JP2024156240A - Crystal Oscillator - Google Patents
Crystal Oscillator Download PDFInfo
- Publication number
- JP2024156240A JP2024156240A JP2023070536A JP2023070536A JP2024156240A JP 2024156240 A JP2024156240 A JP 2024156240A JP 2023070536 A JP2023070536 A JP 2023070536A JP 2023070536 A JP2023070536 A JP 2023070536A JP 2024156240 A JP2024156240 A JP 2024156240A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- crystal oscillator
- side dimension
- long side
- excitation electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 141
- 230000005284 excitation Effects 0.000 claims abstract description 53
- 239000004065 semiconductor Substances 0.000 claims abstract description 35
- 230000010355 oscillation Effects 0.000 claims abstract description 7
- 239000010453 quartz Substances 0.000 claims description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 230000000694 effects Effects 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Abstract
【課題】周波数ドリフト特性を小さく抑えることが可能な構造を有した水晶発振器を提供する。
【解決手段】水晶発振器は、平面視長方形で表裏に励振用電極を備える水晶振動素子と、水晶振動素子の発振回路及び温度補償回路を備える半導体チップと、水晶振動素子用の振動子室及び半導体チップ用の半導体室を背中合わせに有し、半導体チップ及び水晶振動素子を実装していて外部端子を有するパッケージと、を備える。水晶振動素子は、第一の短辺でパッケージに片持ち支持で実装されかつ接続端子に接続されている。励振用電極は、長辺寸法が水晶振動素子の長辺寸法Vの40~65%と小さく、第一の短辺に対向する第二の短辺の方向に偏心して設けてある。偏心量Lは、前記Vに対し16~18%である。
【選択図】図1
A crystal oscillator having a structure capable of suppressing frequency drift characteristics is provided.
[Solution] The crystal oscillator comprises a crystal vibration element having a rectangular shape in a plan view and excitation electrodes on the front and back, a semiconductor chip having an oscillation circuit and a temperature compensation circuit for the crystal vibration element, and a package having an oscillator chamber for the crystal vibration element and a semiconductor chamber for the semiconductor chip back to back, mounting the semiconductor chip and the crystal vibration element, and having external terminals. The crystal vibration element is mounted on the package in a cantilevered manner by a first short side and connected to a connection terminal. The excitation electrode has a long side dimension that is smaller than the long side dimension V of the crystal vibration element, which is 40 to 65% of the long side dimension V, and is provided eccentrically in the direction of a second short side opposite the first short side. The amount of eccentricity L is 16 to 18% of V.
[Selected Figure] Figure 1
Description
本発明は、周波数ドリフト特性の低減が可能な水晶発振器に関する。 The present invention relates to a crystal oscillator that can reduce frequency drift characteristics.
水晶発振器は基準信号源として種々の電子機器で使用されている。電子機器としての例えばスマートフォンは、通話やメールだけでなく、それ1台で様々な機能が使用できる。その様々な機能を実現するために、スマートフォン内部の限られたスペースに多くの電子部品が搭載されており、温度補償型水晶発振器もその1つである。温度補償型水晶発振器において、発振周波数のドリフトは小さいことが望ましいが、スマートフォンのように多くの電子部品が搭載されていると、電子部品の各々が内部発熱を起こし、その発熱(熱源)により発振周波数がドリフトしてしまい、高精度な温度補償ができないことがある。
これを解決する1つの手段として特許文献1には、圧電振動素子及び感温部品が容器に収容された圧電デバイスにおいて、圧電振動素子と感温部品の温度が等しくなるよう、熱容量を考慮し設計した容器の構造が記載されている。具体的には、圧電振動素子及び感温部品の熱平衡が素早く達成されるように、外部実装端子及び圧電振動素子間の熱伝導経路と、外部実装端子及び感温部品間の熱伝導経路とを設定している(特許文献1の段落56)。また、水晶振動素子の平面的な中心点と、この水晶振動片の表裏目に設けた励振用電極の平面的な中心点とが一致した構造の水晶振動片が図示されている(特許文献1の図1(a))。
Crystal oscillators are used as reference signal sources in various electronic devices. For example, smartphones as electronic devices can perform various functions in addition to calling and emailing. In order to realize these various functions, many electronic components are installed in the limited space inside the smartphone, and the temperature-compensated crystal oscillator is one of them. In a temperature-compensated crystal oscillator, it is desirable for the drift of the oscillation frequency to be small, but when many electronic components are installed, such as in a smartphone, each electronic component generates internal heat, and the heat (heat source) causes the oscillation frequency to drift, making it impossible to perform high-precision temperature compensation.
As one means for solving this problem, Patent Document 1 describes a structure of a container designed in consideration of heat capacity so that the temperatures of the piezoelectric vibration element and the temperature-sensing component are equal in a piezoelectric device in which a piezoelectric vibration element and a temperature-sensing component are housed in a container. Specifically, a heat conduction path between the external mounting terminal and the piezoelectric vibration element, and a heat conduction path between the external mounting terminal and the temperature-sensing component are set so that thermal equilibrium between the piezoelectric vibration element and the temperature-sensing component is quickly achieved (paragraph 56 of Patent Document 1). In addition, a crystal vibrating piece having a structure in which the planar center point of the crystal vibrating element coincides with the planar center point of the excitation electrodes provided on the front and back of the crystal vibrating piece is illustrated (Figure 1(a) of Patent Document 1).
特許文献1に記載されている容器の構造は、確かに圧電振動素子と感温部品の温度差を小さくすることができ、周波数ドリフト特性を良化する手段として有効と思えるが、この出願に係る発明者の検討によれば、周波数ドリフト特性を良化する余地はまだあることが分かった。 The container structure described in Patent Document 1 certainly can reduce the temperature difference between the piezoelectric vibration element and the temperature sensing component, and seems to be effective as a means of improving the frequency drift characteristics, but according to the investigations of the inventors of this application, it was found that there is still room for improvement in the frequency drift characteristics.
本発明は上記の点に鑑みなされたものであり、従ってこの出願の目的は、周波数ドリフト特性を小さく抑えることが可能な構造を有した水晶発振器を提供することにある。 The present invention has been made in consideration of the above points, and the purpose of this application is to provide a crystal oscillator having a structure that can minimize frequency drift characteristics.
この目的の達成を図るため、この出願に係る発明者は、平面視長方形で表裏に励振用電極を備える水晶振動素子と、前記水晶振動素子用発振回路及び温度補償回路を備える半導体チップと、前記水晶振動素子及び前記半導体チップを実装していて当該水晶発振器を外部に接続する複数の接続端子を有するパッケージと、を備える水晶発振器であって、前記水晶振動素子が第一の短辺で前記パッケージに片持ち支持で実装された水晶発振器について以下のシミュレーション及び試作を実施した。すなわち、後述する図1に示す構造のシミュレーションモデルを作成し、また、図1に示す構造の試作品を作製し、水晶振動素子の平面的な中心点と、励振用電極の中心点とを一致させたものと、前記励振用電極を水晶振動素子の前記第一の短辺と対向する第二の短辺側に偏心させたいくつかの水準のものとに、所定の条件の熱変動を与え、その際の半導体チップの所定の複数箇所と、水晶振動素子の所定の複数箇所各々での温度変化と、それぞれの水晶発振器の出力の本来の出力周波数からの変動量、すなわち周波数ドリフトとを、シミュレーション及び試作品によって、検討した。その結果、励振用電極を水晶振動素子に対し上記のような偏心をさせ、かつ、偏心量を所定範囲にすると、周波数ドリフトの低減が図れることを見出した。
従って、この出願の水晶発振器の発明によれば、平面視長方形で表裏に励振用電極を備える水晶振動素子と、前記水晶振動素子用発振回路及び温度補償回路を備える半導体チップと、前記水晶振動素子及び前記半導体チップを実装していて当該水晶発振器を外部に接続する複数の接続端子を有するパッケージと、を備える水晶発振器において、
前記励振用電極は、前記第一の短辺に対向する第二の短辺の方向に偏心して設けてあることを特徴とする。
この発明を実施するに当たり、前記偏心量は、外部から当該水晶発振器に及ぶ所定の熱変動条件に起因して前記励振用電極に及ぶ熱影響を、所定量減少させ得る量であることが好ましい。
この発明を実施するに当たり、前記励振用電極は平面視長方形状であり、前記励振用電極の長辺寸法は前記水晶振動素子の長辺寸法に対し40~65%の寸法であることが好ましい。このような寸法範囲であると、励振用電極を上記偏心させた際に水晶振動素子における振動領域を前記第2の辺側に有意に偏心させることができるからである。
この発明を実施するに当たり、前記所定の熱変動条件は、時間t1をかけて温度がΔT上昇して時間t2をかけて元の温度に戻る予め定めた温度条件とすることが好ましい。
この発明を実施するに当たり、当該水晶発振器は、長辺寸法が約1.6mm、短辺寸法が約1.2mm、高さ寸法が約0.55mmである水晶発振器であることが好ましい。少なくともこの構造のもので、本発明の効果を確認できている。ここで、約とは、水晶発振器の外形寸法に対し許容される公差、例えば±0.1mmである。
In order to achieve this object, the inventor of this application carried out the following simulation and prototyping of a crystal oscillator comprising a crystal resonator element having a rectangular shape in plan view and excitation electrodes on both sides, a semiconductor chip having an oscillation circuit for the crystal resonator element and a temperature compensation circuit, and a package having the crystal resonator element and the semiconductor chip mounted thereon and a plurality of connection terminals for connecting the crystal resonator to the outside, in which the crystal resonator element is mounted on the package in a cantilevered manner at a first short side. That is, a simulation model of the structure shown in Fig. 1 described later was created, and a prototype of the structure shown in Fig. 1 was also produced, and a thermal fluctuation under a predetermined condition was applied to one in which the planar center point of the crystal resonator element and the center point of the excitation electrode were aligned, and to several levels in which the excitation electrode was eccentric to the second short side side opposite to the first short side of the crystal resonator element, and the temperature change at each of the predetermined multiple locations of the semiconductor chip and the predetermined multiple locations of the crystal resonator element and the amount of deviation from the original output frequency of the output of each crystal oscillator, i.e., frequency drift, were examined by simulation and prototype. As a result, it was found that by making the excitation electrodes eccentric with respect to the quartz crystal vibrating element as described above and keeping the amount of eccentricity within a predetermined range, it is possible to reduce the frequency drift.
Therefore, according to the invention of the crystal oscillator of this application, in a crystal oscillator including a crystal vibration element that is rectangular in plan view and has excitation electrodes on both sides, a semiconductor chip that includes an oscillation circuit for the crystal vibration element and a temperature compensation circuit, and a package that mounts the crystal vibration element and the semiconductor chip and has a plurality of connection terminals that connect the crystal oscillator to the outside,
The excitation electrode is characterized in that it is provided eccentrically in the direction of a second short side opposite to the first short side.
In carrying out the present invention, it is preferable that the amount of eccentricity is an amount capable of reducing, by a predetermined amount, the thermal influence exerted on the excitation electrodes due to a predetermined thermal fluctuation condition exerted on the crystal oscillator from the outside.
In carrying out the present invention, it is preferable that the excitation electrode has a rectangular shape in a plan view, and the long side dimension of the excitation electrode is 40 to 65% of the long side dimension of the quartz crystal vibrating element. With such a dimensional range, the vibration region of the quartz crystal vibrating element can be significantly decentered toward the second side when the excitation electrode is decentered as described above.
In carrying out the present invention, the predetermined thermal change condition is preferably a predefined temperature condition in which the temperature rises by ΔT over a time t1 and returns to the original temperature over a time t2.
In carrying out this invention, it is preferable that the crystal oscillator has a long side dimension of about 1.6 mm, a short side dimension of about 1.2 mm, and a height dimension of about 0.55 mm. The effect of the present invention has been confirmed with at least this structure. Here, "about" refers to the tolerance allowed for the external dimensions of the crystal oscillator, for example, ±0.1 mm.
この発明の水晶発振器によれば、水晶振動素子に備えられた励振用電極を所定量偏心させ、片持ち支持部から遠ざけることにより、接続端子を経由して水晶振動素子に伝わる外部の熱の影響を減少させることができる。これにより、水晶発振器周辺の外部温度が所定温度に上昇した後に元の温度に戻る熱変化の場合にも、水晶振動素子に熱が伝わりきる前に外部熱の温度変化が完了するため、水晶振動素子は熱変動に追従せずかつ熱応力の影響も小さいと考えられる。従って、水晶振動素子の温度特性起因(熱応力も含む)で生じる周波数変化も小さくできるため温度補償の補償値も小さくできるので、総合的に温度補償の誤差を小さくできると考えられるので、周波数ドリフトを小さく抑えることができる。 According to the crystal oscillator of this invention, the excitation electrodes provided on the crystal oscillator element are offset by a predetermined amount and moved away from the cantilever support, thereby reducing the effect of external heat transmitted to the crystal oscillator element via the connection terminal. As a result, even in the case of a thermal change in which the external temperature around the crystal oscillator rises to a predetermined temperature and then returns to the original temperature, the temperature change from the external heat is completed before the heat is fully transmitted to the crystal oscillator element, so the crystal oscillator element does not follow the thermal fluctuation and is considered to be less affected by thermal stress. Therefore, the frequency change caused by the temperature characteristics of the crystal oscillator element (including thermal stress) can be reduced, and the compensation value of the temperature compensation can also be reduced, so it is considered that the temperature compensation error can be reduced overall, and the frequency drift can be kept small.
以下、図面を参照してこの発明の水晶発振器10について説明する。
なお、説明に用いる各図はこの発明を理解できる程度に概略的に示してあるにすぎない。また、説明に用いる各図において、同様な構成成分については同一の番号を付して示し、その説明を省略する場合もある。また、以下の説明で述べる形状、材質等はこの発明の範囲内の好適例に過ぎない。従って、本発明は以下の実施形態のみに限定されるものではない。
A
It should be noted that each of the drawings used in the description is merely a schematic illustration to the extent that the present invention can be understood. In addition, in each of the drawings used in the description, similar components are indicated by the same numbers, and their explanation may be omitted. Furthermore, the shapes, materials, etc. described in the following description are merely preferred examples within the scope of the present invention. Therefore, the present invention is not limited to the following embodiments.
図1及び図2を参照して、本発明の水晶発振器10の第1の実施形態について説明する。
図1(A)は、振動子室41の上面図、図1(B)は、半導体室42の上面図、図1(C)は、図1(A)のa-a’間の水晶発振器10の断面図である。
A first embodiment of a
1A is a top view of an
水晶発振器10は、水晶振動素子20と、半導体チップ30と、パッケージ40と、外部基板との接続に用いる接続端子50と、を備えている。
The
水晶振動素子20は、平面視において長方形のATカットの水晶振動素子であり、表裏の面に励振用電極21a及び21bと、それぞれの励振用電極21a及び21bから水晶振動素子20の第一の短辺23に引出した、引出電極22a及び22bと、を備えている。励振用電極21a及び21bは、平面視において長方形であり、水晶振動素子20の第一の短辺23に対向する第二の短辺24の方向に偏心して備えられている。
励振用電極を水晶振動素子に対し所定条件で偏心させるという本発明の構成による効果を得るためには、励振用電極は水晶振動素子よりある程度小さい方が好ましく、特に、励振用電極の長辺寸法は水晶振動素子の長辺寸法よりある程度短い方が良い。一方、励振用電極の長辺寸法が短すぎると、水晶振動素子の実効抵抗が悪くなる等の他の特性劣化を招く。これらを考慮すると、励振用電極の長辺寸法は水晶振動素子の長辺寸法に対し、40~65%の範囲から選ばれる寸法とすることが好ましく、より好ましくは45~60%の範囲から選ばれる寸法とするのが良い。
図2を参照して、偏心量Lについて説明する。長方形状の水晶振動素子20の中心点をEとし、長方形状の励振用電極21の中心点をeとする。水晶振動素子20の中心点Eと、励振用電極21の中心点eとの距離を偏心量Lとする。第1の辺から水晶発振器の特性に支障が無い範囲で振動領域をなるべく離す方が良いことから、励振用電極21の、水晶振動素子20の第一の短辺23側の縁Xaと、第一の辺23との距離Xも重要である。これに限られないが、Xは水晶振動素子20の長辺寸法Vに対し30~50%であることが好ましい。励振用電極21が水晶振動素子20の中央に設けられる場合に比べ、本発明では偏心量Lだけ、励振用電極は水晶振動素子の第二の短辺24側にずらして設けてある。本発明の場合は、例えば水晶振動素子20の長辺寸法をVとしたときVの比率で示すことができる。
水晶振動素子の長辺寸法Vが、後述する具体的な水晶振動素子のように1.04mmの場合で、偏心量Lが0.104mmの場合であれば、水晶振動素子の長辺寸法Vに対し励振用電極は10%偏心していることになる。
The quartz
In order to obtain the effect of the configuration of the present invention in which the excitation electrode is decentered with respect to the quartz crystal vibrating element under a predetermined condition, it is preferable that the excitation electrode is somewhat smaller than the quartz crystal vibrating element, and in particular, it is preferable that the long side dimension of the excitation electrode is somewhat shorter than the long side dimension of the quartz crystal vibrating element. On the other hand, if the long side dimension of the excitation electrode is too short, it will lead to other characteristic degradation such as a deterioration in the effective resistance of the quartz crystal vibrating element. Taking these into consideration, it is preferable that the long side dimension of the excitation electrode is selected from the range of 40 to 65% of the long side dimension of the quartz crystal vibrating element, and more preferably, it is better to select from the range of 45 to 60%.
The amount of eccentricity L will be described with reference to FIG. 2. The center point of the rectangular
If the long side dimension V of the quartz crystal vibration element is 1.04 mm, as in the specific quartz crystal vibration element described below, and the eccentricity L is 0.104 mm, the excitation electrode is 10% eccentric with respect to the long side dimension V of the quartz crystal vibration element.
半導体チップ30は、平面視において矩形状であり、水晶振動素子20用の発振回路及び温度補償回路を備えている。温度補償回路は、水晶振動素子20の予め測定した温度特性を例えば極力平坦になるような補償データをメモリに格納している。水晶発振器10は、内部に例えば半導体チップ内に温度センサを備えており、水晶振動素子20の温度特性に対し、温度センサが検出した温度に応じて、上記した補償データを用いて温度補償した出力を出力する。予め設計事項として半導体チップ30に準備していた温度補償を行う。また、半導体チップ30は、パッケージ40に実装する面に球形状のバンプ31を備えている。
本実施例では、フリップチップボンディングによるパッケージ40との接合をした場合について説明しているが、ワイヤーボンディングによる接合でも良い。
The
In this embodiment, the case where the bonding to the
パッケージ40は、水晶振動素子20を実装した凹部形状の振動子室41と、半導体チップ30を実装した凹部形状の半導体室42を背中合わせに接合した、いわゆるH型構造をしている。具体的には、パッケージ40は、水晶振動素子20を実装している凹部形状の振動子室41を構成している枠状の第1層40aと、振動子室41及び半導体室42の共通の底面である第2層40bと、半導体チップ30を実装している凹部形状の半導体室42を構成している枠状の第3層40cと、の3層の積層構造となっている。このパッケージ40は、例えばセラミックパッケージで構成できる。
The
従って、振動子室41は、第1層40aによって凹部を囲う壁を構成し、第2層40bによって振動子室底面41aを構成しており、振動子室底面41a上に、水晶振動素子20を接続するための接続パッド43を備えている。
半導体室42は、第3層40cによって凹部を囲う壁を構成し、第2層40bによって半導体室底面42aを構成しており、半導体室底面42a上に、半導体チップ30を実装するための実装パッド44を備えている。またパッケージ40は、第1層40a上にシールリング45を備えている。シールリング45は、蓋部材(図示せず)と接合するものである
Therefore, the
The
接続端子50は、パッケージ40の第3層40cの四隅に備えられている。接続端子50は、金属製であり、例えば金メッキが施されている。
3層であるパッケージ40の積層内には配線46が備えられており、接続端子50と実装パッド44を繋いでいる配線46a及び46b、実装パッド44と接続パッド43を繋いでいる配線46cがある。
The
Wiring 46 is provided within the three-layer stack of
半導体チップ30は、バンプ31を介して実装パッド44に接続され、半導体室42に実装される。水晶振動素子20は、導電性接着剤25を介して、接続パッド43に接続され、振動子室41に実装される。この時、水晶振動素子20は、第一の短辺23を接続パッド43に接続する、いわゆる片持ち支持の状態で接続される。この後、振動子室41内を適度な真空又は不活性ガス雰囲気にした後に、シールリング45と蓋部材(図示せず)をシーム溶接で接合し、封止することで水晶発振器10が完成する。蓋部材は、平面視において長方形状であり、例えば金属製である。この完成した水晶発振器10は、接続端子50と外部基板を半田を介し接続することにより、他部品とともに外部機器内で使用される。
The
外部機器内の他部品の中には、例えば、温度が4~6秒をかけて0.7~0.8℃上昇して105~115秒をかけて元の温度に戻るという、熱変動を起こすものがある。この時、この他部品の発熱は、下記のように水晶発振器10に伝わる。
まず、他部品で発熱が生じた後に、外部基板内の配線を介し水晶発振器10が実装されている箇所まで伝わる。その後、接続端子50に伝わり、その熱は配線46a及び46bを介し、半導体チップ30に伝わる。その後、半導体チップ30の水晶端子から46cを介し接続パッド43に伝わり、導電性接着剤25を介して水晶振動素子20まで伝わる。
Among the other components in the external device, there are some that undergo thermal fluctuations, for example, the temperature rises by 0.7 to 0.8°C over 4 to 6 seconds and returns to the original temperature over 105 to 115 seconds. At this time, the heat generated by these other components is transferred to the
First, heat is generated in other components, and then the heat is transferred via the wiring in the external substrate to the location where the
先に半導体チップ30が発熱に対し追従をし、その後に水晶振動素子20の追従が始まる。発熱が起こった際に、励振用電極21を偏心していない場合、水晶振動素子20の中心点Eと励振用電極21の中心点eが同じ位置に備えられているため、外部基板から接続端子50を経由して励振用電極21に熱が伝わる時間が短くなり、水晶振動素子20が敏感に反応してしまう。つまり、半導体チップ30と水晶振動素子20の熱追従が近いタイミングで始まるということである。
しかし、本発明では、励振用電極21は水晶振動素子の第二の短辺24側に偏心量Lで偏心しているため、励振用電極21を片持ち支持部から遠ざけることができ、接続端子50を経由して励振用電極21に伝わる外部の熱の影響を所定量減少させることができる。このように偏心した水晶振動素子構造にすることにより、所定温度に上昇した後に緩やかに元の温度に戻るような発熱原の熱が、励振用電極21に伝わる前に発熱源の温度変化が完了し、及び、振動領域への熱応力の影響が軽減できると考えられる。従って、水晶振動素子の温度特性起因で生じる周波数変化も小さくできるため温度補償の補償値も小さくできるので、総合的に温度補償の誤差を小さくできるから、周波数ドリフト特性を小さく抑えることができると考えられる。
The
However, in the present invention, since the excitation electrode 21 is eccentric to the second
以下、本発明の理解を深めるために実験結果を説明する。水晶発振器10として温度補償型の水晶発振器を用いた実験をした。具体的には、励振用電極の偏心量Lを3水準に変えた3つの温度補償型の水晶発振器を作成した。なお、水晶発振器10は、外形長辺寸法、外形短辺寸法、厚みの順で1.6×1.2×0.55(単位:mm)のもので、この水晶発振器10に実装した水晶振動素子20は、周波数が32MHzで、長辺寸法×短辺寸法が1.04×0.67(単位:mm)のもので、この水晶振動素子に設けた励振用電極21は、長辺寸法×短辺寸法が0.57×0.54(単位:mmのものとした。なお、この実験で用いた水晶振動素子の長辺寸法に対する励振用電極の長辺寸法の比は、0.57/1.04=54.8%である。
図3に、励振用電極21の偏心量Lを変化させた3種類の水晶発振器の周波数ドリフト特性のグラフを示す。横軸に偏心量Lをとり、縦軸に周波数ドリフトをとって示してある。なお、各水準の試作品をそれぞれ3回周波数ドリフトの測定しているで、図3では、各水準各々9点ずつのデータを示してある。本発明に係る発明者は、所定温度に上昇した後に緩やかに元の温度に戻るような発熱が外部で発生した場合において、水晶発振器の周波数ドリフト特性が10ppb/10sec.未満になるような結果を目指して、偏心量Lを水晶振動素子の長辺寸法Vの比で言って4%、10%、16%にふった場合の評価を実施した。その結果、偏心量Lが16%以上であると、大幅な改善が見られ、9回の測定の77%が周波数ドリフト10ppb/10sec.を満たすことが分かった。偏心量Lを16%以上、例えば20%にすればさらに周波数ドリフト特性が改善することが予想されるが、今回の評価品に対し、周波数ドリフト特性以外の周波数許容偏差や温度特性等の諸特性も確認したところ、偏心量Lを大きくすると温度特性にディップが出てくる。そのため、偏心量Lは16%~18%程度が良いと考える。
The results of the experiment will be described below to deepen understanding of the present invention. An experiment was conducted using a temperature-compensated crystal oscillator as the
FIG. 3 shows a graph of the frequency drift characteristics of three types of crystal oscillators with different eccentricity L of the excitation electrode 21. The horizontal axis shows the eccentricity L, and the vertical axis shows the frequency drift. The frequency drift of each prototype was measured three times, and FIG. 3 shows nine points of data for each level. The inventor of the present invention carried out evaluations in which the eccentricity L was set to 4%, 10%, and 16% in terms of the ratio of the long side dimension V of the crystal vibrating element, aiming for a result in which the frequency drift characteristic of the crystal oscillator is less than 10 ppb/10 sec. when heat is generated outside such that the temperature rises to a certain temperature and then slowly returns to the original temperature. As a result, it was found that when the eccentricity L was 16% or more, a significant improvement was observed, and 77% of the nine measurements satisfied the frequency drift of 10 ppb/10 sec. It is expected that the frequency drift characteristics will be further improved if the eccentricity L is increased to 16% or more, for example 20%, but when checking various characteristics other than the frequency drift characteristics, such as frequency tolerance and temperature characteristics, for the evaluation product this time, it was found that a dip appears in the temperature characteristics when the eccentricity L is increased. Therefore, it is thought that the eccentricity L should be around 16% to 18%.
なお、上記説明では、水晶発振器10のサイズは、1.6×1.2×0.55(単位:mm)とし、水晶発振器10に実装する水晶振動素子20のサイズは、32MHzの1.04×0.67(単位:mm)、励振用電極21のサイズは、0.57×0.54(単位:mm)の例で説明したが、本発明はこの例に限られず、他のサイズの水晶発振器に対しても適用できると考えられる。また、少なくとも、上記例示した水晶発振器10、水晶振動素子20及び励振用電極21のサイズに対して±0.1mmの範囲であれば、本発明と同様の効果が得られる。
In the above description, the size of the
10:水晶発振器 20:水晶振動素子
21a、21b:励振用電極 22a、22b:引き出し電極
23:第一の短辺 24:第二の短辺
25:導電性接着剤 30:半導体チップ
31:バンプ 40:パッケージ
40a:第1の層 40b:第2の層
40c:第3の層 41:振動子室
41a:振動子室底面 42:半導体室
42a:半導体室底面 43:接続パッド
44:実装パッド 45:シールリング
46a、46b、46c:配線 50:接続端子
E:水晶振動素子の中心点 e:励振用電極の中心点
L:偏心量 Xa:励振用電極の第一の短辺側の縁
X:第一の短辺23側の縁Xaと第一の辺23との距離
V:水晶振動素子の長辺寸法
10: Crystal oscillator 20:
Claims (8)
前記水晶振動素子は、平面視長方形状であり、その第一の辺で前記パッケージに片持ち支持で接続してあり、
前記励振用電極は、前記第一の短辺に対向する第二の短辺の方向に偏心して設けてあることを特徴とする水晶発振器。 A crystal oscillator comprising: a crystal resonator element having a rectangular shape in a plan view and excitation electrodes on both sides; a semiconductor chip having an oscillation circuit for the crystal resonator element and a temperature compensation circuit; and a package mounting the crystal resonator element and the semiconductor chip and having a plurality of connection terminals for connecting the crystal oscillator to an external device,
the crystal resonator element has a rectangular shape in a plan view, and a first side of the crystal resonator element is connected to the package in a cantilever manner;
4. A crystal oscillator comprising: a first short side and a second short side, the first short side being opposed to the first short side;
前記所定の熱変動条件は、時間t1をかけて温度がΔT上昇して時間t2をかけて元の温度に戻る予め定めた温度条件であることを特徴とする請求項1に記載の水晶発振器。 the amount of eccentricity is an amount that can reduce, by a predetermined amount, a thermal effect on the excitation electrode caused by a predetermined thermal fluctuation condition that is applied to the crystal oscillator from the outside,
2. The crystal oscillator according to claim 1, wherein the predetermined thermal change condition is a predetermined temperature condition in which the temperature rises by ΔT over a time t1 and returns to the original temperature over a time t2.
前記偏心量は、前記水晶振動素子の中心点と前記励振用電極の中心点との距離をLと表し、前記水晶振動素子の長辺寸法をVと表したとき、L/Vが16~18%であることを特徴とする請求項1に記載の水晶発振器。 The crystal oscillator has an outer long side dimension of 1.6 mm, an outer short side dimension of 1.2 mm, and an outer height dimension of 0.55 mm.
The quartz crystal oscillator according to claim 1, characterized in that the eccentricity is such that, when the distance between the center point of the quartz crystal vibrating element and the center point of the excitation electrode is represented as L and the long side dimension of the quartz crystal vibrating element is represented as V, L/V is 16 to 18%.
前記水晶振動素子は、ATカットの周波数32MHzであり、長辺寸法が1.04mm、短辺寸法が0.67mmであり、
前記励振用電極は、平面視で長方形であり、長辺寸法が0.57mm、短辺寸法が0.54mmであり、
前記偏心量は、前記水晶振動素子の中心点と前記励振用電極の中心点との距離をLと表し、前記水晶振動素子の長辺寸法をVと表したとき、L/Vが16~18%であることを特徴とする請求項1に記載の水晶発振器。 The crystal oscillator has an outer long side dimension of 1.6 mm, an outer short side dimension of 1.2 mm, and an outer height dimension of 0.55 mm.
The quartz crystal vibration element has an AT cut frequency of 32 MHz, a long side dimension of 1.04 mm, and a short side dimension of 0.67 mm.
The excitation electrode is rectangular in plan view, with a long side dimension of 0.57 mm and a short side dimension of 0.54 mm,
The quartz crystal oscillator according to claim 1, characterized in that the eccentricity is such that, when the distance between the center point of the quartz crystal vibrating element and the center point of the excitation electrode is represented as L and the long side dimension of the quartz crystal vibrating element is represented as V, L/V is 16 to 18%.
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024156240A true JP2024156240A (en) | 2024-11-06 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5070954B2 (en) | Surface mount type piezoelectric vibration device | |
JP4795602B2 (en) | Oscillator | |
US11342899B2 (en) | Crystal resonator device | |
JP2006279872A (en) | Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator | |
US10771037B2 (en) | Piezoelectric resonator device | |
TWI804937B (en) | Thermostatic Bath Type Piezoelectric Oscillator | |
JP7505564B2 (en) | Thermostatic oven type piezoelectric oscillator | |
JPWO2020122179A1 (en) | Piezoelectric vibration device | |
JP5100421B2 (en) | Electronic card | |
JP2000114877A (en) | Piezoelectric oscillator | |
JP2024156240A (en) | Crystal Oscillator | |
JP2005268257A (en) | Package for storing electronic component and electronic device | |
JP5468240B2 (en) | Temperature compensated crystal oscillator for surface mounting | |
JP2003258554A (en) | Temperature compensation type piezoelectric oscillator | |
WO2021199790A1 (en) | Constant temperature bath-type piezoelectric oscillator | |
WO2022149541A1 (en) | Piezoelectric oscillation device | |
JP7508936B2 (en) | Oscillator | |
JP2020104229A (en) | MEMS device | |
JP7465618B2 (en) | Crystal oscillator | |
US20240348230A1 (en) | Resonator Device | |
JP7144942B2 (en) | Crystal oscillator | |
JP7543772B2 (en) | Oscillator | |
WO2023182062A1 (en) | Thermostatic oven type piezoelectric oscillator | |
JP2013072836A (en) | Physical quantity detector, physical quantity detecting device and electronic apparatus | |
JP6050153B2 (en) | Surface mount type low profile crystal oscillator |