を取り出すために、被処理基板の静電吸着を解除したときに当該被処理基板がチャックプレート上で跳ねて位置ずれを起こすといったことが防止できる。 In the present invention, it is preferable to further include a step of applying a pulsed reverse voltage equivalent to the chucking voltage with the same period and application time when releasing the electrostatic chucking of the substrate to be processed after electrostatically chucking the substrate to the chuck plate. This makes it possible to prevent the substrate from bouncing off the chuck plate and becoming displaced when the electrostatic chucking of the substrate to be processed is released in order to remove the processed substrate from the stage after the processing step has been performed in the vacuum chamber.

なお、本発明において、前記チャックプレートがPBN(Pyrolytic Boron Nitride)製のセラミックスプレートであり、当該チャックプレートに一対の電極が埋設されて当該一対の電極間に直流の前記吸着電圧を印加する場合、吸着電圧が0.4kV~0.6kVの範囲であれば、パルス状に吸着電圧を印加するときの周波数を0.25Hz~10Hzの範囲及び1パルス内における吸着電圧の印加時間を2.2秒以下に設定すればよい。他方で、吸着電圧が0.6kV以上であれば、パルス状に吸着電圧を印加するときの周波数を0.2Hz~20Hzの範囲及び1パルス内における吸着電圧の印加時間を1.8秒以下に設定すればよい。 In the present invention, when the chuck plate is a ceramic plate made of PBN (Pyrolytic Boron Nitride), a pair of electrodes is embedded in the chuck plate, and a DC chucking voltage is applied between the pair of electrodes, if the chucking voltage is in the range of 0.4 kV to 0.6 kV, the frequency when the chucking voltage is applied in a pulsed manner may be set to a range of 0.25 Hz to 10 Hz, and the application time of the chucking voltage in one pulse may be set to 2.2 seconds or less. On the other hand, if the chucking voltage is 0.6 kV or more, the frequency when the chucking voltage is applied in a pulsed manner may be set to a range of 0.2 Hz to 20 Hz, and the application time of the chucking voltage in one pulse may be set to 1.8 seconds or less.

また、上記課題を解決するために、本発明は、真空チャンバ内に配置されて被処理基板が設置されるチャックプレートと、チャックプレートに組み付けられる電極に電圧を印加するチャック電源と、チャックプレートを所定温度に加熱する加熱手段とを備え、加熱されたチャックプレートの表面に被処理基板を設置した後に電極に電圧を印加してチャックプレートの表面に被処理基板を静電吸着されるようにした基板処理装置において、チャックプレートの表面に被処理基板を静電吸着させる前のチャックプレートと被処理基板との温度差を測定する測定手段を更に備え、測定手段で測定した温度差が予め設定される範囲を超えていると、チャックプレートの表面に被処理基板をその全面に亘って静電吸着させるのに必要な電極に印加する電圧を吸着電圧とし、チャック電源によって吸着電圧を所定時間だけパルス状に印加するように構成したことを特徴とする。 In order to solve the above problem, the present invention provides a substrate processing apparatus that includes a chuck plate arranged in a vacuum chamber on which a substrate to be processed is placed, a chuck power supply that applies a voltage to an electrode attached to the chuck plate, and a heating means that heats the chuck plate to a predetermined temperature, and that applies a voltage to the electrode after the substrate to be processed is placed on the surface of the heated chuck plate so that the substrate to be processed is electrostatically attracted to the surface of the chuck plate. The apparatus further includes a measuring means that measures the temperature difference between the chuck plate and the substrate to be processed before the substrate to be processed is electrostatically attracted to the surface of the chuck plate, and when the temperature difference measured by the measuring means exceeds a preset range, the voltage applied to the electrode required to electrostatically attract the substrate to the surface of the chuck plate over its entire surface is set as the attraction voltage, and the attraction voltage is applied in pulses by the chuck power supply for a predetermined period of time.

本実施形態の基板処理方法を実施できる基板処理装置を備えるスパッタリング装置の模式断面図。1 is a schematic cross-sectional view of a sputtering apparatus including a substrate processing apparatus capable of carrying out a substrate processing method according to an embodiment of the present invention; 図1のII―II線に沿う断面図2 is a cross-sectional view taken along line II-II of FIG. 電極への電圧印加と基板の温度変化との関係を示すグラフ。6 is a graph showing the relationship between the voltage applied to the electrodes and the temperature change of the substrate.

以下、図面を参照して、被処理基板をφ12インチのシリコンウエハ(以下、「基板Sw」という)、吸着用の電極を双極型のもの、処理工程を真空雰囲気中にてスパッタリング法により成膜するものを例に本発明の基板処理方法及び基板処理装置の実施形態を説明する。 Below, with reference to the drawings, an embodiment of the substrate processing method and substrate processing apparatus of the present invention will be described using as an example a silicon wafer with a diameter of 12 inches (hereinafter referred to as "substrate Sw") as the substrate to be processed, a bipolar electrode for suction, and a processing process in which a film is formed by sputtering in a vacuum atmosphere.

図1を参照して、本実施形態の基板処理装置を備えるスパッタリング装置Smは、真空雰囲気の形成が可能な真空チャンバ1を有する。真空チャンバ1の上面開口にはカソードユニット2が着脱自在に取り付けられている。カソードユニット2は、ターゲット21と、このターゲット21の上方に配置される磁石ユニット22とで構成される。ターゲット21としては、基板Sw表面に成膜しようとする膜に応じて、アルミニウム、銅、チタンやアルミナ製などの公知のものが利用される。ターゲット21は、バッキングプレート21aに取り付けた状態で、そのスパッタ面21bを下方にした姿勢で真空チャンバ1の上壁に設けた真空シール兼用の絶縁体31を介して真空チャンバ1の上部に取り付けられる。 Referring to FIG. 1, the sputtering apparatus Sm equipped with the substrate processing apparatus of this embodiment has a vacuum chamber 1 capable of forming a vacuum atmosphere. A cathode unit 2 is detachably attached to the top opening of the vacuum chamber 1. The cathode unit 2 is composed of a target 21 and a magnet unit 22 arranged above the target 21. The target 21 is made of known materials such as aluminum, copper, titanium, and alumina depending on the film to be formed on the surface of the substrate Sw. The target 21 is attached to the backing plate 21a and is attached to the top of the vacuum chamber 1 with its sputtering surface 21b facing downward via an insulator 31 that also serves as a vacuum seal provided on the upper wall of the vacuum chamber 1.

ターゲット21には、ターゲット種に応じて直流電源や交流電源などから構成されるスパッタ電源21cからの出力21dが接続され、ターゲット種に応じて、例えば負の電位を持つ直流電力や所定周波数の高周波電力(交流電力)が投入される。磁石ユニット22は、ターゲット21のスパッタ面21bの下方空間に磁場を発生させ、スパッタリング時にスパッタ面21bの下方で電離した電子等を捕捉してターゲット21から飛散したスパッタ粒子を効率よくイオン化する公知の閉鎖磁場若しくはカスプ磁場構造を有するものである。真空チャンバ1の側壁にはガス管41が接続され、図外のマスフローコントローラを介して流量制御されたスパッタガスが真空チャンバ1内に導入される。スパッタガスには、真空チャンバ1にプラズマを形成する際に導入されるアルゴンガス等の希ガスだけでなく、酸素ガスや窒素ガスなどの反応ガスも含まれる。真空チャンバ1の側壁にはまた排気口42が開設され、排気口42には、図外のターボ分子ポンプやロータリポンプなどで構成される真空ポンプに通じる排気管43が接続され、真空チャンバ1内を一定速度で真空排気し、スパッタリングによる成膜時には、スパッタガスを導入した状態で真空チャンバ1が所定圧力に保持される。そして、真空チャンバ1の下部にターゲット21に対向させて本実施形態の基板処理装置を構成するステージ5が配置されている。なお、図1中、符号61,62は、防着板である。 The target 21 is connected to an output 21d from a sputtering power supply 21c, which is composed of a DC power supply or an AC power supply depending on the target type, and, for example, DC power with a negative potential or high-frequency power (AC power) of a predetermined frequency is input depending on the target type. The magnet unit 22 has a known closed magnetic field or cusp magnetic field structure that generates a magnetic field in the space below the sputtering surface 21b of the target 21, captures electrons ionized below the sputtering surface 21b during sputtering, and efficiently ionizes sputter particles scattered from the target 21. A gas pipe 41 is connected to the side wall of the vacuum chamber 1, and sputtering gas whose flow rate is controlled via a mass flow controller (not shown) is introduced into the vacuum chamber 1. The sputtering gas includes not only rare gases such as argon gas introduced into the vacuum chamber 1 when forming plasma, but also reactive gases such as oxygen gas and nitrogen gas. An exhaust port 42 is also provided in the side wall of the vacuum chamber 1, and an exhaust pipe 43 is connected to the exhaust port 42, which leads to a vacuum pump such as a turbomolecular pump or rotary pump (not shown), and the vacuum chamber 1 is evacuated at a constant speed. When forming a film by sputtering, the vacuum chamber 1 is maintained at a predetermined pressure with sputtering gas introduced. A stage 5 that constitutes the substrate processing apparatus of this embodiment is disposed at the bottom of the vacuum chamber 1, facing the target 21. In addition, in FIG. 1, reference numerals 61 and 62 denote adhesion prevention plates.

図2も参照して、ステージ5は、真空チャンバ1の下部に設けた絶縁体32を介して設置される、筒状の輪郭を持つ金属製(例えばSUS製)の基台51と、この基台51の上面に設けたチャックプレート52とを有する。基台51には、特に図示して説明しないが、図外のチラーユニットから供給される冷媒を循環させる冷媒循環路が形成され、基板Swを所定温度範囲に制御する際に選択的に基台51を冷却できるようにしている。チャックプレート52はPBN製のセラミックスプレートであり、基台51の上面より一回り小さい外径を有する。チャックプレート52にはまた、静電気力で基板Swを静電吸着するための吸着用の正負一対の電極53a~53dが夫々埋設されている。各対の電極53a~53dは、所定面積の金属板で構成され、電源ケーブル54a,54bを介してチャック電源55a,55bに夫々接続されている。チャック電源55a,55bとしては公知のものが利用でき、特に図示して説明しないが、各対の電極53a~53dに対して任意の波形で所定範囲の直流電圧を印加できる電圧制御回路と、各対の電極53a~53dに逆電圧を印加する逆電圧印加回路とを備える。吸着電圧は、予め実験的に求められ、反りや歪を生じているφ12インチの基板Swをその全面に亘って静電気力で強制的に吸着できる電圧(例えば、0.4kV~1kV)に設定される。 Referring also to FIG. 2, the stage 5 has a base 51 made of metal (e.g., SUS) with a cylindrical outline, which is installed via an insulator 32 provided at the bottom of the vacuum chamber 1, and a chuck plate 52 provided on the upper surface of the base 51. Although not shown or described, the base 51 has a refrigerant circulation path for circulating a refrigerant supplied from a chiller unit not shown, so that the base 51 can be selectively cooled when controlling the substrate Sw to a predetermined temperature range. The chuck plate 52 is a ceramic plate made of PBN and has an outer diameter slightly smaller than the upper surface of the base 51. A pair of positive and negative electrodes 53a to 53d for electrostatically adsorbing the substrate Sw by electrostatic force are also embedded in the chuck plate 52. Each pair of electrodes 53a to 53d is made of a metal plate with a predetermined area, and is connected to chuck power sources 55a and 55b via power cables 54a and 54b, respectively. The chuck power supplies 55a and 55b can be well known and, although not specifically shown or described, are equipped with a voltage control circuit that can apply a DC voltage in a predetermined range with an arbitrary waveform to each pair of electrodes 53a to 53d, and a reverse voltage application circuit that applies a reverse voltage to each pair of electrodes 53a to 53d. The chucking voltage is experimentally determined in advance and is set to a voltage (e.g., 0.4 kV to 1 kV) that can forcibly chucking a warped or distorted φ12 inch substrate Sw over its entire surface with electrostatic force.

基台51とチャックプレート52との間には、例えば窒化アルミニウム製のホットプレート56が介設されている。ホットプレート56には、例えば電気ヒータ等の加熱手段56aが組み込まれ、電気ヒータに通電して所定温度範囲(例えば、100℃~500℃)に加熱できる。この場合、チャックプレート52にヒータを内蔵してチャックプレート52とホットプレート56とを一体に形成することもできる。ホットプレート56にはまた、熱電対などの測定手段としての温度センサ57が組み込まれ、温度センサ57の測温部(図示せず)がチャックプレート52の下面に当接してチャックプレート52の温度を測定できる。なお、特に図示して説明しないが、ステージ5には公知の構造を持つ基板リフト機構が設けられ、図外の搬送ロボットとの間で基板Swの受け渡しができるようにしている。上記スパッタリング装置Smは、マイクロコンピュータ、記憶素子やシーケンサ等を備えた制御ユニットCUを備え、制御ユニットCUは、スパッタ電源21c、チャック電源55a,55b、マスフローコントローラや真空ポンプといった各部品の作動を統括して制御する。詳細は後述するが、制御ユニットCUは、本実施形態の基板処理装置の構成要素ともなり、温度センサ57からの入力に応じてチャック電源55a,55bの各対の電極53a~53dへの電圧の印加も制御する。以下に、上記スパッタリング装置Smを用いて基板Swの下面に所定膜を成膜する場合を例に本実施形態の基板処理方法を説明する。 Between the base 51 and the chuck plate 52, a hot plate 56 made of, for example, aluminum nitride is interposed. A heating means 56a such as an electric heater is incorporated in the hot plate 56, and the electric heater can be energized to heat the plate to a predetermined temperature range (for example, 100°C to 500°C). In this case, the heater can be built into the chuck plate 52 to integrally form the chuck plate 52 and the hot plate 56. A temperature sensor 57 as a measuring means such as a thermocouple is also incorporated in the hot plate 56, and the temperature measuring part (not shown) of the temperature sensor 57 can be abutted against the underside of the chuck plate 52 to measure the temperature of the chuck plate 52. Although not specifically shown or described, a substrate lift mechanism having a known structure is provided on the stage 5, allowing the substrate Sw to be transferred between the stage 5 and a transport robot (not shown). The sputtering apparatus Sm includes a control unit CU equipped with a microcomputer, a memory element, a sequencer, etc., and the control unit CU controls the operation of each component, such as the sputtering power supply 21c, the chuck power supplies 55a, 55b, the mass flow controller, and the vacuum pump. As will be described in detail later, the control unit CU is also a component of the substrate processing apparatus of this embodiment, and also controls the application of voltage to each pair of electrodes 53a to 53d of the chuck power supplies 55a, 55b in response to an input from a temperature sensor 57. The substrate processing method of this embodiment will be described below using the sputtering apparatus Sm as an example to form a predetermined film on the underside of a substrate Sw.

真空雰囲気の真空チャンバ1内にてステージ5への基板Swの設置に先立って、成膜時に加熱しようとする基板Swの温度に応じて、加熱手段56aを作動させてホットプレート56、ひいては、チャックプレート52を所定温度に加熱する。温度センサ57で測定したチャックプレート52の温度が所定値に達すると、搬送ロボット及び基板リフト機構によりステージ5に基板Swが設置される。このとき、制御ユニットCUには、成膜前の基板Swの温度が入力される。ステージ5への基板Swの設置の直前に基板Swの温度を温度センサ(図示せず)で測定し、この測定した温度を制御ユニットCUに入力するようにしてもよい。そして、制御ユニットCUは、この入力された温度と温度センサ57で測定された温度との温度差が所定値以上か否かを判別し、所定値(例えば、200℃)より低い場合には、チャック電源55a,55bにより一定の直流電圧が各対の電極53a~53dに連続して印加する。このときの吸着電圧は、上述したように基板Swをその全面に亘って静電吸着するのに必要な電圧(例えば、0.4kV~1kV)に設定される。なお、吸着電圧の上限は、チャック電源55a,55bの設計値に応じて適宜設定される。これにより、基板Swがチャックプレート52にその全面に亘って静電吸着されて均等な所定温度まで加熱される。 Prior to placing the substrate Sw on the stage 5 in the vacuum chamber 1 in a vacuum atmosphere, the heating means 56a is operated to heat the hot plate 56 and the chuck plate 52 to a predetermined temperature according to the temperature of the substrate Sw to be heated during film formation. When the temperature of the chuck plate 52 measured by the temperature sensor 57 reaches a predetermined value, the substrate Sw is placed on the stage 5 by the transport robot and the substrate lift mechanism. At this time, the temperature of the substrate Sw before film formation is input to the control unit CU. The temperature of the substrate Sw may be measured by a temperature sensor (not shown) just before placing the substrate Sw on the stage 5, and this measured temperature may be input to the control unit CU. Then, the control unit CU determines whether the temperature difference between this input temperature and the temperature measured by the temperature sensor 57 is equal to or greater than a predetermined value, and if it is lower than the predetermined value (e.g., 200°C), a constant DC voltage is continuously applied to each pair of electrodes 53a to 53d by the chuck power sources 55a and 55b. The chucking voltage at this time is set to the voltage (e.g., 0.4 kV to 1 kV) required to electrostatically chuck the substrate Sw over its entire surface, as described above. The upper limit of the chucking voltage is set appropriately according to the design values of the chuck power supplies 55a and 55b. As a result, the substrate Sw is electrostatically chucked over its entire surface to the chuck plate 52 and heated to a uniform predetermined temperature.

他方で、温度差が所定値以上の場合には、制御ユニットCUは、図3に示すように、電圧印加開始から所定時間だけチャック電源55a,55bにより上記と同等の直流電圧がパルス状に電極53a~53dに印加する。吸着電圧が0.4kV~0.6kVの範囲であれば、パルス状に吸着電圧を印加するときの周波数が0.25Hz~10Hzの範囲及び1パルス内における吸着電圧の印加時間が2.2秒以下に設定され、吸着電圧を0.6kV以上であれば、パルス状に吸着電圧を印加するときの周波数を0.2Hz~20Hzの範囲及び1パルス内における吸着電圧の印加時間が1.8秒以下に設定される。パルス状に吸着電圧を印加する時間は、例えば、基板Sw面内の温度むらの範囲に応じて適宜設定される。これにより、図3中に実線で示すように、基板Swの部分の急激な温度上昇を抑制して大きな温度むらの発生を抑制しながら、可及的速やかに基板Swをその全面に亘って静電吸着させて均等な所定温度まで加熱できる。そして、所定時間が経過すると、制御ユニットCUは、基板Swが所定温度に加熱されたと判断し、公知の方法でターゲット21をスパッタリングして基板Sw表面に所定の薄膜が成膜される。 On the other hand, when the temperature difference is equal to or greater than a predetermined value, the control unit CU applies a DC voltage equivalent to the above in a pulsed manner to the electrodes 53a to 53d by the chuck power supplies 55a and 55b for a predetermined time from the start of voltage application, as shown in FIG. 3. If the chucking voltage is in the range of 0.4 kV to 0.6 kV, the frequency when the chucking voltage is applied in a pulsed manner is set to a range of 0.25 Hz to 10 Hz, and the application time of the chucking voltage in one pulse is set to 2.2 seconds or less, and if the chucking voltage is 0.6 kV or more, the frequency when the chucking voltage is applied in a pulsed manner is set to a range of 0.2 Hz to 20 Hz, and the application time of the chucking voltage in one pulse is set to 1.8 seconds or less. The time for applying the chucking voltage in a pulsed manner is set appropriately according to, for example, the range of temperature unevenness in the surface of the substrate Sw. As a result, as shown by the solid line in Figure 3, the substrate Sw can be electrostatically attracted over its entire surface as quickly as possible and heated to a uniform predetermined temperature while suppressing a rapid temperature rise in the substrate Sw and preventing large temperature variations. After a predetermined time has elapsed, the control unit CU determines that the substrate Sw has been heated to the predetermined temperature, and the target 21 is sputtered by a known method to form a predetermined thin film on the surface of the substrate Sw.

基板Swへの成膜が終了すると、チャック電源55a,55bにより各対の電極53a~53dに対して逆電圧が印加されてチャックプレート52からの基板Swの静電吸着が解除される。この場合、制御ユニットCUは、静電吸着時の電圧印加状態に応じてチャック電源55a,55bにより電極53a~53dに対して逆電圧を印加する。即ち、基板Swの温度と温度センサ57で測定された温度との温度差が所定値より低いことで、チャック電源55a,55bにより一定の直流電圧が電極に連続して印加した場合には、同等の逆電圧を連続して印加する。他方で、温度差が所定値以上であることでパルス状に電圧印加した場合には、チャック電源55a,55bにより電極53a~53dに対して印加するものと同等の電圧を同等の周期及び印加時間でパルス状に印加する。これにより、基板Swの静電吸着を解除したときに基板Swがチャックプレート52上で跳ねて位置ずれを起こすといったことが防止できることが確認された。チャックプレート52からの基板Swの静電吸着が解除されると、搬送ロボット及び基板リフト機構によりステージ5から成膜済みの基板Swが搬送される。 When the film formation on the substrate Sw is completed, the chuck power supplies 55a and 55b apply a reverse voltage to each pair of electrodes 53a to 53d, and the electrostatic adsorption of the substrate Sw from the chuck plate 52 is released. In this case, the control unit CU applies a reverse voltage to the electrodes 53a to 53d by the chuck power supplies 55a and 55b according to the voltage application state during electrostatic adsorption. That is, when the temperature difference between the temperature of the substrate Sw and the temperature measured by the temperature sensor 57 is lower than a predetermined value and a constant DC voltage is continuously applied to the electrodes by the chuck power supplies 55a and 55b, an equivalent reverse voltage is continuously applied. On the other hand, when the temperature difference is equal to or greater than a predetermined value and a voltage is applied in a pulsed manner, a voltage equivalent to that applied to the electrodes 53a to 53d by the chuck power supplies 55a and 55b is applied in a pulsed manner with the same period and application time. It was confirmed that this can prevent the substrate Sw from bouncing on the chuck plate 52 and causing a positional shift when the electrostatic adsorption of the substrate Sw is released. When the electrostatic adsorption of the substrate Sw from the chuck plate 52 is released, the substrate Sw on which the film has been formed is transported from the stage 5 by the transport robot and substrate lift mechanism.

以上の効果を確認するために、図1に示すスパッタリング装置Smのステージ5を用いて次の実験を行った。即ち、基板Swをφ12インチのシリコンウエハとし、各対の電極53a~53dへの印加電圧を0.4kVに設定した。そして、加熱手段56aを作動させてチャックプレート52を所定温度に加熱した後、チャックプレート52に基板Swを設置し、基板Swを静電吸着しながら加熱した。試料1では、基板Swの温度と温度センサ57で測定された温度との温度差が200℃の状態でチャックプレート52に基板Swを設置し、0.4kVで各対の電極53a~53dに連続して電圧印加したところ、基板Swの破損や位置ずれを招くことなく、短時間で基板Swをその全面に亘って静電吸着させて均等な所定温度まで加熱できた。試料2では、温度差が250℃の状態でチャックプレート52に基板Swを設置し、0.4kVで各対の電極53a~53dに連続して電圧印加したところ、数秒後に基板Swがチャックプレート52上で跳ねて位置ずれを起こした。そこで、試料3では、パルス状に吸着電圧を印加するときの周波数を1Hz、1パルス内における吸着電圧の印加時間を2.0秒に設定し、温度差が250℃の状態でチャックプレート52に基板Swを設置した後に、0.4kVで各対の電極53a~53dにパルス状に60秒間電圧印加した。これによれば、基板Swの破損や位置ずれは見られず、また、基板Sw中心及び基板Sw中心を通って互いに直交する線上の各2点の温度を測定したところ、平均温度は251.1℃、最大の温度差は10℃であり、基板Swをその全面に亘って静電吸着させて所望の温度まで均等に加熱できることが確認された。なお、パルス状に吸着電圧を印加するときの周波数が0.25Hz~10Hzの範囲及び1パルス内における吸着電圧の印加時間が2.2秒以下であれば、同等の効果が得られることが確認された。但し、短い時間で基板Swをその全面に亘って静電吸着させて加熱するには、吸着電圧の印加時間が、4秒以上であることが好ましい。 In order to confirm the above effects, the following experiment was carried out using the stage 5 of the sputtering device Sm shown in FIG. 1. That is, the substrate Sw was a silicon wafer with a diameter of 12 inches, and the voltage applied to each pair of electrodes 53a to 53d was set to 0.4 kV. Then, the heating means 56a was operated to heat the chuck plate 52 to a predetermined temperature, and then the substrate Sw was placed on the chuck plate 52 and heated while electrostatically adsorbing the substrate Sw. In sample 1, the substrate Sw was placed on the chuck plate 52 in a state where the temperature difference between the temperature of the substrate Sw and the temperature measured by the temperature sensor 57 was 200°C, and a voltage of 0.4 kV was continuously applied to each pair of electrodes 53a to 53d. The substrate Sw was electrostatically adsorbed over its entire surface and heated to a uniform predetermined temperature in a short time without causing damage or misalignment of the substrate Sw. In sample 2, when the substrate Sw was placed on the chuck plate 52 in a state where the temperature difference was 250° C., and a voltage of 0.4 kV was continuously applied to each pair of electrodes 53 a to 53 d, the substrate Sw bounced on the chuck plate 52 after a few seconds, causing a positional shift. Therefore, in sample 3, the frequency when the attracting voltage was applied in a pulsed manner was set to 1 Hz, and the application time of the attracting voltage in one pulse was set to 2.0 seconds, and after the substrate Sw was placed on the chuck plate 52 in a state where the temperature difference was 250° C., a voltage of 0.4 kV was applied in a pulsed manner to each pair of electrodes 53 a to 53 d for 60 seconds. As a result, no damage or positional shift of the substrate Sw was observed, and the temperatures of the center of the substrate Sw and two points on lines passing through the center of the substrate Sw and intersecting each other at right angles were measured, and the average temperature was 251.1° C., and the maximum temperature difference was 10° C., confirming that the substrate Sw could be electrostatically attracted over its entire surface and uniformly heated to a desired temperature. It has been confirmed that equivalent effects can be obtained if the frequency of the pulsed application of the attraction voltage is in the range of 0.25 Hz to 10 Hz and the application time of the attraction voltage within one pulse is 2.2 seconds or less. However, in order to electrostatically attract and heat the entire surface of the substrate Sw in a short time, it is preferable that the application time of the attraction voltage is 4 seconds or more.

次に、各対の電極53a~53dへの印加電圧を0.6kVに設定した。そして、加熱手段56aを作動させてチャックプレート52を所定温度に加熱した後、チャックプレート52に基板Swを設置し、基板Swを静電吸着しながら加熱した。試料4では、基板Swの温度と温度センサ57で測定された温度との温度差が350℃の状態でチャックプレート52に基板Swを設置し、0.6kVで各対の電極53a~53dに連続して電圧印加したところ、上記同様、十数秒経過すると、基板Swがチャックプレート52上で跳ねて位置ずれを起こし、場合によっては基板Swが破損した。そこで、試料5では、パルス状に吸着電圧を印加するときの周波数を5Hz、1パルス内における吸着電圧の印加時間を1.2秒に設定し、温度差が350℃の状態でチャックプレート52に基板Swを設置した後に、0.6kVで各対の電極53a~53dにパルス状に60秒間電圧印加した。これによれば、上記同様、基板Swの破損や位置ずれは見られず、また、基板Sw中心及び基板Sw中心を通って互いに直交する線上の各2点の温度を測定したところ、平均温度は351.4℃、最大の温度差は20℃であり、基板Swをその全面に亘って静電吸着させて所望の温度まで均等に加熱できることが確認された。なお、パルス状に吸着電圧を印加するときの周波数が0.2Hz~20Hzの範囲及び1パルス内における吸着電圧の印加時間が1.8秒以下であれば、同等の効果が得られることが確認された。但し、短い時間で基板Swをその全面に亘って静電吸着させて加熱するには、吸着電圧の印加時間が、5秒以上であることが好ましい。 Next, the voltage applied to each pair of electrodes 53a to 53d was set to 0.6 kV. Then, the heating means 56a was operated to heat the chuck plate 52 to a predetermined temperature, after which the substrate Sw was placed on the chuck plate 52 and heated while electrostatically adsorbing the substrate Sw. In sample 4, the substrate Sw was placed on the chuck plate 52 in a state where the temperature difference between the temperature of the substrate Sw and the temperature measured by the temperature sensor 57 was 350°C, and a voltage of 0.6 kV was continuously applied to each pair of electrodes 53a to 53d. As described above, after a lapse of about 10 seconds, the substrate Sw bounced on the chuck plate 52, causing it to shift position, and in some cases the substrate Sw was damaged. Therefore, in sample 5, the frequency when the attracting voltage was applied in a pulsed manner was set to 5 Hz, and the application time of the attracting voltage in one pulse was set to 1.2 seconds, and after the substrate Sw was placed on the chuck plate 52 in a state where the temperature difference was 350° C., a pulsed voltage of 0.6 kV was applied to each pair of electrodes 53 a to 53 d for 60 seconds. As a result, as in the above, no damage or displacement of the substrate Sw was observed, and the temperatures of the center of the substrate Sw and two points on the lines passing through the center of the substrate Sw and intersecting each other at right angles were measured, and the average temperature was 351.4° C. and the maximum temperature difference was 20° C., confirming that the substrate Sw could be electrostatically attracted over its entire surface and uniformly heated to a desired temperature. It was confirmed that the same effect could be obtained if the frequency when the attracting voltage was applied in a pulsed manner was in the range of 0.2 Hz to 20 Hz and the application time of the attracting voltage in one pulse was 1.8 seconds or less. However, in order to electrostatically attract and heat the entire surface of the substrate Sw in a short time, it is preferable that the attraction voltage be applied for 5 seconds or longer.

次に、試料5において、チャックプレート52からの基板Swの静電吸着を解除するときに、チャック電源55a,55bにより各対の電極53a~53dに対して逆電圧を印加した。このとき、電極53a~53dに対して印加するものと同等の逆電圧を連続して印加すると、基板Swがチャックプレート52上で跳ねることが確認された。他方で、吸着時に電極53a~53dに対して印加したものと同等の逆電圧を同等の周期及び印加時間でパルス状に印加すると、基板Swがチャックプレート52上で跳ねて位置ずれを起こすといったことが見られず、良好に基板Swの静電吸着を解除できることが確認された。 Next, in sample 5, when releasing the electrostatic adsorption of the substrate Sw from the chuck plate 52, a reverse voltage was applied to each pair of electrodes 53a to 53d by the chuck power supplies 55a and 55b. At this time, it was confirmed that when a reverse voltage equivalent to that applied to the electrodes 53a to 53d was continuously applied, the substrate Sw bounced on the chuck plate 52. On the other hand, when a reverse voltage equivalent to that applied to the electrodes 53a to 53d during adsorption was applied in pulses with the same period and application time, the substrate Sw did not bounce on the chuck plate 52 and did not become displaced, and it was confirmed that the electrostatic adsorption of the substrate Sw could be released satisfactorily.

参考実験として、基板Swとチャックプレート52の温度との温度差が350℃の状態でチャックプレート52に基板Swを設置し、0.2kVで各対の電極53a~53dに30秒間連続して電圧印加し、基板Sw中心及び基板Sw中心を通って互いに直交する線上の各2点の温度を測定したところ、一の測定点では300℃近くまで昇温したが、その他の測定点の平均温度は約260℃、最大の温度差は58℃であった。これにより、基板サイズが大きい場合、吸着電圧が比較的低いと、基板Sw変形の影響を大きく受けてその大部分が静電吸着されず、大きな温度むら生じていることが判る。そして、吸着電圧を0.4kVに高めたところ、更に大きな温度むらが発生し、これに起因して基板Swがチャックプレート52上で跳ねて位置ずれを起こした。 As a reference experiment, the substrate Sw was placed on the chuck plate 52 with the temperature difference between the substrate Sw and the chuck plate 52 at 350°C, and a voltage of 0.2 kV was applied continuously for 30 seconds to each pair of electrodes 53a to 53d. The temperatures were measured at the center of the substrate Sw and at two points on a line that crosses the center of the substrate Sw at right angles. One measurement point rose to nearly 300°C, but the average temperature of the other measurement points was about 260°C, and the maximum temperature difference was 58°C. This shows that when the substrate size is large and the chucking voltage is relatively low, the substrate Sw is significantly affected by deformation, and most of it is not electrostatically chucked, resulting in large temperature unevenness. Then, when the chucking voltage was increased to 0.4 kV, even larger temperature unevenness occurred, which caused the substrate Sw to bounce on the chuck plate 52 and become misaligned.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、処理工程をスパッタリング法による成膜処理としたが、これに限定されるものではなく、基板温度を制御しつつエッチング、CVD等の他の処理を行う場合にも本発明は適用することができる。また、上記実施形態では、静電チャックとして双極型を例に説明したが、これに限定されるものではく、単極型のものにも本発明は適用することができる。更に、上記実施形態では、チャックプレートをPBN製としたものを例に説明したが、これに限定されるものではなく、他のセラミックスプレート、例えばアルミナ、窒化アルミニウムや窒化シリコンを用いることができる。この場合、チャックプレートの材質に応じて、パルス状に印加するときの温度差、印加電圧、吸着開始当初、周波数及び1パルス内における吸着電圧の印加時間が適宜設定される。特に、PBN製のチャックプレートと同等の吸着力を有する他のセラミックスプレートであれば、同等の吸着力を発生させる印可電圧において、上記実施例で説明した温度差、吸着開始当初、周波数及び1パルス内における吸着電圧の印加時間を採用することができる。 Although the embodiment of the present invention has been described above, various modifications are possible without departing from the scope of the technical concept of the present invention. In the above embodiment, the processing step is a film formation process by a sputtering method, but the present invention can be applied to cases where other processes such as etching and CVD are performed while controlling the substrate temperature. In the above embodiment, a bipolar type electrostatic chuck is described as an example, but the present invention can also be applied to a monopolar type electrostatic chuck. Furthermore, in the above embodiment, the chuck plate is made of PBN, but the present invention can also be applied to a monopolar type electrostatic chuck. In addition, in the above embodiment, the chuck plate is made of PBN, but the present invention can also be applied to a ceramic plate such as alumina, aluminum nitride, or silicon nitride. In this case, the temperature difference, applied voltage, initial chucking start, frequency, and application time of the chucking voltage in one pulse when applied in a pulsed manner are appropriately set according to the material of the chuck plate. In particular, if another ceramic plate has an adhesive force equivalent to that of a PBN chuck plate, the temperature difference, initial chucking start, frequency, and application time of the chucking voltage in one pulse described in the above embodiment can be adopted in the applied voltage that generates an equivalent adhesive force.

1…真空チャンバ、5…ステージ(真空処理装置の構成要素)、52…チャックプレート,53a~53d…吸着用の電極、55a,55b…チャック電源(真空処理装置の構成要素)、56…ホットプレート(加熱手段の構成要素)、57…温度センサ(測定手段:真空処理装置の構成要素)、Sw…被処理基板(基板)、Sm…スパッタリング装置。 1...vacuum chamber, 5...stage (component of vacuum processing device), 52...chuck plate, 53a-53d...electrodes for suction, 55a, 55b...chuck power supply (component of vacuum processing device), 56...hot plate (component of heating means), 57...temperature sensor (measuring means: component of vacuum processing device), Sw...substrate to be processed (substrate), Sm...sputtering device.

Claims (5)

真空チャンバ内で所定温度に加熱されたチャックプレートの表面に被処理基板を設置し、電極に電圧を印加してチャックプレートの表面に被処理基板を静電吸着させる工程を含む基板処理方法において、
チャックプレートの表面に被処理基板をその全面に亘って静電吸着させるのに必要な電極に印加する電圧を吸着電圧とし、チャックプレートの表面に被処理基板を静電吸着させる前のチャックプレートと被処理基板との温度差が予め設定される範囲を超えていると、吸着電圧を所定時間だけパルス状に印加する工程を更に含むことを特徴とする基板処理方法。
1. A substrate processing method comprising the steps of placing a substrate on a surface of a chuck plate heated to a predetermined temperature in a vacuum chamber, and electrostatically attracting the substrate to the surface of the chuck plate by applying a voltage to an electrode,
a step of applying the attraction voltage in a pulsed manner for a predetermined period of time when a temperature difference between the chuck plate and the workpiece substrate before the workpiece substrate is electrostatically attracted to the surface of the chuck plate exceeds a predetermined range, the attraction voltage being defined as an attraction voltage applied to the electrodes required for electrostatically attracting the workpiece substrate over its entire surface onto the surface of the chuck plate,
前記チャックプレートに前記被処理基板を静電吸着させた後にその静電吸着を解除するときに、前記吸着電圧と同等の逆電圧を同等の周期及び印加時間でパルス状に印加する工程を更に含むことを特徴とする基板処理方法。 The substrate processing method further includes a step of applying a pulsed reverse voltage equivalent to the clamping voltage with the same period and application time when releasing the electrostatic clamping of the substrate to be processed after the substrate is electrostatically clamped to the chuck plate. 請求項1または請求項2記載の基板処理方法であって、前記チャックプレートがPBN製のセラミックスプレートであり、当該チャックプレートに一対の電極が埋設されて当該一対の電極間に直流の前記吸着電圧を印加するものにおいて、
吸着電圧を0.4kV~0.6kVの範囲とし、パルス状に吸着電圧を印加するときの周波数を0.25Hz~10Hzの範囲及び1パルス内における吸着電圧の印加時間を2.2秒以下に設定したことを特徴とする請求項1記載の基板処理方法。
3. A substrate processing method according to claim 1, wherein the chuck plate is a ceramic plate made of PBN, a pair of electrodes are embedded in the chuck plate, and a DC attracting voltage is applied between the pair of electrodes, further comprising:
2. The substrate processing method according to claim 1, wherein the attracting voltage is set in a range of 0.4 kV to 0.6 kV, the attracting voltage is applied in a pulsed manner at a frequency in a range of 0.25 Hz to 10 Hz, and the application time of the attracting voltage in one pulse is set to 2.2 seconds or less.
請求項1または請求項2記載の基板処理方法であって、前記チャックプレートがPBN製のセラミックスプレートであり、当該チャックプレートに一対の電極が埋設されて当該一対の電極間に直流の前記吸着電圧を印加するものにおいて、
吸着電圧を0.6kV以上とし、パルス状に吸着電圧を印加するときの周波数を0.2Hz~20Hzの範囲及び1パルス内における吸着電圧の印加時間を1.8秒以下に設定したことを特徴とする請求項1記載の基板処理方法。
3. The substrate processing method according to claim 1, wherein the chuck plate is a ceramic plate made of PBN, a pair of electrodes are embedded in the chuck plate, and a DC attracting voltage is applied between the pair of electrodes, further comprising:
2. The substrate processing method according to claim 1, wherein the attracting voltage is set to 0.6 kV or more, the attracting voltage is applied in a pulsed manner at a frequency in the range of 0.2 Hz to 20 Hz, and the application time of the attracting voltage in one pulse is set to 1.8 seconds or less.
真空チャンバ内に配置されて被処理基板が設置されるチャックプレートと、チャックプレートに組み付けられる電極に電圧を印加するチャック電源と、チャックプレートを所定温度に加熱する加熱手段とを備え、加熱されたチャックプレートの表面に被処理基板を設置した後に電極に電圧を印加してチャックプレートの表面に被処理基板を静電吸着されるようにした基板処理装置において、
チャックプレートの表面に被処理基板を静電吸着させる前のチャックプレートと被処理基板との温度差を測定する測定手段を更に備え、
測定手段で測定した温度差が予め設定される範囲を超えていると、チャックプレートの表面に被処理基板をその全面に亘って静電吸着させるのに必要な電極に印加する電圧を吸着電圧とし、チャック電源によって吸着電圧を所定時間だけパルス状に印加するように構成したことを特徴とする基板処理装置。

A substrate processing apparatus comprising: a chuck plate disposed in a vacuum chamber and on which a substrate to be processed is placed; a chuck power supply which applies a voltage to an electrode assembled to the chuck plate; and heating means which heats the chuck plate to a predetermined temperature, wherein after the substrate to be processed is placed on a surface of the heated chuck plate, a voltage is applied to the electrode to electrostatically attract the substrate to the surface of the chuck plate,
a measuring means for measuring a temperature difference between the chuck plate and the substrate before the substrate is electrostatically attracted to the surface of the chuck plate;
a chuck power supply that applies the attraction voltage in pulse form for a predetermined period of time to an electrode required for electrostatically attracting the workpiece substrate over its entire surface to the surface of the chuck plate when the temperature difference measured by the measuring means exceeds a predetermined range.

JP2023008872A 2023-01-24 2023-01-24 Substrate processing method and substrate processing device Pending JP2024104577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023008872A JP2024104577A (en) 2023-01-24 2023-01-24 Substrate processing method and substrate processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023008872A JP2024104577A (en) 2023-01-24 2023-01-24 Substrate processing method and substrate processing device

Publications (1)

Publication Number Publication Date
JP2024104577A true JP2024104577A (en) 2024-08-05

Family

ID=92144471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023008872A Pending JP2024104577A (en) 2023-01-24 2023-01-24 Substrate processing method and substrate processing device

Country Status (1)

Country Link
JP (1) JP2024104577A (en)

Similar Documents

Publication Publication Date Title
TWI618454B (en) Temperature control method for chamber components of plasma processing device, chamber components and substrate mounting table, and plasma processing device provided therewith
JP5124295B2 (en) Plasma processing apparatus and plasma processing method
JP2002270680A (en) Method and device for supporting substrate
JPH113878A (en) Method and device for controlling surface condition of ceramic substrate
JPWO2002065532A1 (en) Method for treating object to be treated and apparatus for treating the same
JP5090536B2 (en) Substrate processing method and substrate processing apparatus
TWI564412B (en) Sputtering device and sputtering method
KR19990088505A (en) Vacuum treatment system and its stage
JP4330737B2 (en) Vacuum processing method
JP2024104577A (en) Substrate processing method and substrate processing device
JP3847920B2 (en) Electrostatic adsorption hot plate, vacuum processing apparatus, and vacuum processing method
JPH0945756A (en) Semiconductor manufacturing device and manufacturing method
JP4140763B2 (en) Plasma processing apparatus and plasma processing method
TWI604560B (en) Method for forming an electrostatic chuck using film printing technology
JP2002009141A (en) Vacuum treatment apparatus having electrostatic attraction mechanism and operation control method for electrostatic attraction mechanism
JPH1187245A (en) Sputtering device
TWI781338B (en) Vacuum processing device
JP5957248B2 (en) Method for regenerating substrate holding device
JP5335421B2 (en) Vacuum processing equipment
JP2002100616A (en) Plasma-processing apparatus
JPH05152425A (en) Treatment apparatus and sputtering apparatus
JPH09293775A (en) Electrostatic chuck
JPH11233600A (en) Electrostatic attractor and vacuum processor using the same
JP5348673B2 (en) Heating and cooling method of workpiece
JP2012124362A (en) Electrostatic chucking method of insulating substrate